ANALISI ACCOPPIATA TERMO-IDRO-MECCANICA DI DEPOSITI PROFONDI DI SCORIE RADIOATTIVE

COUPLED HYDRO-THERMO-MECHANICAL ANALYSIS OF DEEP RADIOACTIVE WASTE DISPOSALS

Laureanda: PASSAROTTO MAREVA

Relatore: Dr. Ing. LORENZO SANAVIA
Correlatore: Prof. LYESSE LALOUI
Correlatore: Dott. Ing. LORIS LUISON
Controrelatore: Dr. Ing. SIMONETTA COLA

Anno accademico 2006-2007
Ai miei genitori...
INDICE

INDICE ... 1

PREMESSA .. 1

CAPITOLO 1 ... 3

MODELLO MATEMATICO .. 3

1.1 INTRODUZIONE .. 3

1.2 EQUAZIONI DI EQUILIBRIO MACROSCOPICO .. 5

1.2.1 EQUAZIONI LINEARI DI EQUILIBRIO DELLA QUANTITÀ DI MOTO 7

1.2.2 EQUAZIONI DI EQUILIBRIO DI MASSA .. 8

1.2.3 EQUAZIONI DI BILANCIO ENERGETICO .. 9

1.3 EQUAZIONI COSTITUTIVE ... 9

1.3.1 CONDIZIONI INIZIALI E AL CONTORNO ... 11

1.4 FORMULAZIONE AGLI ELEMENTI FINITI ... 12

1.4.1 ALGORITMO PER L’ELASTO-PLASTICITÀ ... 14

1.5 RIFERIMENTI BIBLIOGRAFICI .. 16

CAPITOLO 2 ... 19

IL METODO DEGLI ELEMENTI FINITI ... 19

2.1 INTRODUZIONE E GENERALITÀ ... 19

2.1.1 FORMULAZIONE DELLE CARATTERISTICHE DELL’ELEMENTO FINITO 20
2.1.2 Brevi cenni sui metodi di calcolo della matrice di rigidezza23

IL METODO DIRETTO ..23

IL METODO VARIAZIONALE ..24

2.1.3 Assemblaggio della matrice di rigidezza ..25

2.1.4 Convergenza del metodo degli elementi finiti ...26

2.1.5 Considerazioni finali sul metodo agli elementi finiti26

CAPITOLO 3 ..29

IL CODICE COMES-GEO ..29

3.1 Caratteristiche generali ..29

3.2 Richiami di meccanica dei mezzi porosi saturi e parzialmente saturi29

3.3 Suddivisione del volume in elementi finiti ..33

3.4 Il metodo di Newton–Raphson ..36

3.4.1 Integrazione numerica, metodo di Gauss ...37

3.4.2 Dati in ingresso ..38

CAPITOLO 4 ..39

LEGGE COSTITUTIVA TERMO-ELASTO-PLASTICA ..39

4.1 Effetti termici indotti ..39

4.1.1 Risposta dei terreni ai cicli di riscaldamento e raffreddamento40

4.1.2 Variazione della pressione di preconsolidazione rispetto alla temperatura ..42
4.1.3 Variazione dell’angolo di attrito rispetto alla temperatura42

4.2 Modello costitutivo per il comportamento termo-elasto-plastico dei terreni ...43

4.2.1 Termo-elasticità ..43

4.2.2 Termo-plasticità ...44

4.2.2.1 Meccanismo termo-elasto-plastico isotropo46

4.2.2.2 Meccanismo termo-plastico deviatorico48

4.2.2.3 Accoppiamento dei due meccanismi49

4.3 Risultati Numerici in letteratura ..50

4.3.1 Consolidazione isotropa dopo riscaldamento50

4.3.2 Consolidazione isotropa in seguito a cicli di riscaldamento e raffreddamento ..51

4.3.3 Test sull’argilla naturale (Boomclay) condotto da Baldi e al. (1991) 51

4.4 Riferimenti bibliografici ...53

Capitolo 5 ..55

Validazione Numerica ..55

5.1 Premessa ..55

5.2 Validazione del codice di Losanna ...55

5.2.1 Test isotermi ..55

5.2.1.1 Compressione isotropa ...55

5.2.1.2 Compressione triassiale svolta su di un provino normal consolidato57

5.2.2 Test non-isotermi ...58

5.2.2.1 Meccanismo isotropo ..58

5.2.2.2 Meccanismo deviatorico ...60
5.2.3 CONCLUSIONI..63

5.3 CONVALIDA DELLA SUBROUTINE THERMEC IN COMES-GEO........64

5.3.1 PROVA ISOTERMA IN REGIME PLASTICO ...64

5.3.2 PROVA NON-ISOTERMA IN REGIME PLASTICO ..68

5.4 CONCLUSIONI..71

CAPITOLO 6..73

BOUNDARY VALUE PROBLEM: GALLERIA DI STOCCAGGIO DI SCORIE RADIOATTIVE...73

6.1 INTRODUZIONE...73

6.2 DEFINIZIONE DELLA SORGENTE DI CALORE..75

6.3 DEFINIZIONE DEI PARAMETRI DEL MATERIALE...77

6.4 CONDIZIONI INIZIALI E AL CONTORNO ..79

6.5 DEFINIZIONE DELLA MESH...85

6.6 RISULTATI DELLE ANALISI...87

6.6.1 CASO 1-B: GALLERIA A 400 M DI PROFONDITÀ, INTERASSE DEI POZZI 10 M87

6.6.2 CONFRONTO TRA I RISULTATI DELL’ANALISI ELASTICO-LINEARE, ELASTICO-NON LINEARE, PLASTICA. ...88

6.6.3 ANALISI DEI RISULTATI DELL’ANALISI TERMO-ELASTO-PLASTICA: SEZIONE VERTICALE ..95

6.6.4 ANALISI DEI RISULTATI DELL’ANALISI TERMO-ELASTO-PLASTICA: SEZIONE ORIZZONTALE...108

6.7 CONCLUSIONI..118
PREMESSA

Negli ultimi anni si riscontra un sempre maggiore interesse sulle problematiche inerenti il comportamento termo-mecanico dei terreni; ciò è dovuto a innovative applicazioni tecnologiche quali:

- stoccaggio di scorie radioattive ad alta attività, (Laloui & Modaressi, 2002);
- accumulazione termica (Burger e al., 1985);
- strutture geotermiche (Laloui e al., 2003);
- attività di perforazione e iniezione per la produzione di petrolio;
- cavi interrati dell’alta tensione (Mitchell e al., 1982);

Scopo della tesi è stata l’applicazione ad un caso reale e di interesse ingegneristico e per la società civile della legge costitutiva termo-elasto-plastica per terreni satati implementata nel codice COMES-GEO (proprietà dell’Università di Padova). Tale codice applica il metodo degli elementi finiti allo studio dei mezzi porosi multifase, con una legge termo-plastica, adatta principalmente per i terreni a grana fine, sviluppata dal Dr Lyesse Laloui, L., docente dell’Università di Losanna, (EPFL – Ecole Polytechnique Fédérale de Lausanne), dal Dr Cane Cekerevac e dal Dr Bertrand François.
1.1 INTRODUZIONE

Negli ultimi anni si nota un aumentato interesse nelle analisi termo-idro-meccaniche di materiali sati e parzialmente sati, dovuto ad un’ampia gamma di applicazioni in ingegneria. Gli esempi tipici appartengono all’ambito geo-meccanico, dove varie problematiche sono di forte interesse per la comunità di ricerca. Uno spunto nello sviluppo di un modello fisico, matematico e numerico adatto alla simulazione dei problemi geo-meccanici di ingegneria è presentato in questo lavoro.

In queste pagine si propone l’applicazione di un modello termo-elasto-plastico per mezzi porosi multifase (geomateriali) ad un caso reale e di interesse ingegneristico. A questo scopo si è usato il codice F.E.M., geometricamente lineare, COMES-GEO [1]. Il materiale multifase è modellato come un mezzo poroso e deformabile dove si considerano i flussi di calore, dell’acqua e del gas [1],[2],[3], come ricordato nella sezione 1.2. In particolare, la fase gassosa è modellata come un gas ideale composto da aria secca e vapore acqueo, considerati specie miscibili. Sono considerati i cambiamenti di fase dell’acqua (evaporazione-condensazione, adsorbimento-deasorbimento) e lo scambio di calore attraverso conduzione e convezione, come pure lo scambio di calore latente. Le variabili indipendenti sono gli spostamenti, la pressione capillare, la pressione del gas e la temperatura. Le equazioni governanti, riportate a livello macroscopico nella sezione 1.2, si basano su procedure di averaging (mediazione, teoria ibrida della miscela), seguendo il modello Termo-Idro-Meccanico generale sviluppato in [1]. Le equazioni di equilibrio macroscopico sono discretizzate nello spazio e nel tempo (vedi sezione 1.4). In particolare, è seguita la procedura di Galerkin per la discretizzazione nello spazio, mentre il Metodo Trapezoidale Generalizzato è usato per l’integrazione nel tempo. Sono supposte piccole deformazioni e condizioni di carico quasi-statico. Nella sezione 5 sono presentati i risultati numerici di una prova di compressibilità biassiale in cui la localizzazione di deformazioni si sviluppa in
campioni inizialmente saturi di sabbia densa, mediodensa e sciolta e di geomateriale isocoro. La pressione di vapore risulta essere inferiore alla pressione di saturazione dell'acqua (cavitazione)\(^1\) in corrispondenza delle bande di taglio nel caso di sabbie dense (materiale dilatante) in condizioni non drenate, come osservato sperimentalmente in [4] e [5]. Questo invece non si riscontra quando si assumono parametri di sabbia sciolta (materiale contraente) e materiale granulare con flusso plastico isocoro. Nell'ultimo esempio, è simulata l'evaporazione dell'acqua interstiziale nel dominio e è analizzata la localizzazione di deformazioni indotte da carico termico. Questi esempi sono stati simulati per dare risalto all'importanza di un modello multifase non-isotermico per la simulazione del comportamento idro-termo-meccanico di terreni saturi e parzialmente saturi.

Per quanto riguarda le proprietà di regolarizzazione del modello multifase di localizzazione, dovuto alla presenza di un operatore Laplaciano nell'equazione di equilibrio di massa dei liquidi quando viene utilizzata la legge del Darcy, il lettore interessato può vedere [6] e [12]. La scala di lunghezza interna, l_w, contenuta nel modello è presentata in [13]. Ulteriori funzioni interessanti dell'efficacia di l_w sono presenti in [14] e [15]. Tuttavia, se si aspira all'indipendenza dalla mesh in tutte le situazioni, una certa specie di regolarizzazione dovrebbe essere introdotta come, per esempio, dipendenza dal gradiente [14]. Qui si sottolinea il fatto che per tutti gli esempi numerici precedentemente descritti un singolo modello THM può essere usato con successo ([15], [16]) ed in modo diretto.

Una revisione dei modelli termo-idro-meccanici non-isotermici va oltre lo scopo di questo articolo; il lettore interessato può trovarlo in [17] e [18].

\[^1\] La cavitazione (rapido cambiamento di fase a temperatura ambiente) può accadere quando il valore assoluto della pressione dell'acqua è minore o uguale alla pressione di saturazione alla temperatura considerata (trascurando la tensione superficiale all'interfaccia delle bolle di vapore che si generano). Per la condizione di equilibrio termodinamico, la pressione di vapore all'interfaccia fra materiale poroso santo e parzialmente santo è uguale, a $T = 20^\circ$C, al valore di saturazione di 2338,8 Pa (cioè 98986,2 Pa con riferimento alla pressione atmosferica).
1.2 EQUAZIONI DI EQUILIBRIO MACROSCOPICO

Il mezzo poroso parzialmente saturo è trattato come un sistema multifase composto da \(\pi = 1, \ldots, k \) costituenti, con i vuoti dello scheletro solido (\(s \)) riempiti di acqua (\(w \)) e gas (\(g \)). Quest’ultimo assunto come miscela ideale di due specie: aria secca (\(ga \), gas non condensabile) e vapore acqueo (\(gw \), gas condensabile). Usando operatori di media nello spazio definiti in un volume elementare rappresentativo R.E.V. (di volume \(dv(x,t) \) nella configurazione deformata, \(B_j \subset \mathbb{R}^3 \), vedi Fig. 1, dove \(x \) è il vettore delle coordinate spaziali e \(t \) è il tempo attuale), le equazioni microscopiche vengono integrate sul R.E.V. e formano le equazioni macroscopiche dell'equilibrio [1], [3].

\[\text{Fig. 1. Elemento rappresentativo di volume (R.E.V.) di un mezzo poroso composto da una fase solida e due fluide.} \]
A livello macroscopico il mezzo poroso è modellato da un volume continuo sostitutivo B_t, con frontiera ∂B_t, che riempie l'intero dominio simultaneamente, mentre i liquidi reali ed il solido riempiono soltanto una parte del volume stesso. In questo continuo sostitutivo ogni costituente π ha una densità ridotta ottenuta attraverso la frazione di volume:

$$\eta^\pi(x,t) = \frac{dv^\pi(x,t)}{dv(x,t)};$$

Nel modello generale [1] sono presi in considerazione:

- la forza inerziale;
- la conduzione di calore;
- la diffusione di vapore;
- la convezione di calore;
- il flusso dell'acqua (dovuto a gradienti di pressione o ad effetti di capillarità);
- i cambiamenti di fase dell'acqua (evaporazione e condensazione) all'interno dei pori.

Il solido è deformabile e non polare; i fluidi, il solido e i campi termici sono accoppiati. Tutti i liquidi sono in contatto con la fase solida. I costituenti sono assunti per essere isotropi, omogenei, immiscibili (tranne aria secca e vapore) e chimicamente non reagenti. Si suppone l'equilibrio termico locale fra la matrice solida, il gas e le fasi liquide, di modo che la temperatura è la stessa per tutti i costituenti. Lo stato del mezzo è descritta da:

- p^c pressione capillare
- p^g pressione del gas
- T la temperatura assoluta
- $u = [u_x, u_y]$ spostamenti della matrice solida

Nelle zone parzialmente sature l’acqua è separata dal relativo vapore da un menisco concavo (acqua capillare). A causa della curvatura di questo menisco, l’equazione di equilibrio di assorbimento (vedi [22]) dà la relazione fra la pressione capillare $p^c(x,t)$, la pressione del gas $p^g(x,t)$, il t ed la pressione dell’acqua $p^w(x,t)$, [22]:

$$p^c = p^g - p^w$$

La pressione nei pori è definita positiva se di compressione per i fluidi, mentre la tensione è definita positiva se di trazione per la fase solida.
Inoltre, nella teoria multifase dei materiali è comune presupporre come riferimento il moto del solido e descrivere i liquidi in termini di moto relativo al solido. Ciò significa introdurre la velocità dei fluidi come relativa rispetto al solido. La velocità relativa dei fluidi $v^\pi(x,t)$ (o velocità di diffusione) è data da:

$$v^\pi(x,t) = v^s(x,t) - v^s(x,t) \quad \text{con} \quad \pi = g, w$$

e sarà descritta dalla legge di Darcy.

Vengono ora ricapitolate le equazioni macroscopiche di equilibrio del modello implementato. Sono ottenute introducendo le seguenti ipotesi nel modello sviluppato in [1]:

- al livello microscopico, il mezzo poroso è supposto per essere costituito da componenti incomprimibili di acqua e solido, mentre il gas è considerato comprimibile;
- il processo è considerato come quasistatico ed è sviluppato in una struttura geometricamente lineare.

1.2.1 Equazioni lineari di equilibrio della quantità di moto

L'equazione lineare di equilibrio della quantità di moto della miscela in termini di tensione totale di Cauchy $\sigma(x,t)$ assume la forma:

$$\text{div} \sigma + \rho \mathbf{g} = 0$$

in cui $\rho(x,t)$ è la densità della miscela:

$$\rho = [1-n] \rho^s + nS_w \rho^s + nS_g \rho^s$$

dove $n(x,t)$ è la porosità $S_w(x,t)$ e $S_g(x,t)$ sono rispettivamente il grado di saturazione del gas e dell'acqua. La tensione totale di Cauchy può essere scomposta seguendo il principio delle tensioni efficace:

$$\sigma = \sigma' - [p - S_w p^s] 1$$

dove $\sigma'(x,t)$ è il tensore efficace modificato delle tensioni di Cauchy e 1 è il tensore identità di secondo grado. Questa forma che utilizza la saturazione come funzione peso per le pressioni parziali è stata introdotta per la prima volta in [23] il una media volumetrica (vedi anche [24] e [25]) ed è termodinamicamente consistente ([22], [34] e recentemente anche [9]). La forma di Eq. (5) suppone il grano incomprimibile (rispetto allo scheletro), che è ipotesi comune nella
meccanica di terreni. (per rappresentare il grano comprimibile, il coefficiente α di Biot dovrebbe comparire davanti alla pressione del solido; questo risulta importante nelle rocce e nel calcestruzzo).

1.2.2 **Equazioni di equilibrio di massa**

Le equazioni di conservazione di massa per lo scheletro solido, l'acqua ed il vapore è:

$$
\rho^w - \rho^{gw} n \left[\frac{\partial S_w}{\partial T} \frac{\partial T}{\partial t} + \frac{\partial S_w}{\partial p^s} \frac{\partial p^s}{\partial t} \right] + \left[I - S_w \right] n \left[\frac{\partial \rho^{gw}}{\partial T} \frac{\partial T}{\partial t} + \frac{\partial \rho^{gw}}{\partial p^s} \frac{\partial p^s}{\partial t} \right] + \left[I - S_w \right] \rho^{gw} [I - S_w] \text{div} \left(\frac{\partial \mathbf{u}}{\partial t} \right)
$$

$$
+ \left[I - S_w \right] n \left[\frac{\partial \rho^{gw}}{\partial T} \frac{\partial T}{\partial t} + \frac{\partial \rho^{gw}}{\partial p^s} \frac{\partial p^s}{\partial t} \right] - \text{div} \left(\rho^w \frac{k^{gw}}{\mu^{gw}} \text{grad} \left(\frac{\partial p^{gw}}{\partial p^s} \right) - \text{grad} \left(\rho^w \right) \right) - \text{div} \left(\rho^{gw} \frac{k^{gw}}{\mu^{gw}} \text{grad} \left(\rho^s \right) - \rho^{gw} \mathbf{g} \right) - \beta_{\text{swg}} \frac{\partial T}{\partial t} = 0
$$

dove, in particolare $k(x,t)$ è il tensore di permeabilità intrinseca, $k^{gw}(x,t)$ la permeabilità relativa dell'acqua, $\mu^w(x,t)$ la viscosità dell’acqua e $\beta_{\text{swg}} = \beta_s [I - n] [S_s \rho g^w + S_w \rho^w]$. I flussi entranti e uscenti sono stati descritti usando la legge di Fick Eq. (13) per la diffusione del vapore nella fase gassosa e dalla legge di Darcy per il flusso d'acqua e gas.

Analogamente l’equazione di equilibrio di massa per l’aria secca è:

$$
- \rho^{ga} \left[\frac{\partial S_w}{\partial T} \frac{\partial T}{\partial t} + \frac{\partial S_w}{\partial p^s} \frac{\partial p^s}{\partial t} \right] - \beta_s \rho^{ga} [I - n] [I - S_w] \frac{\partial T}{\partial t} + \left[I - S_w \right] \rho^{ga} \text{div} \left(\frac{\partial \mathbf{u}}{\partial t} \right)
$$

$$
+ \left[I - S_w \right] n \left[\frac{\partial \rho^{ga}}{\partial T} \frac{\partial T}{\partial t} + \frac{\partial \rho^{ga}}{\partial p^s} \frac{\partial p^s}{\partial t} + \frac{\partial \rho^{ga}}{\partial p^s} \frac{\partial p^s}{\partial t} \right] - \text{div} \left(\rho^s \frac{k^{gw}}{\mu^{gw}} \text{grad} \left(\frac{\partial p^{gw}}{\partial p^s} \right) \right) - \text{div} \left(\rho^{gw} \frac{k^{gw}}{\mu^{gw}} \text{grad} \left(\rho^s \right) - \rho^{gw} \mathbf{g} \right) = 0
$$
le quantità $S_v(x,t)$, $S_g(x,t)$, $k^{vw}(x,t)$, $k^{vg}(x,t)$ sono definite al livello costitutivo, come descritto nella sezione 1.3.

1.2.3 Equazioni di bilancio energetico

L’equazione di bilancio energetico della miscela è:

$$
\left(\rho C_p\right)_{\text{eff}} \frac{\partial T}{\partial t} + \rho \left[\frac{k^{vw}}{\mu^{vw}} \left[- \text{grad}(p^v) + \text{grad}(p^g) + \rho^v g\right]\right] \cdot \text{grad}T \\
+ \rho \left[\frac{k^{vg}}{\mu^{vg}} \left[- \text{grad}(p^g) + \rho^g g\right]\right] \cdot \text{grad}T - \text{div}(\chi_{\text{eff}} \text{grad}T) = -m_{\text{vap}} \Delta H_{\text{vap}}
$$

dove, in particolare, $m_{\text{vap}} \Delta H_{\text{vap}}$ considera il contributo dell’evaporazione e della condensazione. Questa equazione di equilibrio considera lo scambio di calore per conduzione e convezione come pure lo scambio di calore latente (vedi [1]) e trascura i termini relativi al lavoro meccanico indotto dalle variazioni di densità, dovute ai mutamenti di temperatura delle fasi, e dai cambiamenti di frazione di volume; l’equazione dell’equilibrio più generale di A è sviluppata dentro [18].

1.3 EQUAZIONI COSTITUTIVE

Si valuta la pressione $\rho^g(x,t)$. Per una miscela gassosa di aria secca e di vapore acqueo, si introduce la legge ideale dei gas perché l’aria umida è supposta essere una miscela perfetta di due gas ideali. L’equazione di stato del gas perfetto (l’equazione di Clapeyron) e di legge del Dalton applicate all’aria secca, ga, al vapore acqueo, gw, all’aria umida, g, danno:

$$
p^{ga} = \frac{\rho^{ga}RT}{M_a} \quad p^{gw} = \frac{\rho^{gw}RT}{M_w} \\
p^g = p^{ga} + p^{gw} \quad \rho^g = \rho^{ga} + \rho^{gw}
$$
Nelle zone parzialmente sature, l’equilibrio della pressione del vapore acqueo, $p^{gw}(x,t)$, si può ottenere dall'equazione di Kelvin-Laplace

$$p^{gw} = p^{gw}(T) e^{\frac{p^{GW}RT}{M_w}}$$

dove la pressione di saturazione del vapore acqueo, $p^{gw}(x,t)$, dipendendo soltanto dalla temperatura $T(x,t)$, può essere calcolata con l'equazione di Clausius-Clapeyron o con correlazione empirica. La saturazione, $S_x(x,t)$, e la permeabilità relativa, $k^{x\pi}(x,t)$, sono funzioni della pressione capillare, p^π, e della temperatura, T, determinate sperimentalmente:

$$S_x = S_x(p^\pi,T) \quad k^{x\pi} = k^{x\pi}(p^\pi,T) \quad \pi = w, g$$

Per la miscela binaria di gas, aria secca e vapore acqueo, legge del Fick dà alle seguenti velocità relative $v^\pi_x = v^\pi - v^\rho$ ($\pi = ga, gw$) della specie che si diffondono:

$$v^ga_g = -\frac{M_aM}{M_g^2} D^ga_g \text{grad} \left(\frac{\partial p^{ga}}{\partial p^g} \right) = \frac{M_aM}{M_g^2} D^ga_g \text{grad} \left(\frac{\partial p^{gw}}{\partial p^g} \right) = -v^{gw}_g$$

dove D^ga_g è il tensoere efficace di diffusione ed M_g è la massa molare della miscela del gas:

$$\frac{l}{M_g} = \frac{\rho^{gw}}{\rho^g} \frac{l}{M_w} + \frac{\rho^{ga}}{\rho^g} \frac{l}{M_a}$$

Si suppone che il comportamento elasto-plastico dello scheletro solido sia descritto dalla teoria classica di elasto-plasticità, indipendente dal rateo, per problemi geometricamente lineari. Per semplicità la funzione del snervamento che limita le tensioni efficaci, $\sigma'(x,t)$, è quella di Drucker-Prager, che considera il comportamento di dilatante o contraente di sabbie dense o sciolte rispettivamente. Il return mapping e il tensoere di consistenza tangente sono sviluppati risolvendo i diversi comportamenti della superficie di snervamento di Drucker-Prager nella zona d’apice e usando il concetto di plasticità multi-meccanismo, e seguendo un’idea suggerita in [26] nel caso di flusso plastico associato e di flusso plastico (deviatorico) non associato. Il ‘return mapping’ e il tensoere di consistenza tangente usati per le simulazioni numeriche sono sviluppati in [27] per hardening/softening isotropo lineare e plasticità volumetrico-deviatorica non associata nel caso di grandi deformazioni elasto-plastiche; qui si considera solo il caso geometricamente lineare.
Il comportamento meccanico dello scheletro solido è supposto essere governato dalla funzione di energia libera di Helmholtz, ψ, nella forma:

$$\psi = \psi(\varepsilon, \xi)$$

dipendente dal tensore delle piccole deformazioni elastiche, $\varepsilon(x,t)$, e dalla variabile interna scalare di deformazione di hardening, $\xi(x,t)$, cioè la deformazione plastica equivalente. La seconda legge della termodinamica fornisce, attraverso la limitazione dell’isotropia, le relazioni costitutive

$$\sigma' = \frac{\partial \psi}{\partial \varepsilon}$$

$$q = \frac{\partial \psi}{\partial \xi}$$

e la disuguaglianza di dispersione

$$\sigma' : \dot{\varepsilon} - q \dot{\xi} \geq 0$$

dove $q(x,t)$ è la variabile interna di stress che valuta l’evoluzione della superficie di snervamento nello spazio delle tensioni. Le equazioni di sviluppo per i termini rateo della disuguaglianza di dispersione (17) possono essere ricavate dal postulato della massima dispersione plastica nel caso di flusso plastico associato [28]:

$$\dot{\varepsilon} = \dot{\varepsilon} - \gamma \frac{\partial F}{\partial q}$$

$$\dot{\xi} = \gamma \frac{\partial F}{\partial q}$$

sottoalle classiche condizioni di carico/scarico di Kuhn-Tucker

$$\gamma \geq 0 \quad F(\sigma', q) \leq 0 \quad \dot{\gamma} F = 0$$

in cui γ è il parametro continuo di consistenza e la funzione di snervamento isotropo.

1.3.1 Condizioni iniziali e al contorno

Per concludere sono necessarie le condizioni iniziali e al contorno. Le condizioni iniziali specificano completamente lo stato delle variabili primarie di stato al tempo $t = t_0$, in tutto il dominio analizzato, B, e il relativo contorno, ∂B:

$$\begin{cases}
\partial B = \partial B_x \cup \partial B_\pi = g,c,T,u \\
p^g = p_0^g, p^\varepsilon = p_0^\varepsilon, T = T_0, u = u_0,
\end{cases}$$

Le condizioni al contorno (BC) possono essere del tipo di Dirichlet su ∂B_x per $t \geq t_0$:

MODELLO MATEMATICO

\[p^g = \hat{p}^g, \text{ su } \partial B_g \quad p^c = \hat{p}^c, \text{ su } \partial B_c \quad T = \hat{T}, \text{ su } \partial B_T \quad \mathbf{u} = \hat{\mathbf{u}}, \text{ su } \partial B_u \]

o del tipo di Cauchy (BC miste) su \(\partial B_0^g \) per \(t \geq t_0 \):

\[
\left(nS_g \rho^{\text{ga}} \mathbf{v}^{\text{ga}} + \mathbf{J}_d^{\text{ga}} \right) \cdot \mathbf{n} = q^{\text{ga}}, \text{ su } \partial B_g^q
\]

\[
\left(nS_w \rho^{\text{wa}} \mathbf{v}^{\text{wa}} + nS_g \rho^{\text{cg}} \mathbf{v}^{\text{cg}} + \mathbf{J}_d^{\text{cg}} \right) \cdot \mathbf{n} = q^{\text{cg}} + q^{\text{cw}} + \beta_c \left(\rho^{\text{cg}} - \rho_n^{\text{cg}} \right), \text{ su } \partial B_c^q
\]

\[
\left(nS_w \rho^{\text{wv}} \mathbf{v}^{\text{wv}} + \alpha \left[H_{\text{wv}} - \chi_{\text{wv}} \text{Grad}T \right] \right) \cdot \mathbf{n} = q^T + q^w + \alpha_c \left(T - T_n \right) + e \sigma_0 \left(T^d - T_n^d \right), \text{ su } \partial B_T^q
\]

\[\mathbf{\sigma} \cdot \mathbf{n} = \mathbf{\bar{f}}, \text{ su } \partial B_u^q \]

dove \(\mathbf{n}(x,t) \) è il vettore unitario normale, che punta verso il gas circostante, \(q^{\text{ga}}(x,t) \), \(q^{\text{cg}}(x,t) \), \(q^{\text{wv}}(x,t) \) sono rispettivamente i flussi imposti di aria secca, del vapore acqueo, dell’acqua e il flusso imposto di calore, e \(\mathbf{\bar{f}}(x,t) \) è il vettore di trazione imposta relativa al tensore totale di Cauchy; \(\rho_n^{\text{cg}}(x,t) \) e \(T_n(x,t) \) sono la densità del vapore acqueo e la temperatura nel campo lontano della fase gassosa indisturbata, \(e(x,t) \) è l’emissività dell’interfaccia, \(\sigma_0 \) la costante di Stefan-Boltzmann, mentre \(\alpha_c(x,t) \) e \(\beta_c(x,t) \) sono coefficienti di calore convettivo e di scambio di massa. Le condizioni al contorno con solo i flussi imposti sono dette condizioni di Neumann. Le condizioni al contorno relative solamente a scambi di calore e umidità dette condizioni di Robin.

1.4 FORMULAZIONE AGLI ELEMENTI FINITI

Il modello agli elementi finiti è derivato dall’applicazione della procedura di Galerkin per l’integrazione spaziale ed il Metodo dei Trapezi Generalizzato per l’integrazione temporale della forma debole delle equazioni di equilibrio della sezione 2 (vedi per esempio [1]).

In particolare, dopo discretizzazione spaziale all’interno della formulazione isoparametrica, si ottiene il seguente sistema di equazioni, non simmetrico, non lineare e accoppiato:
dove gli spostamenti del solido, \(u(x,t) \), la pressione capillare, \(p^c(x,t) \), ed del gas, \(p^g(x,t) \), e la temperatura, \(T(x,t) \), sono espressi nell’intero dominio da funzioni di forma matriciali \(N_u(x), N_c(x), N_g(x) \) e dai vettori dei valori nodali \(u = N_u \bar{u}, \ p^c = N_u \bar{p}^c, \ p^g = N_u \bar{p}^g, \ T = N_u \bar{T} \).

In una forma più concisa l’Eq. (25) può essere scritta come:

\[
C \frac{\partial X}{\partial t} + KX = F
\]

Le differenze finite nel tempo sono usate per la soluzione del problema dei valori iniziali in uno step finito nel tempo \(\Delta t = t_{n+1} - t_n \). Seguendo il Metodo dei Trapezi Generalizzato come indicato in [1], l’Eq. (27) può essere riscritta al tempo \(t_{n+1} \) usando le relazioni

\[
\frac{\partial X}{\partial t}_{n+\theta} = \frac{X_{n+1} - X_n}{\Delta t}
\]

\[
X_{n+\theta} = [1-\theta]X_n + \theta X_{n+1}, \text{ con } \theta = [0,1],
\]

dove \(X_n \) e \(X_{n+1} \) sono i vettori di stato ai tempi \(t_n \) e \(t_{n+1} \), così da ottenere

\[
G(X_{n+1}) = [C + \theta \Delta t K]_{n+\theta} X_{n+1} - [C - (1-\theta) \Delta t K]_{n+\theta} X_n - \Delta t F_{n+\theta} = 0
\]

L’analisi linearizzata di accuratezza e stabilità suggerisce l’uso di \(\theta \geq \frac{1}{2} \). Nella sezione degli esempi, è stata utilizzata l’integrazione implicita nel tempo (\(\theta = 1 \)).

Dopo l’integrazione nel tempo il sistema di equazioni non lineari viene linearizzato, così si ottiene il sistema di equazioni che può essere risolto numericamente (in forma compatta)

\[
\frac{\partial G}{\partial X} \bigg|_{X_{n+1}^j} \Delta X_{n+1}^j \approx -G(X_{n+1}^j)
\]
MODELLO MATEMATICO

con il simbolo \((\bullet)^{i+1}_{n+1}\) che indica l’iterazione corrente \((n+1)\) nel time step corrente \((i+1)\) e dove lo Jacobiano ha la forma seguente

\[
\frac{\partial G}{\partial X} = \begin{bmatrix}
\frac{\partial G^g}{\partial \mathbf{p}} & \frac{\partial G^g}{\partial \mathbf{p}} & \frac{\partial G^g}{\partial \mathbf{T}} & \frac{\partial G^g}{\partial \mathbf{u}} \\
\frac{\partial G^c}{\partial \mathbf{p}} & \frac{\partial G^c}{\partial \mathbf{p}} & \frac{\partial G^c}{\partial \mathbf{T}} & \frac{\partial G^c}{\partial \mathbf{u}} \\
\frac{\partial G^T}{\partial \mathbf{p}} & \frac{\partial G^T}{\partial \mathbf{p}} & \frac{\partial G^T}{\partial \mathbf{T}} & \frac{\partial G^T}{\partial \mathbf{u}} \\
\frac{\partial G^u}{\partial \mathbf{p}} & \frac{\partial G^u}{\partial \mathbf{p}} & \frac{\partial G^u}{\partial \mathbf{T}} & \frac{\partial G^u}{\partial \mathbf{u}}
\end{bmatrix}
\]

Dettagli riguardanti matrici ed vettori dei residui del sistema di equazioni linearizzate si possono trovare nell’Appendice 2. A causa del forte accoppiamento tra il problema meccanico, quello termico ed il problema dei fluidi nei pori, una soluzione unica (monolitica) di (31) è preferibile usando lo schema di Newton.

Per concludere, il vettore soluzione viene aggiornato tramite la relazione incrementale:

\[
\mathbf{X}^{i+1}_{n+1} = \mathbf{X}^i_{n+1} + \Delta \mathbf{X}^{i+1}_{n+1}
\]

1.4.1 **Algoritmo per l’elasto-plasticità**

Il problema del calcolo di \(\mathbf{e}, \mathbf{\zeta}, \sigma'\) è tipicamente risolto da un operatore composto da un previsore elastico e da un correttore plastico [29]. Il calcolo dello stato elastico di tentativo, \((\bullet)^{r}\), è basato sul ‘congelamento’ del flusso plastico a l tempo \(t_{n+1}\). Quindi \(\mathbf{e}_{n+1}^{r}\) è ottenuto dal passo di carico per mezzo di \(\mathbf{e}_{n+1}^{r} = \mathbf{e}_{n+1}\). Il corrispondente stato elastico di tentativo è ottenuto dalla funzione di energia libera iperelastica:

\[
\sigma^{r_{n+1}}_{n+1} = \left[\frac{\partial \psi}{\partial \mathbf{e}}\right] \mathbf{e}, \text{con } \mathbf{e}^{r} = \left[\mathbf{e}_{n+1}^{r}\right]
\]

\[
q^{r_{n+1}}_{n+1} = -\left[\frac{\partial \psi}{\partial \mathbf{\zeta}}\right] \mathbf{\zeta}, \text{con } \mathbf{\zeta} = \xi^{r_{n+1}}_{n+1}
\]

Se questo stato di tentativo è ammissibile, esso non viola la disuguaglianza

\[
F^{r_{n+1}}_{n+1} = F(\sigma^{r_{n+1}}_{n+1}, q^{r_{n+1}}_{n+1}) \leq 0
\]

e lo stato tensionale è quindi già stato computato. Altrimenti si applica
il return mapping o la procedura di correttore plastico al fine di valutare $\Delta\gamma_{n+1}$ che soddisfi la condizione di consistenza $F_{n+1} = 0$.

Noto $\Delta\gamma_{n+1}$ la deformazione plastica equivalente viene computata tramite l’integrazione di Eulero all’indietro dell’Eq. (16)$_2$

$$\xi_{n+1} = \xi_n + \Delta\gamma_{n+1} \frac{\partial F}{\partial q}|_{n+1}$$

Le componenti di tensione di Cauchy sono allora calcolate dalla legge costitutiva iperelastica Eq. (16)$_1$ con l’energia libera $\psi = \hat{\psi}(\varepsilon', \xi)$, scritta in funzione delle componenti elastiche principali di deformazione e dello deformazioni plastiche equivalenti (per l’incrudimento lineare isotropo), è

$$\hat{\psi} = \frac{L}{2} \left[\varepsilon_i' + \varepsilon_j' + \varepsilon_k' \right]^2 + G \left[\varepsilon_i'^2 + \varepsilon_j'^2 + \varepsilon_k'^2 \right] + \frac{1}{2} h \xi^2$$

dove L ed G sono le costanti elastiche di Lame’ e h il modulo d’incrudimento lineare.
1.5 RIFERIMENTI BIBLIOGRAFICI

15. Schrefler BA, Zhang HW, Sanavia L. Interaction between different internal length scales in fully and partially saturated porous media-the 1-d case. Int J Numer Anal Meth geomech, accepted

CAPITOLO 2

IL METODO DEGLI ELEMENTI FINITI

2.1 INTRODUZIONE E GENERALITÀ

Il metodo degli elementi finiti è applicabile qualora non sia più possibile una soluzione analitica per un determinato problema, si ottiene quindi una soluzione con valore approssimato delle quantità incognite soltanto in un numero discreto di punti del corpo. In tale modo si provvede ad una discretizzazione in più parti (elementi finiti) del corpo stesso.

Invece di risolvere il problema dell’intero corpo in un’unica operazione viene formulata una soluzione per ogni parte per poi combinarle ed ottenere così la soluzione originaria.

Il corpo (assunto continuo cioè ad infiniti gradi di libertà) è suddiviso in serie di elementi che sono:

- di volume finito e forma semplice;
- non compenetranti tra loro;
- connessi tra loro in un numero finito di elementi chiamati nodi;
- tali per cui gli spostamenti di un punto interno di un elemento siano funzione degli spostamenti nodali tramite opportune funzioni dette “funzioni di spostamento”.

Ogni nodo è caratterizzato da un certo numero di “qualità” generalizzate dette *gradi di libertà*. Questi variano a seconda del tipo di problema studiato ed il loro numero per ogni elemento dipende dal grado di approssimazione che si è scelto per poter rappresentare la variazione degli spostamenti nei punti interni dell’elemento (lineare, quadratica ecc..). I gradi di libertà hanno un significato fisico potendo rappresentare spostamenti, rotazioni, sforzi, temperature, pressioni ecc.. Il loro numero per ciascun nodo e il numero dei nodi stessi caratterizza il comportamento del singolo elemento.
2.1.1 **Formulazione delle caratteristiche dell’elemento finito**

Gli spostamenti nodali sono le incognite del problema. Si sceglie quindi una serie di funzioni per definire univocamente lo stato deformativo dentro ogni elemento finito in funzione degli spostamenti nodali. Partendo dalle deformazioni iniziali e utilizzando le proprietà costitutive del materiale si può definire lo stato di tensione dell’elemento e quindi anche il suo confine:

\[\{ \mathbf{F} \}^e = [\mathbf{K}]^e \{ \Delta \}^e \]

\(\{ \mathbf{F} \}^e \): vettore di forze concentrate nei nodi, in equilibrio con le tensioni sull’elemento
\([\mathbf{K}]^e \): matrice di rigidezza dell’elemento
\(\{ \Delta \}^e \): vettore degli spostamenti

Dall’assemblaggio delle equazioni relative ad ogni elemento si ottengono le equazioni globali di equilibrio dell’intera struttura.

Supponendo per esempio di avere un elemento triangolare inserito all’interno di un sistema di riferimento Figura 2e fissati per ogni nodo due gradi di libertà (rappresentati per comodità dagli spostamenti orizzontali e verticali), per legare tra loro gli spostamenti del generico punto con quelli relativi ai nodi si introducono delle funzioni di forma come di seguito riportato:

![Figura 2. Elemento triangolare con due gradi di libertà per ogni nodo.](image-url)
\[
\begin{bmatrix}
u(x,y) \\
v(x,y)
\end{bmatrix} = \{f(x,y)\}^e = [N]^e \{\Delta\}^e \quad e \text{ si riferisce ad un determinato nodo.}
\]

\>[N]^e = \text{matrice delle funzioni di forma con le seguenti proprietà:}
\[N_i(x_i, y_i) = 1 \quad \text{se calcolata nel nodo cui si riferisce.}
\]
\[N_i(x_j, y_j) = N_i(x_m, y_m) = 0 \quad \text{se calcolata rispetto ad un qualsiasi altro nodo.}
\]

Esistono tante funzioni \(N(x, y)\) quanti sono i nodi. La generica matrice delle funzioni di forma ha un aspetto di questo tipo:
\[
[N]^e = \begin{bmatrix}
N_i & 0 & N_j & 0 & N_m & 0 \\
0 & N_i & 0 & N_j & 0 & N_m
\end{bmatrix}
\]

mentre la generica matrice dello spostamento dei nodi ha una forma di questo tipo:
\[
\{\Delta\}^e = \begin{bmatrix}
u_i \\
v_i \\
u_j \\
v_j \\
u_m \\
v_m
\end{bmatrix}
\]

Una volta calcolato il vettore di spostamento del generico punto dell’elemento, esso deve essere legato alle deformazioni dell’elemento, in modo che le deformazioni stesse siano legate alle deformazioni dei nodi.

Il Metodo agli Elementi Finiti

Quest’ultima unità alla precedente porta a:

\[\{e\}^e = [B]^e \{A\}^e \]

Considerando inoltre i vettori delle deformazioni e delle tensioni iniziali si ottiene, in forma matriciale:

\[\{\sigma\}^e = [D]^e \left(\{e\}^e - \{e_0\}^e \right) + \{\sigma_0\}^e \]

[D] è la matrice che tiene conto della legge costitutiva del materiale.

In questo modo si riesce a considerare nella giusta misura anche la legge costitutiva del materiale e quindi il legame \(\sigma - \varepsilon \).

Considerando l’equazione iniziale e la sua inversa:

\[\{F\}^e = [K]^e \{\Delta\}^e \quad \{\Delta\}^e = [C]^e \{F\}^e \quad \text{in cui } [K]^e = [C]^e^{-1} \]

si vede che si possono utilizzare due metodi:

il “metodo degli spostamenti” che prevede il calcolo della matrice di rigidezza \([K]^e\) con la prima equazione;

il “metodo delle forze” che prevede il calcolo della matrice di flessibilità \([C]^e\) con la seconda equazione.

22
Il metodo di più largo utilizzo è il metodo degli spostamenti, che a sua volta si specifica in ulteriori due metodi: il metodo diretto con il quale si ottiene un vettore di carichi concentrati (lumped) ed il metodo variazionale o energetico con il quale si ottiene un vettore di carichi distribuiti (consistent).

2.1.2 Brevi cenni sui metodi di calcolo della matrice di rigidezza.

Di seguito vengono riportati dei brevi cenni sui metodi per il calcolo della matrice di rigidezza citati nel paragrafo precedente.

Il metodo diretto

Con questo metodo si può procedere in due modi:

Trattando ogni elemento K_{ij} della matrice di rigidezza come un coefficiente calcolabile a partire dalle relazioni di equilibrio. Si considera che ogni elemento della matrice rappresenti la forza su un nodo in grado di mantenere uno spostamento unitario nella sua direzione di applicazione qualora tutti gli altri spostamenti nodali siano nulli. In generale le relazioni nodali calcolate nella direzione degli spostamenti nodali e conseguenti ad uno spostamento unitario imposto, rappresentano gli elementi della colonna della matrice di rigidezza relativa a quello spostamento. Inoltre la somma degli elementi di una colonna deve essere nulla, poiché tali elementi rappresentano le forze agenti su un nodo in equilibrio (metodo dei coefficienti di influenza).

Usando le equazioni di elasticità: si esprime il campo degli spostamenti interni all’elemento in funzione degli spostamenti nodali mediante le funzioni di forma N per passare poi al campo delle tensioni e delle deformazioni, per mezzo delle equazioni viste in precedenza e delle leggi costitutive (metodo delle equazioni dell’elasticità).
Il metodo variazionale

Anche con questo metodo si può procedere in due modi:

Sfruttando il principio dei lavori virtuali \(\delta U = \delta W \) in cui \(U \) rappresenta l’energia di deformazione immagazzinata a causa dello spostamento e \(W \) il lavoro fatto dai carichi. Tale principio viene quindi applicato al singolo elemento finito in modo da ottenere:

\[
[K]^e[\Delta]^e = \{F\}^e + \{F_{\varepsilon 0}\}^e + \{F_b\}^e + \{F_{\sigma 0}\}^e + \{F_p\}^e
\]

\(\{F\}^e \): forze nodali
\(\{F_{\varepsilon 0}\}^e \): vettore equivalente delle deformazioni iniziali
\(\{F_b\}^e \): forze di massa
\(\{F_{\sigma 0}\}^e \): vettore equivalente delle tensioni iniziali
\(\{F_p\}^e \): vettore equivalente dei carichi superficiali distribuiti

Sfruttando il principio di minimo dell’energia potenziale \(\Pi = U + W \) in cui \(U \) è l’energia di deformazione e \(W \) il potenziale dei carichi applicati. Tra tutti i sistemi di spostamenti ammissibili quello che soddisfa le condizioni di equilibrio fa assumere all’energia potenziale totale un valore stazionario.

\(\delta \Pi = \delta U + \delta W = 0 \)

Essa porta ad ottenere delle equazioni differenziali o algebriche che sono equazioni di equilibrio, affinché tale equilibrio sia stabile deve essere: \(\delta \Pi^2 = \delta U^2 + \delta W^2 > 0 \), cioè \(\Pi \) deve assumere valore minimo.

Calcolata la matrice di rigidezza per ogni elemento finito, con uno dei metodi precedenti, è necessario assemblare il tutto ma per fare ciò bisogna passare dal sistema di riferimento locale del singolo nodo ad un sistema globale attraverso l’uso di una matrice di trasformazione

\(\{\Delta l\} = [T]\{\Delta g\} \)

\([T] \) la matrice di passaggio dal sistema locale a quello globale.

\(\{F_l\} = [T]\{F_g\} \) per permettere il passaggio dalle forze locali a quelle globali.
2.1.3

Assemblaggio della matrice di rigidezza

Riferendosi al sistema di riferimento globale si ha:

\[\{R\} = [K] \{\Delta\} \]

Chiamata \(\{R\} \) la matrice che raccoglie i contributi di tutte le forze agenti sul sistema e assemblando gli elementi che convergono al generico nodo \(q \) si può scrivere:

\[R_i = \sum_{j=1}^{m} F_i^{(j)} \]

- \(m \): numero di elementi che convergono al generico nodo \(q \)
- \(R_i \): generico elemento della matrice \(\{R\} \) rappresentante il carico esterno agente su \(q \)
- \(F_i^{(j)} \): forze equivalenti nodali dell’elemento \(j \) nella direzione di \(R_i \) agenti su \(q \)

Inoltre denominando con \(n \) il numero dei gradi di libertà e riferendosi alla matrice di rigidezza assemblata si ha:

\[R_i = \sum_{k=1}^{n} K_{in} \Delta_k \]

- \(\Delta_k \): generico grado di libertà nel riferimento globale
- \(K_{in} \): generico elemento della matrice assemblata, ottenuto con il contributo dei termini di rigidezza dei singoli elementi

La soluzione del sistema iniziale \(\{R\} = [K] \{\Delta\} \) consiste in un insieme di \(n \) equazioni lineari in \(n \) incognite, essendo \(n \) il numero dei gradi di libertà. In alcuni problemi specifici, ad esempio progetti o verifiche strutturali, il sistema può essere composto di decine di migliaia di equazioni e quindi portare a metodi molto complessi nella risoluzione di tali sistemi.
2.1.4 Convergenza del metodo degli elementi finiti

Il metodo degli elementi finiti permette di ottenere una soluzione approssimata di un problema tramite la soluzione di un sistema di equazioni differenziali, la soluzione deve comunque sempre convergere al valore esatto del problema. Per verificare ciò si usando dei criteri di convergenza che permettono di formulare la matrice di rigidezza degli elementi sapendo a priori il tipo e l’entità dell’errore che si può commettere. In altre parole l’elemento usato deve essere tale che all’aumentare del numero di elementi nei quali si suddivide il continuo, la soluzione ottenuta numericamente deve tendere asintoticamente verso la soluzione esatta analitica. Gli aspetti principali che possono influenzare la convergenza sono:

- la precisione dei risultati
- il tempo di calcolo impiegato

Esistono vari criteri per verificare la convergenza di una certa suddivisione, per completezza si cita il *Patch–Test*. Consiste nell’imporre un campo di spostamenti per un certo gruppo di elementi tale da produrre uno stato di deformazione costante e nel verificare che gli spostamenti dei nodi corrispondano con il campo originale e che, ciascun elemento abbia un appropriato valore di deformazione e tensione costante in tutti i punti.

2.1.5 Considerazioni finali sul metodo agli elementi finiti

Spesso gli elementi complessi con nodi anche sui lati hanno una velocità di convergenza maggiore rispetto agli elementi semplici e quindi, a parità di risultati, occorrono pochi elementi complessi per ottenere lo stesso effetto di molti elementi semplici.

In generale l’elemento, descritto dalla sua funzione di forma N_i si dice isoparametrico qualora gli stessi parametri N_i vengano utilizzati per descrivere sia le coordinate del punto generico in funzione delle coordinate nodali sia gli spostamenti del punto generico in funzione degli spostamenti nodali. Di conseguenza la conoscenza delle funzioni di forma fa capo alla determinazione della matrice di rigidezza.
Spesso nella fase di integrazione numerica si devono utilizzare opportuni metodi. Si citano per completezza il metodo di *Newton – Cotes* e quello di *Gauss*.

Per concludere, si può dire che il metodo degli elementi finiti può essere considerato una sottoclasse del metodo generale di *Ritz* in cui le funzioni N_i sono continue e definite non all’interno del dominio V (totale) ma in sottodomini (elementi finiti) ottenuti discretizzando il dominio V. Tali funzioni dovranno perciò soddisfare solo a certe condizioni di continuità e non ad ogni condizione al contorno. Con questa suddivisione nascono di conseguenza delle semplificazioni, per esempio ogni funzione N_i può essere posta uguale ad un polinomio di grado poco elevato o comunque ad una funzione di semplice rappresentazione. Nei tratti di frontiera comuni a due elementi devono essere soddisfatte le condizioni di continuità delle N_i affinché la funzione integranda assuma valori finiti.
CAPITOLO 3

Il codice Comes–Geo

3.1 CARATTERISTICHE GENERALI

Il codice Comes–Geo implementa l’analisi meccanica dei materiali porosi con pori tra loro connessi nei quali possa avvenire il flusso di una o più fasi liquide. E’ inoltre possibile considerare anche le interazioni tra la fase fluida e solida, ciò permette lo studio di tutti i casi che coinvolgano situazioni di parziale saturazione.

I geomateriali (terreni, rocce e conglomerati cementizi) sono gli esempi più comuni di materiali porosi. Questo codice consente così uno studio realistico su base numerica della struttura dei materiali porosi in condizioni di parziale o totale saturazione: le possibilità di impiego sono di conseguenza molto vaste, basti pensare alle analisi delle dighe in condizioni di sismicità, alla stabilità dei pendii o alla subsidenza, fenomeni in cui lo stato di saturazione dei pori riveste un ruolo molto importante.

Le variabili associate al problema (e quindi i gradi di libertà) sono cinque: temperatura, pressione capillare, pressione del gas e spostamenti orizzontali e verticali.

Come è ovvio la soluzione del problema è possibile solo grazie all’impostazione di opportune equazioni di conservazione ed equilibrio, come verrà di seguito illustrato.

Questo codice è stato sviluppato dall’Università di Padova e in questo capitolo ne verranno esposti gli elementi teorici e le soluzioni numeriche più importanti.

3.2 RICHIAMI DI MECCANICA DEI MEZZI POROSI SATURI E PARZIALMENTE SATURI

Il comportamento meccanico dei mezzi porosi sature o parzialmente saturi dipende da vari fattori tra cui: le forze d’inerzia, i flussi fluidi in forma accoppiata con la deformazione dello scheletro solido e i cambiamenti di fase dovuti a scambi termici o a variazioni di
pressione. Le varie fasi (solida, liquida e gassosa) possono essere accoppiate solo se si considera l’effetto che la variazione delle variabili di stato produce sulle altre fasi presenti, istante per istante.

C’è quindi la necessità di rappresentare il mezzo multifase come un continuo, in modo che le varie fasi presenti interagiscano tra loro.

Su queste basi il comportamento meccanico del modello adottato può essere descritto dalle seguenti teorie:

- La teoria delle miscele.
- La teoria ibrida delle miscele.
- La teoria classica di Biot (teoria fenomenologica che generalizza la teoria monodimensionale della consolidazione di Terzaghi) estesa al campo dinamico e a quello parzialmente saturo.

La teoria delle miscele ha come ipotesi fondamentale il fatto che tutti i componenti del sistema multifase siano contemporaneamente presenti in ogni punto di tutto lo spazio occupato dal mezzo poroso, supposto continuo e a domini sovrapposti. Perciò il comportamento di ogni fase e le relative interazioni sono rappresentabili da un campo di variabili continue. Tale teoria è di tipo macroscopico, poiché adotta una scala di tipo macroscopico essendo interessata solo alla distribuzione continua dei costituenti nello spazio. In tale ambito sono quindi utilizzabili le leggi della meccanica classica del continuo.

La teoria iberda delle miscele, al contrario, è definita su scala microscopica: considerato un punto e preso nel suo intorno un volume infinitesimo dv, rappresentativo del mezzo multifase, le varie fasi componenti, pur a contatto tra loro, sono distinte e occupano solo una parte di questo dominio. Di conseguenza anche le variabili che le caratterizzano (temperatura, pressioni, spostamenti…) pur essendo continue all’interno di ogni fase sono discontinue all’interno del volume rappresentativo e, a maggior ragione, nel mezzo multifase in cui sono diffuse. Tuttavia, poiché a causa della complessità geometrica del mezzo poroso è molto difficile risolvere le equazioni di bilancio a livello microscopico, è necessario l’utilizzo dei teoremi della media, per permettere il passaggio dalla scala microscopica a quella macroscopica. Si ottiene così un sostituto continuo del mezzo multifase (discreto in
precedenza) in cui le varie fasi e le loro caratteristiche sono mediate e perciò distribuite con continuità su tutto il dominio in cui risultano sovrapposte.

La teoria ibrida delle miscele costituisce quindi il tramite tra l’analisi microscopica e quella macroscopica permettendo così l’utilizzo delle leggi di bilancio della meccanica classica (equazioni di equilibrio, continuità e conservazione) che risultano integrate ovvero mediate sull’elemento locale rappresentativo del dominio microscopico, su tutto quello macroscopico, per essere poi localizzate. Si possono così ricostruire le equazioni della teoria delle miscele e quelle della teoria di Biot per tener conto della consolidazione dei terreni.

I costituenti del mezzo multifase sono i seguenti:

- lo scheletro solido
- la fase acquosa
- la fase gassosa, costituita dalla miscela di gas perfetti di aria secca e di vapore acqueo

Fatte queste considerazioni preliminari, si può procedere con la scrittura delle equazioni di bilancio che a livello macroscopico per il mezzo poroso non isotermo in condizione di parziale saturazione, si basano sulle seguenti ipotesi:

- lo scheletro solido del mezzo sia deformabile
- tutte le fasi siano in contatto con lo scheletro solido
- i costituenti sono supposti immiscibili ad eccezione dell’aria secca e del vapore acqueo e chimicamente non reagenti
- esista equilibrio termodinamico fra le fasi presenti in un punto, ovvero le fasi nell’intorno infinitesimo di un punto abbiano la stessa temperatura
- siano possibili scambi di calore fra le fasi occupanti punti a temperatura diversa e flussi di acqua, vapore acqueo ed aria secca. In tal modo è possibile tenere conto della conduzione e convezione del calore, della diffusione del vapore, dei flussi fluidi dovuti ai gradienti di pressione ed agli effetti capillari e dei cambiamenti di fase dell’acqua (evaporazione e condensazione) contenuta nei pori
- i costituenti siano comprimibili
- i costituenti siano non polari
Le equazioni di equilibrio scritte a livello microscopico sono poi estese a livello macroscopico, attraverso un processo di integrazione prima sul volume rappresentativo dv e poi sul volume totale V del mezzo poroso. Tutte le quantità macroscopiche possono quindi essere ottenute da quelle microscopiche utilizzando i già citati teoremi della media, attraverso i quali è possibile definire opportuni operatori. Su tali basi, rispetto a quanto già detto in precedenza si definiscono così:

- equazioni di conservazione della massa per la fase solida, liquida e gassosa
- equazioni di conservazione della quantità di moto per ogni costituente
- equazioni di conservazione del momento della quantità di moto
- equazioni di bilancio dell’energia
- disuguaglianza di Clausius–Duhem relativa alla produzione di entropia

Il modello viene chiuso così dalla definizione dalle leggi costitutive dei materiali. Inoltre le equazioni differenziali ottenute in precedenza necessitano di condizioni iniziali e al contorno. Le prime si impongono sulla pressione della fase gassosa, sulla pressione capillare, sugli spostamenti, sulle velocità di deformazione dello scheletro solido e sulla temperatura (ovvero sulle variabili del problema). Le condizioni al contorno sono invece rappresentate dai valori che le variabili di stato e i loro flussi devono assumere sul contorno del dominio multifase.
3.3 SUDDIVISIONE DEL VOLUME IN ELEMENTI FINITI

La soluzione delle equazioni differenziali precedentemente citate non può essere ottenuta attraverso procedimenti analitici semplici. Infatti si tratta di un sistema di equazioni alle derivate parziali nello spazio e nel tempo, accoppiato e non lineare a causa dei legami costitutivi delle fasi fluide e del materiale e la complessa geometria del problema. Soluzioni analitiche sono possibili solo in casi monodimensionali molto semplici: si fa quindi ricorso ad una soluzione approssimata per via numerica. Questo modello è quindi risolto con l’uso del metodo degli elementi finiti per discretizzare il sistema di equazioni nello spazio e nel tempo, utilizzando in particolare la teoria di Galerkin per il metodo dei residui pesati.

La regione di interesse viene quindi suddivisa in un certo numero di elementi di forma semplice, gli elementi finiti per l’appunto, come mostrato nella Figura 3:

![Figura 3. Suddivisione del dominio e definizione degli elementi caratteristici](image-url)
Gli elementi finiti base della suddivisione attuata sul continuo possono essere di vario tipo, considerando che ogni nodo possiede cinque gradi di libertà (pressione del gas e capillare, temperatura, spostamenti orizzontali e verticali) si possono individuare:

- elementi triangolari a tre nodi e quindici gradi di libertà
- elementi quadrangolari a quattro nodi e venti gradi di libertà

- elementi quadrangolari ad otto nodi e quaranta gradi di libertà
elementi quadrangolari a nove nodi e quarantacinque gradi di libertà

Per ogni elemento viene definita una serie di nodi e si va a valutare il valore delle variabili. Esse, per ogni singolo elemento, possono essere espresse in termini approssimati attraverso particolari funzioni di forma per cui:

\[
\begin{align*}
p_g &= p_g(t) = N_p \mathbf{p}_g(t), \\
p_c &= p_c(t) = N_p \mathbf{p}_c(t), \\
T &= T(t) = N_p \mathbf{T}(t), \\
u &= u(t) = N_u \mathbf{u}(t).
\end{align*}
\]

in cui le lettere soprasegnate indicano un’approssimazione. Le precedenti possono essere sostituite nelle relative equazioni differenziali, dando origine, con il contributo delle condizioni al contorno, ad una serie di equazioni residuali che sono definibili tali a causa della natura approssimata delle equaglianze precedenti.

Il metodo dei residui pesati prevede l’introduzione dei seguenti integrali:

\[
\int_{\Omega} N_x R_x d\Omega + \int_{\Gamma} N_x R_{x(b.c.)} d\Gamma = 0
\]

in cui \(N_x\) sono i pesi o funzioni test, \(R_x\) i residui per le equazioni e \(R_{x(b.c.)}\) i residui per le condizioni al contorno.
La forma integrale o debole delle equazioni di trasferimento di massa e calore (e delle altre equazioni richieste per completare il modello), ottenute per mezzo della procedura di Galerkin, può essere espressa attraverso una forma “matriciale” del tipo:

\[
C_{ff} p_f + C_{fp} p_p + C_{pt} T + C_{uf} u + K_{ff} p_f + K_{fp} p_p + K_{pt} T + f_g = 0.
\]

\[
C_{cf} p_f + C_{cp} p_p + C_{ct} T + C_{cu} u + K_{cf} p_f + K_{cp} p_p + K_{ct} T + f_c = 0.
\]

\[
C_{ft} p_f + C_{pt} p_p + C_{tt} T + C_{tu} u + K_{ft} p_f + K_{pt} p_p + K_{tt} T + f_t = 0.
\]

\[
C_{uu} u + C_{up} p_p + C_{ut} T + f_u = 0.
\]

che può essere espressa nella forma compatta

\[
C(x)\dot{x} + K(x)x + f(x) = 0
\]

in cui \(x^T = \{p_f, p_p, T, u\} \) è il vettore delle variabili, \(C(x), K(x) \) e \(f(x) \) sono opportuni coefficienti ottenuti dall’assemblaggio delle equazioni precedenti.

3.4 IL METODO DI NEWTON–RAPHSON

Questo metodo serve per la discretizzazione del problema nel tempo, attraverso uno schema alle differenze finite. Con riferimento alla precedente equazione compatta si può scrivere:

\[
C(x_{n+1})\frac{x_{n+1} - x_n}{\Delta t} + K(x_{n+1})x_{n+1} + f(x_{n+1}) = 0
\]

in cui \(n \) è il numero di time step e \(\Delta t \) è la lunghezza del time step stesso.

Questo sistema di equazioni non è lineare e la relativa soluzione può essere ottenuta attraverso una procedura alla Newton–Raphson del tipo:
\[
\frac{1}{\Delta t} \left[\frac{\partial}{\partial x} C(x_{n+1}^l)(x_{n+1}^l - x_n) + C(x_{n+1}^l) \right] \Delta x_{n+1}^l + \\
+ \left[\frac{\partial}{\partial x} K(x_{n+1}^l)x_{n+1}^l + K(x_{n+1}^l) + \frac{\partial}{\partial x} f(x_{n+1}^l) \right] \Delta x_{n+1}^l = \\
= - \left[C(x_{n+1}^l) \frac{x_{n+1}^l - x_n}{\Delta t} + K(x_{n+1}^l)x_{n+1}^l + f(x_{n+1}^l) \right],
\]

in cui \(l \) è l’indice di iterazione e alla fine di ogni iterazione le variabili sono aggiornate secondo la relazione

\[
x_{n+1}^l = x_{n+1}^l + \Delta x_{n+1}^l.
\]

3.4.1 Integrazione numerica, metodo di Gauss

Per l’integrazione numerica viene implementato nel codice il metodo di Gauss che produce:

\[
\int F(r, s) dr ds = \sum_{i,j} \alpha_{i,j} F(r_i, s_j)
\]

in cui \(F \) è la generica funzione integranda e \(\alpha_{i,j} \) sono i pesi da attribuire a seconda del numero di punti ovvero di intervalli in cui si è suddiviso il dominio della funzione stessa. In questo caso l’integrale è doppio poiché la funzione è a due variabili (i cui limiti sono \(-1\) e \(+1\)) per cui la precedente diventa:

\[
\int_{-1}^{+1} \int_{-1}^{+1} F(r, s) dr ds = \sum_{i,j} \alpha_i \int_{-1}^{+1} F(r_i, s) ds \quad \text{ovvero}
\]

\[
\int_{-1}^{+1} \int_{-1}^{+1} F(r, s) dr ds = \sum_{i,j} \alpha_i \alpha_j F(r_i, s_j)
\]

Nel codice COMES–GEO esiste la possibilità di scegliere un diverso ordine di integrazione e quindi un diverso numero di punti di Gauss. La scelta dipende soprattutto dal tipo di elemento che si sceglie.

Il codice procede quindi all’assemblaggio delle equazioni determinate per i singoli elementi e alla determinazione della soluzione approssimata.
Il risultato generale del processo si può riassumere, per semplicità in un sistema matriciale del tipo:

\[Ax = b\]

in cui la matrice \(A \) è estesa, sparsa, bandata e generalmente non simmetrica. La procedura risolutiva usata nel codice COMES–GEO si basa sul metodo di Gauss, sviluppato da Irons, chiamato *metodo della soluzione frontale*, il cui vantaggio consiste nel fatto che esso assembla le equazioni ed elimina le variabili allo stesso tempo.

L’analisi sequenziale di ogni elemento procede seguendo i seguenti passi:

- assemblaggio delle equazioni con la matrice \(A \)
- controllo delle equazioni assemblate nel sistema
- condensazione delle equazioni dal sistema (attraverso l’eliminazione Gaussiana) per tutti i gradi di libertà
- si ritorna al passo iniziale per l’elemento successivo

La matrice \(A \) viene così ridotta in una forma triangolare superiore, per poter così determinare a ritroso il processo di soluzione per il vettore \(x \).

3.4.2 Dati in ingresso

I files di input possono essere suddivisi in quattro sezioni contenenti:

- dati generali relativi al problema in esame (nome del file, titolo del problema)
- dati generali di identificazione del problema (numero e durata dei time–steps, tipo di elementi scelti, numero di iterazioni ecc.)
- dati relativi al numero e tipo di nodi ed alla mesh generata

Dati relativi alle condizioni iniziali ed alle condizioni al contorno (per definire i valori delle variabili che caratterizzano il problema, rispetto ai nodi da esse condizionati).
CAPITOLO 4
LEGGE COSTITUTIVA TERMO-ELASTO-PLASTICA

La legge costitutiva basa la sua teoria sul modello di stato critico Cam-Clay.

4.1 EFFETTI TERMICI INDOTTI

Nello studio del comportamento termo-mecanico dei terreni, si considerano in genere due analisi distinte: un ciclo termico di riscaldamento e successivo raffreddamento (plane 1, Figura 4) durante il quale le tensioni efficaci rimangono costanti; un ciclo di carico e scarico meccanico a temperatura costante (plane 2, Figura 4).

Figura 4. Percorsi di carico per l'analisi del comportamento termo-mecanico dei terreni; p' rappresenta la tensione media efficace, q il deviatore, T la temperatura.
4.1.1 Risposta dei terreni ai cicli di riscaldamento e raffreddamento

I terreni saturi possono essere schematizzati come un materiale bifasico costituito da una parte solida (uno scheletro di grani o particelle circondate da acqua adsorbita) e una parte fluida, l’acqua libera nei vuoti. Durante la fase di riscaldamento di un materiale terroso tutti i suoi costituenti dilatano; nel caso di terreni argillosi tale dilatazione causa una diminuzione di resistenza a livello degli strati contenenti acqua adsorbita e modifica la distanza tra le particelle d’argilla (Fleureau, 1979). Questo varia l’equilibrio tra le forze di attrazione di Van der Walls e le forze repulsive elettrostatiche, che sono le principali responsabili del comportamento termico delle argille. In condizioni normalconsolidate (NC), dove l’effetto dello stato tensionale è meno importante che in condizioni sovraconsolidate (OC), l’argilla in seguito ad un riscaldamento contrae e una parte significante della deformazione è irreversibile dopo successivo raffreddamento; tale contrazione termica risulta essere inusuale per ogni materiale.

La Figura 5 illustra la risposta ad un ciclo di carico termico a compressione isotropa costante di un provino d’argilla in condizioni drenate (Cekerevac, 2003): dopo il riscaldamento il provino NC presenta una variazione volumetrica non lineare, il raffreddamento poi ha come conseguenza un aumento di volume. Il comportamento durante l’intero ciclo mostra l’irreversibilità delle deformazioni relative al carico termico e ciò è rappresentativo di hardening termico. Sebbene non ci siano stati variazioni fisiche nelle tensioni effettive, questo può essere interpretato come una progressiva densificazione del materiale, come ad esempio un comportamento sovraconsolidato. Situazioni fortemente OC presentano dilatazioni per la maggior parte reversibili. Tra questi due stati, un caso intermedio (cioè con modesti valori del grado di sovraconsolidazione, OCR) prima presenta dilatazioni, poi una tendenza prossima alla contrazione. Deformazioni termiche permanenti possono essere esibite anche da argille sovraconsolidate (Demarks & Charles, 1982).
Il rapporto tra deformazioni reversibili e deformazioni irreversibili dovute ad un ciclo termico dipende dal tipo di suolo e dalla plasticità, oltre allo stato tensionale misurato in termini di OCR. Questo è illustrato nella Figura 6 dove si evidenzia l’influenza di OCR sul comportamento termico di vari tipi di materiale. Si può notare che, per un determinato incremento termico, per alti OCR il costipamento è minore e quindi la tendenza è a dilatare.

Figura 6. Influenza del grado di sovraconsolidazione, OCR, sulle deformazioni termiche di terreni a grana fine.
4.1.2 Variazione della pressione di preconsolidazione rispetto alla temperatura

La pressione di preconsolidazione, σ'_c, viene considerata come il limite di snervamento che separa il comportamento elastico dal comportamento plastico in condizioni isotrope o edometriche. Essa corrisponde alla tensione relativa all’intersezione delle due rette che contraddistinguono la curva di compressione (tensione media efficace/tensione efficace verticale VS indice dei vuoti). Diversi risultati in letteratura dimostrano la diminuzione della pressione di consolidazione all’aumentare della temperatura. La Figura 7 illustra l’esito dei test svolti su tre argille svedesi (Moritz 1995, Eriksson 1989, Tidfors and Sällfors 1989) e su di un’argilla naturale canadese (Bordali e al. 1994).

![Figura 7. Influenza della temperatura sulla pressione di consolidazione.](image)

4.1.3 Variazione dell’angolo di attrito rispetto alla temperatura

Oggi giorno gli effetti della temperatura sull’angolo di attrito attendono ancora conferma; alcuni ricercatori hanno dedotto che il riscaldamento diminuisce la resistenza meccanica, mentre altri affermano che essa aumenta lievemente. Alcuni risultati sperimentali sono stati ottenuti da Cekerevac e Laloui (2004), essi sembrano confermare che l’angolo d’attrito allo stato critico può sia aumentare lievemente che diminuire con la temperatura.
4.2 MODELLO COSTITUTIVO PER IL COMPORTAMENTO TERMO-ELASTO-PLASTICO DEI TERRENI

Si considera la decomposizione additiva del rateo di deformazione $\dot{\varepsilon}_{ij}$:

$$\dot{\varepsilon}_{ij} = \dot{\varepsilon}_{ij}^{Te} + \dot{\varepsilon}_{ij}^{Tp} \quad [1]$$

dove con $\dot{\varepsilon}_{ij}^{Te}$ si indica la componente elastica di deformazione, con $\dot{\varepsilon}_{ij}^{Tp}$ la componente plastica.

4.2.1 Termo-elasticità

Il rateo di deformazione $\dot{\varepsilon}_{ij}^{Te}$ non modifica lo stato di incrudimento del materiale. Così, la parte elastica, $\{\sigma'_{ij} \dot{\varepsilon}_{ij}^{Te}\}$, dell’energia totale immagazzinata dal materiale durante una fase di carico termo-elastico, $\{\sigma'_{ij} \dot{\varepsilon}_{ij}\}$, è completamente recuperabile dopo lo scarico, essendo σ'_{ij} il tensore delle tensioni effettive. A causa di tale reversibilità, la legge costitutiva elastica è indipendente dalla storia di carico e può essere espressa con la seguente relazione:

$$\dot{\varepsilon}_{ij}^{Te} = L'(\sigma', T)\sigma'_{ij} \quad [2]$$

la dipendenza del tensore elastico, L, dalla tensione effettiva, σ', e dalla temperatura, T, implica un comportamento non-lineare della componente elastica:

$$\sigma'_{ij} = L(\sigma', T)(\dot{\varepsilon}_{ij} - \dot{\varepsilon}_{ij}^{Tp}) = B(\sigma', T, \alpha, \dot{\varepsilon}) \quad [3]$$

dove si può vedere che l’incremento delle tensioni effettive dipende dallo stress, σ', dalla temperatura, T, dal parametro di hardening, α, e dal rateo delle deformazioni totali, $\dot{\varepsilon}$.

La deformazione elastica risulta essere data dalla sovrapposizione di due effetti distinti:

1. una deformazione meccanica ipoelastica in condizioni adiabatiche;
2. una deformazione termica reversibile.

Le due componenti, volumetrica e deviatorica, sono espresse da:
\[\dot{e}_{ij}^{Te} = \frac{\dot{p}}{K} + \beta^i_j T \quad \dot{e}_{ij}^{ed} = \frac{\dot{\sigma}^i_j}{G} \]
\[\text{dove } \dot{p}^i \text{ e } \dot{\sigma}^i_j \text{ sono rispettivamente il rateo della tensione effettiva volumetrica e deviatorica espressi da:} \]
\[\dot{p}^i = \frac{3}{2} tr(\dot{\sigma}^i_0) \quad \dot{\sigma}^{i'd'}_j = \dot{\sigma}^i_j - \dot{p}^i \delta^i_j \]
\[\text{invece } \beta^i_j, \text{ coefficiente di espansione termica isotropa dello scheletro solido, varia principalmente con la temperatura e in misura minore con la pressione secondo la legge:} \]
\[\beta^i_j = (\beta^i_{so} + \zeta T) \xi^i_j \]
\[\text{dove } \beta^i_{so} \text{ è il coefficiente di espansione termica isotropa alla temperatura di riferimento, } T_0 \text{ (generalmente temperatura ambiente), } \zeta \text{ è il rapporto tra la pressione critica iniziale, } p'_{so}, \text{ e la pressione efficace, } p', \text{ alla temperatura ambiente:} \]
\[\zeta = \frac{p'_{so}}{p'} \]
\[\zeta \text{ corrisponde alla variazione di } \beta^i_j \text{ rispetto alla temperatura (in genere } \zeta = -\beta^i_{so}/100 \text{), } T \text{, quando } \xi = 1. \]

I moduli ipoelastici si calcolano tramite le relazioni:
\[K = K_\text{ref} \left(\frac{p'}{p'_\text{ref}} \right)^n \quad G = G_\text{ref} \left(\frac{p'}{p'_\text{ref}} \right)^n \]
\[\text{dove } K_\text{ref} \text{ e } G_\text{ref} \text{ sono rispettivamente il modulo volumetrico e il modulo tangente misurati in corrispondenza della pressione di riferimento } p'_\text{ref}; n \text{ è una costante del materiale.} \]

4.2.2 Termo-plasticità

Dalla equazione [1] il rateo termo-elasto-plastico può essere espresso come la parte irreversibile della deformazione totale:
\[\dot{e}_{ij}^{Tp} = \dot{e}_{ij} - \dot{e}_{ij}^{Te} \]
\[\dot{e}_{ij}^{Tp} = \dot{e}_{ij} - L^i_j(\sigma; T) B(\sigma; T, \alpha, \dot{\epsilon}) = \dot{B}(\sigma; T, \alpha) \dot{e}_{ij} \]
\(\tilde{B} \) è un operatore che valuta la porzione di deformazione totale indotta dalla plasticità (hardening del materiale). La particolarità del presente modello è che l’operatore \(\tilde{B} \) è una combinazione lineare di due processi irreversibili: un meccanismo termo-mecanico isotropo e un meccanismo termo-mecanico deviatorico. Perciò la deformazione plastica totale, \(\dot{\varepsilon}_{ij}^{Tp} \), è la somma di due parziali ratei di deformazione plastica, \(\dot{\varepsilon}_{ij}^{Tp,k} \), indotti da ogni meccanismo \(k \):

\[
\dot{\varepsilon}_{ij}^{Tp} = \sum_{k=1}^{2} \dot{\varepsilon}_{ij}^{Tp,k} = \dot{\varepsilon}_{ij}^{Tp,1} + \dot{\varepsilon}_{ij}^{Tp,2}
\]

Queste considerazioni sono il risultato della teoria della plasticità multi-meccanismo (Koiter, 1960; Mandel, 1965; Hujeux, 1979). Ogni meccanismo viene attivato se lo stato tensionale raggiunge il limite di snervamento ad esso corrispondente, quando cioè le funzioni di snervamento, \(f_{Ti} \) e \(f_{Td} \), risultano positive. Tale attivazione induce la formazione di deformazioni irreversibili; il rateo di deformazione plastica totale può essere espresso come segue:

\[
\dot{\varepsilon}_{ij}^{Tp} = \sum_{k=1}^{2} \lambda_k \frac{\partial g_k}{\partial \sigma_{ij}}
\]

dove \(g_k \) sono i potenziali plastici corrispondenti ad ogni meccanismo e \(\lambda_k \) sono i moltiplicatori plastici, positivi se il meccanismo corrispondente è attivato (\(f_k = 0 \) e \(\dot{f}_k = 0 \)).

Riassumendo il concetto di multi-plasticità, le due funzioni di snervamento definiscono un dominio chiuso nello spazio delle tensioni efficaci dentro il quale il comportamento del materiale è reversibile. Se lo stato tensionale raggiunge uno dei limiti di snervamento, il meccanismo corrispondente viene attivato e contemporaneamente si sviluppano deformazioni irreversibili.
4.2.2.1 *Meccanismo termo-elasto-plastico isotopo*

Il limite, f_{ti}, del meccanismo termo-elasto-plastico isotopo è rappresentato nel piano della tensione efficace media, p', e della temperatura, T, Figura 8 e Figura 9, ed è espresso come:

$$f_{ti} = p' - \sigma'_c \cdot r \quad [13]$$

Figura 8. Funzione di snervamento del meccanismo isotopo.

*Figura 9. Variazione della funzione di snervamento isotopo in relazione al parametro γ.***
In questa relazione il parametro r corrisponde al grado di plasticizzazione (hardening mobilitato) del limite di snervamento isotropo. E’ una funzione iperbolica della deformazione plastica volumetrica, ε_v^p. Esso varia da r^e, che definisce il dominio elastico ($0 < r^e < r$), a 1, cioè stato completamente plastico.

Ciò comporta una progressiva evoluzione del limite plastico isotropo durante la fase di caricamento e una parziale regressione nella fase di scarico. σ_v' è la pressione di preconsolidazione espressa come funzione della deformazione plastica volumetrica, ε_v^p, e della temperatura:

$$\sigma_v' = \sigma_{v0}(T) e^{\beta \varepsilon_v^p} \quad [14]$$

$\sigma_{v0}(T)$ è il valore della pressione di preconsolidazione alla temperatura T. β è il modulo plastico di compressibilità (cioè la pendenza della retta $e^{\varepsilon_v^p} - \ln(\sigma_{v0})$). Per tenere conto dell’effetto termico sul limite elastico, si introduce la legge di dipendenza dalla temperatura della pressione di preconsolidazione, $\sigma_{v0}'(T)$:

$$\sigma_{v0}'(T) = \sigma_{v0}'(T_0) \cdot \{1 - \gamma \ln[T/T_0]\} \quad [15]$$

dove $\sigma_{v0}'(T_0)$ è il valore della pressione di preconsolidazione alla temperatura di riferimento T_0 e γ un parametro del materiale. Così la funzione di snervamento volumetrico termo-plastico è espressa da:

$$f_n = p' - \sigma_{v0}'(T_0) \cdot e^{\varepsilon_v^p} \cdot \{1 - \gamma \ln[T/T_0]\} \cdot r \quad [16]$$

L’equazione [16] contiene tre parametri del materiale: β e r che esprimono l’evoluzione dell’incrustamento meccanico, e γ che controlla l’evoluzione dell’incrustamento termico. Quest’ultimo definisce la forma del limite elastico come mostrato in Figura 9.

La legge di flusso è associata ($f_n(p',T,\varepsilon_v^p) = g_n(p',T,\varepsilon_v^p)$):

$$\dot{\varepsilon}_v^p = \lambda_i \frac{\partial g_n}{\partial \sigma_v'} = \frac{\lambda_i}{3} \quad [17]$$

Il moltiplicatore plastico, λ_i, è determinato utilizzando l’equazione di consistenza come mostrato successivamente.
4.2.2.2 *Meccanismo termo-plastico deviatorico*

Per semplicità si basa il limite elastico deviatorico sul noto modello Cam-Clay:

\[f_d = \frac{q}{M_p'} + \ln \left(\frac{d \cdot p'}{\sigma_c'} \right) - l = 0 \] \[\text{(18)} \]

con \(d \) distanza (nel piano logaritmico) tra la pressione di preconsolidazione, \(\sigma_c' \), e la pressione critica secondo il Cam-Clay, \(p_c' \). Dato che l’angolo d’attrito può dipendere dalla temperatura, si introduce la seguente relazione:

\[M(T) = M_0 - g(T - T_0) \] \[\text{(19)} \]

dove \(M_0 \) è la pendenza della linea di stato critico alla temperatura ambiente \((T_0) \) e \(g \) è la pendenza media di variazione dell’angolo di attrito con la temperatura. Considerando la legge di dipendenza dalla temperatura della pressione di preconsolidazione, [15], la superficie di snervamento diventa, in condizioni non isotermiche, Figura 10:

\[f_{td} = \frac{q}{(M_0 - g(T - T_0))p'_c} + \ln \left(\frac{d \cdot p'}{\sigma_c'(T_0)}e^{\gamma(T - T_0)} \right) - l = 0 \] \[\text{(20)} \]

Il modello utilizza pure nel meccanismo deviatorico un flusso plastico associato. Così le leggi di incrudoimento sono le seguenti:

\[\dot{\varepsilon}_y^p = \lambda_d \frac{\partial g_{td}}{\partial \sigma_y} = \lambda_d \frac{1}{M_p'} \left[\frac{\partial q}{\partial \sigma_y} + \frac{1}{3} \left(M - \frac{q}{p'} \right) \right] \]

con

\[\frac{\partial q}{\partial \sigma'_y} = \begin{cases}
\frac{3}{2q} (\sigma_y - p') & \text{se } i = j \\
\frac{3\sigma_y}{q} & \text{se } i \neq j
\end{cases} \]

\[\dot{\varepsilon}_y^p = \lambda_d \frac{\partial g_{td}}{\partial p'} = \lambda_d \frac{1}{M_p'} \left[M - \frac{q}{p'} \right] \]

\[\dot{\varepsilon}_d^p = \lambda_d \frac{\partial g_{td}}{\partial q} = \lambda_d \frac{1}{M_p'} \]

\(\lambda_d \) deve essere determinato, come per il meccanismo isotropo, tramite la condizione di consistenza.

48
Figura 10. Accoppiamento dei meccanismi termoplastici isotropo e deviatorico.

4.2.2.3 Accoppiamento dei due meccanismi

I limiti elastici isotropo e deviatorico sono accoppiati attraverso la variabile di snervamento ε_v^p. Infatti la pressione di preconsolidazione $\sigma_v' = \sigma_v'(T)e^{\varepsilon_v}$, che dipende da ε_v^p, appare in entrambe le espressioni dei due limiti elastic. Perciò, se ε_v^p cresce a causa dell’attivazione di uno dei meccanismi, il limite elastico dell’altro meccanismo varierà a sua volta. Di conseguenza, i due moltiplicatori plasici, λ_i e λ_d, sono correlati.

Quando i due meccanismi vengono attivati simultaneamente, il rateo di deformazione plastica totale, ε_v^p, è la somma del rateo di deformazione plastica volumetrica indotto da entrambi i meccanismi:

$$
\dot{\varepsilon}_v^p = \lambda_d \frac{\partial g_{Id}}{\partial p'} + \lambda_i \frac{\partial g_{Ii}}{\partial p'} = \lambda_d \frac{1}{Mp'} \left[M - \frac{q}{p'} \right] + \lambda_i
$$

[25]

così le condizioni di consistenza divengono:
\[\dot{j}_T = \partial_{\rho'} f_T \dot{\rho'} + \partial_T f_T \dot{T} + \partial_r f_T \dot{r} + \partial_{c_T} f_T \left(\lambda_d \frac{1}{M p'} \left[M - \frac{q}{p'} \right] + \lambda_i \right) = 0 \]

\[\dot{j}_{T_d} = \partial_{\sigma'} f_{T_d} \dot{\sigma'} + \partial_{T_d} f_{T_d} \dot{T_d} + \partial_{c_{T_d}} f_{T_d} \left(\lambda_d \frac{1}{M p'} \left[M - \frac{q}{p'} \right] + \lambda_i \right) = 0 \]

Risolvere queste due equazioni significa determinare i due moltiplicatori plastici.

4.3 RISULTATI NUMERICI IN LETTERATURA

4.3.1 Consolidazione isotropa dopo riscaldamento

Si riportano i risultati di una simulazione numerica i cui cicli termo-mecanici sono illustrati in Figura 11; tali cicli rappresentano due consolidazioni avvenute una volta riscaldata il provino a due temperature diverse. Si può notare che seguendo il percorso EF il dominio elastico è minore (pressione di preconsolidazione inferiore, punto A2) rispetto al dominio del percorso CD, questi risultati sono stati riscontrati da diversi autori.

Figura 11. Consolidazione isotropa in seguito a riscaldamento del provino; (a) percorsi seguiti, (b) risultati numerici.
4.3.2 **Consolidazione isotropa in seguito a cicli di riscaldamento e raffreddamento**

Si analizza l’effetto di un ciclo di riscaldamento e raffreddamento (A→A1→A2, Figura 12) su di un materiale inizialmente normalconsolidato. L’assestamento indotto dal riscaldamento (A→A1) causa l’incremento della funzione di snervamento isotropa ($\sigma'_c \rightarrow \sigma'_c$). Dopo il raffreddamento (A1→A2), il carico meccanico dal punto A2 mostra che lo stato tensionale rimane in campo elastico (A2→A’) per poi raggiungere il limite di snervamento (σ'_c), punto da cui il materiale presenta nuovamente comportamento plastico. Questo fenomeno corrisponde a quello osservato sperimentalmente (Kuntiwattanakul, 1991; Baldi e al., 1985; Cui e al., 2000).

Figura 12. Consolidazione isotropa in seguito a cicli di riscaldamento; (a) percorsi termo-meccanici seguiti, (b) risultati numerici.

4.3.3 **Test sull’argilla naturale (Boomclay) condotto da Baldi e al. (1991)**

Baldi e al. (19919 hanno riportato lo studio sul comportamento termo-meccanico di un’argilla naturale (Boom clay). Il programma sperimentale consisteva in numerosi test relativi a cicli di carico termo-meccanico. In particolare nel test TBoom9, il provino è stato riscaldata a 95 °C e quindi raffreddato a 21.5 °C a tre differenti stati pensionali iniziali (6 MPa, 3 MPa e 1 MPa) che corrispondono a tre diversi gradi di sovraconsolidazione, 1,2 e 6 rispettivamente. Il
confronto fra i risultati sperimentali e i risultati numerici. Figura 13, mostra l’efficacia della simulazione del comportamento del terreno sia in fase di riscaldamento che in fase di raffreddamento per differenti OCR (Laloui e Cekerevac, 2003).

Figura 13. Confronto fra risultati sperimentali (Baldi e al., 1991) e risultati numerici col modello proposto.
4.4 RIFERIMENTI BIBLIOGRAFICI

CAPITOLO 5
VALIDAZIONE NUMERICA

5.1 PREMESSA

Per prima cosa si presentano alcune validazioni sperimentali, denominate benchmark, nelle quali vengono convalidati i risultati numerici del codice sviluppato a Losanna tramite il confronto con prove sperimentali tipiche in letteratura.

Vista l’impossibilità di simulare fedelmente le medesime prove, in quanto il codice COMES-GEO prevede l’analisi in stato piano di deformazione, mere i benchmark considerati sono il risultato di prove triassiali o in stato tensionale isotropo, si passa alla convalida della soubroutine THERMEC confrontando i risultati ottenuti con analoghe simulazioni svolte dal codice svizzero. D’apprima si convalideranno prove in regime elastico lineare e non, in condizioni isoterme e non-isoterme; poi si andranno anche a valutare simulazioni in regime plastico non-lineare, in condizioni isoterme e non isoterme.

Per ultimo si riportano delle prove sperimentali a verifica del comportamento previsto dalla teoria termo-plastica.

5.2 VALIDAZIONE DEL CODICE DI LOSANNA

5.2.1 Test isoterми

5.2.1.1 Compressione isotropa

La prima prova rigurda uno stato tensionale particolare, detto isotropo, in quanto le tensioni efficaci sono le stesse per ogni direzione, \(\sigma_x' = \sigma_y' = \sigma_z' = p' \) mentre \(\tau_{xy} = \tau_{yz} = \tau_{zx} = 0 \) e \(q = 0 \); in questa particolare configurazione delle tensioni il deviatore
risulta nullo e quindi non entra in gioco la plasticità indotta dal meccanismo deviatorico, l’utilità è quindi quella di poter testare il comportamento plastico isotopo. Si riportano i parametri di materiale influenti per la prova ed i risultati ottenti, Tabella 1 e Figura 14.

<table>
<thead>
<tr>
<th>Elastico ([K_{ref, n}])</th>
<th>460, 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{MPa}], [-])</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plastic ([\beta, d, \sigma'_{co}])</th>
<th>22, 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>([-], [-], [\text{kPa}])</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Raffdureggimento ([c])</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>([-])</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domini ([r_{sla}])</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>([-])</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 1. Parametri meccanici isotropi dedotti per la prova effettuata da Jamin, 2003.

5.2.1.2 Compressione triassiale svolta su di un provino normal consolidato

Si passa ora alla convalida del meccanismo deviatorico simulando una prova triassiale svolta su di un provino con OCR=1. In Tabella 2 e si riportano i parametri materiali necessari ed i risultati numerici.

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ'_{c0} [kPa]</td>
<td>800</td>
</tr>
<tr>
<td>K_{ref} [MPa]</td>
<td>131.3</td>
</tr>
<tr>
<td>G_{ref} [MPa]</td>
<td>78.66</td>
</tr>
<tr>
<td>β</td>
<td>43.7</td>
</tr>
<tr>
<td>ϕ [°]</td>
<td>25</td>
</tr>
<tr>
<td>r</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabella 2. Parametri materiali necessari per la prova triassiale.

Figura 15. Confronto tra simulazione numerica e risultati sperimentali della prova triassiale isoterma.
5.2.2 Test non-isotermi

5.2.2.1 Meccanismo isotropo

Si riporta la simulazione di una prova sperimentale con cicli di carico termomeccanico, Figura 16, svolta da Baldi e al., 1991, su tre provini con OCR diverso, precisamente pari a 1 MPa, 2 MPa e 6 MPa, il che equivale a modificare lo stato tensionale iniziale rispettivamente a $p' = 6$ MPa, $p' = 3$ MPa e $p' = 1$ MPa.

![Diagramma di carico termomeccanico](image.png)

Figura 16. Percorso di carico termomeccanico seguito.

<table>
<thead>
<tr>
<th>Parametro Materiali</th>
<th>Valori</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic [K_{ref}, G_{ref}, n]</td>
<td>150, 130, 0.4 [MPa], [MPa], [-]</td>
</tr>
<tr>
<td>Plastic [β, d, σ'_{co}]</td>
<td>47, 1.3, 6 [-], [-], [MPa]</td>
</tr>
<tr>
<td>Hardening [c]</td>
<td>0.0004 [-]</td>
</tr>
<tr>
<td>Domain [r_{ela}]</td>
<td>0.01 [-]</td>
</tr>
<tr>
<td>Thermal [β''_{sh}, γ]</td>
<td>3.10^{-5}, 0.18 [$^\circ$C$^{-1}$], [-]</td>
</tr>
</tbody>
</table>

Tabella 3. Parametri materiali adottati, Baldi e al., (1991)
Figura 17. Confronto fra la simulazione numerica del carico termico e le prove sperimentali, relative a provini con OCR pari a 1 MPa, 2 MPa e 6 MPa; Baldi e al., (1991).

5.2.2.2 Meccanismo deviatorico

Per finire la validazione del meccanismo plastico deviatorico in regime non-isotermo, avviene tramite le simuazioni delle prove triassiali svolte da Cekerevac, 2003, su un’argilla denominata Kaolin Clay, per vari gradi di consolidazione (OCR pari a 1, 1.2, 1.5, 2, 3, 12), a due diverse temperature (22°C e 90°C).

<table>
<thead>
<tr>
<th></th>
<th>70, 30, 0.68</th>
<th>22, 21, 2.75, 0.5, 0.6</th>
<th>0.0035, 0.055</th>
<th>0.01, 0.1</th>
<th>3.10^{-5}, 0.075, 2.9.10^{-5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic [Kref, Gref, n]</td>
<td>[MPa], [MPa], [-]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastic [ϕ_0, α, β, d, b, σ', σ_0]</td>
<td>[°], [-], [-], [-], [-], [MPa]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardening [a, c]</td>
<td>[-], [-]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain [$\varepsilon^{dia}{el}$, $\varepsilon^{dia}{el}$]</td>
<td>[-], [-]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal [β', γ, g]</td>
<td>[°C^{-1}], [-], [-]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Figura 19. Confronto fra simulazione e prova sperimentale del provino Kaolin Clay con OCR = 1 a temperatura di 20°C e 90°C; Cekerevac, 2003.](image-url)

Figura 22. Confronto fra simulazione e prova sperimentale del provino Kaolin Clay con OCR = 3 a temperatura di 20°C e 90°C; Cekerevac, 2003.

5.2.3 Conclusioni

Dalle prove riportate si può ben capire l’affidabilità del codice svizzero nel riprodurre le prove sperimentali sia per quanto riguarda il regime sperimentale, sia per quel che concerne il meccanismo plastico isotropo e il meccanismo plastico deviatorico.
5.3 CONVALIDA DELLA SUBROUTINE THERMEC IN COMES-GEO

Tutte le prove di convalidazione sono state effettuate, per la semplicità di verifica e puntualità di controllo, su di una mesh costituita da un unico elemento finito, plane strain a quattro nodi, per la quale sono state scelte diverse condizioni al contorno e diversi cicli di carico scarico termo-meccanici.

5.3.1 Prova isoterma in regime plastico

Si esegue la simulazione di una prova di consolidazione isoterma con due cicli di carico e scarico riportati in .

La mesh considerata è costituita da un unico elemento plate a 4 nodi, in cui le condizioni edometriche sono assicurate dalla scelta dei vincoli, .

![Mechanical Load Diagram]

Figura 24. Vincoli che riproducono le condizioni edometriche.
Figura 25. Cicli di carico/scarica a temperatura costante.

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{ref}</td>
<td>1150</td>
<td>Mpa</td>
</tr>
<tr>
<td>G_{ref}</td>
<td>530.77</td>
<td>Mpa</td>
</tr>
<tr>
<td>p_{ref}</td>
<td>-1.0</td>
<td>Mpa</td>
</tr>
<tr>
<td>σ'_{e0}</td>
<td>-28</td>
<td>kPa</td>
</tr>
<tr>
<td>n</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>φ_0</td>
<td>30°</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>-22</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>r'_{a}</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>r'_{i}</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>n_T</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>β'_{s0}</td>
<td>3,00e-05</td>
<td>1/K</td>
</tr>
<tr>
<td>g</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>T_0</td>
<td>293,15</td>
<td>K</td>
</tr>
</tbody>
</table>

Tabella 5. Parametri materiali scelti.
Figura 24. Confronto fra i risultati nel piano $\varepsilon_v - p'$.

Figura 25. Confronto fra i risultati nel piano $q - p'$.
In particolare analizzando i risultati nel piano semilogaritmico, si può verificare la correttezza degli stessi; ad esempio valutando la pendenza della curva delle pressioni si può riscontrare il parametro materiale β, utilizzando la seguente relazione:

\[
\frac{1}{\beta} + \frac{1}{\kappa} = -4.4139 \cdot 10^{-2}
\]

\[
\frac{1}{\beta} = -4.4139 \cdot 10^{-2} - \frac{1}{\kappa} = -4.4139 \cdot 10^{-2} + 1.3548 \cdot 10^{-3}
\]

\[
\frac{1}{\beta} = -0.045493 \rightarrow \beta = -21.89
\]

Figura 26. Determinazione della pressione di consolidazione σ'_c.

Figura 27. Grafico semilogaritmico $\varepsilon_v - p'_c$, in tratteggio rosso è indicata la pressione di consolidazione iniziale, σ'_c, pari a $p'_c, d = -14000 \cdot 2 = -28000$ MPa.
5.3.2 Prova non-isoterma in regime plastico

Sempre con la stessa mesh si esegue un’analisi completa, termo-mecanica, di un materiale sottoposto a cicli di riscaldamento e raffreddamento rispetto a diversi gradi di OCR. Il ciclo termico prevede un aumento di temperatura da 21,5 °C a 95 °C, e successivo raffreddamento a 21,5 °C; i gradi di sovracosolidazione del materiale sono rispettivamente per i tre casi: 1, 2, 6; questo equivale a dire che lo stato tensionale iniziale è diverso: essendo \(\sigma'_e(T_0) \) pari a –6 MPa, quindi avremo \(p'_0 \) pari a 6 MPa, 3 MPa e 1 MPa.

Si riportano i parametri materiali e il ciclo di carico termico in Tabella 1 e Figura .

<table>
<thead>
<tr>
<th>(K_{ref}) =</th>
<th>150</th>
<th>MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_{ref}) =</td>
<td>130</td>
<td>MPa</td>
</tr>
<tr>
<td>(p_{ref}) =</td>
<td>-1.0</td>
<td>MPa</td>
</tr>
<tr>
<td>(\sigma'_e(0)) =</td>
<td>-6.0</td>
<td>MPa</td>
</tr>
<tr>
<td>(n) =</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>(\varphi_0) =</td>
<td>80°</td>
<td>-</td>
</tr>
<tr>
<td>(\beta) =</td>
<td>-47</td>
<td>-</td>
</tr>
<tr>
<td>(\alpha) =</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>(a) =</td>
<td>0.0004</td>
<td>-</td>
</tr>
<tr>
<td>(B) =</td>
<td>1.0</td>
<td>-</td>
</tr>
</tbody>
</table>

\(c \) = 0.0004	-
\(D \) = 1.3	-
\(r'_d \) = 1.0	-
\(r'_i \) = 0.01	-
\(n_r \) = 1.0	-
\(\beta'_{so} \) = 3.00e-05	1/K
\(g \) = 0.0	-
\(\gamma \) = 0.2	-
\(T_0 \) = 294.65	K

Tabella 6. Parametri materiali scelti.
Figura 30. Ciclo termico di riscaldamento e raffreddamento (21.5 °C → 95 °C → 21.5°C).

Figura 28. Confronto fra i risultati nel piano $\varepsilon_v - T$.
Figura 32. Confronto fra i risultati nel piano $p' - T$.

Figura 29. Confronto fra i risultati nel piano v - p'.
Figura 30. Risultati ottenuti con il ciclo termico di riscaldamento e raffreddamento per vari gradi di sovraconsolidazione: OCR pari a 1, 2, 6.

Da quest’ultimo grafico si può notare la correttezza dei risultati, che se confrontati, almeno qualitativamente, con la Figura 13 dimostrano il differente comportamento in base all’OCR delle argille ai cicli termici di riscaldamento e raffreddamento.

5.4 CONCLUSIONI

In base alla completa gamma di simulazioni numeriche, in campo elastico/plastico e isotermo/non-isotermo, e in base al loro confronto con le simulazioni svolte col codice svizzero, si può affermare che la legge costitutiva termo-elasto-plastica si risulta essere implementata correttamente, in quanto i risultati sono praticamente coincidenti.

Sebbene non si sia potuto compiere una validazione tramite simulazione diretta di prove sperimentali, in quanto il codice COMES-GEO contempla solo lo stato piano di deformazione, poco adatto per la simulazione di prove triassiali (fondamentali nel campo della geotecnica), la legge costitutiva può essere considerata corretta perché convalidata da un codice che invece può simulare correttamente le prove suddette.
6.1 INTRODUZIONE

Con il seguente lavoro si è voluto studiare il comportamento idro-termo-meccanico di depositi profondi di scorie radioattive. Lo studio è stato proposto dal professor Lyesse Laloui dell’EPFL di Losanna, incaricato dal Commissariato dell’Energia Atomica francese di stabilire se fosse possibile lo stoccaggio di scorie radioattive di tipo C e B (Low-Intermediate level; High level) in depositi profondi di argilla.

L’opera di stoccaggio prevede che, mantenendo una temperatura costante di 30°C nella parte di terreno interessata, in tre anni sia costruita una rete parallela di gallerie orizzontali, di sezione corrente a forma di ferro di cavallo, alta 6 metri e larga 5 m. Le gallerie distano tra loro di 80 m. All’interno di ogni galleria vengono trivellati dei pozzi di stoccaggio verticali (diametro 50 cm, altezza 50 m utili, più 5 m di tappo in argilla). Ogni pozzo ammette di impilare 40 contenitori di scorie radioattive.

Si dovranno determinare la profondità del deposito e l’interasse dei pozzi, valutando i seguenti casi alternativi:

Caso 1-A: profondità del piano di posa della galleria -400 m, interasse dei pozzi 20 m
Caso 1-B: profondità del piano di posa della galleria -400 m, interasse dei pozzi 10 m
Caso 2-A: profondità del piano di posa della galleria -750 m, interasse dei pozzi 20 m
Caso 2-B: profondità del piano di posa della galleria -750 m, interasse dei pozzi 10 m

La differenza di quota tra i casi 1 e 2 provoca solamente una differenza del campo termico pari alla temperatura geotermica iniziale, poiché le proprietà termiche tra i due punti sono ipotizzate simili.
Nella simulazione si è tenuto conto solo della condizione iniziale del terreno, concentrando l’attenzione non tanto sulle varie fasi dell’interramento delle scorie, quanto piuttosto sulla sollecitazione termica a lungo termine e al conseguente comportamento plastico del terreno.

Figura 35. Rappresentazione tridimensionale delle gallerie
6.2 DEFINIZIONE DELLA SORGENTE DI CALORE

La presenza nel terreno delle scorie radioattive da vita ad un flusso di calore. Lo studio è stato svolto per le scorie radioattive ad alta attività di tipo C, su un periodo di due secoli a partire dalla deposizione dei contenitori delle scorie nei pozzi di stoccaggio. Ogni contenitore è caratterizzato dalla stessa legge termica $P(t)$ (Figura 36) poiché si ipotizza che tutti i contenitori vengano depositati nello stesso istante $t = 0$.

![Figura 36. Abbassamento della potenza delle sorgenti nel tempo](image)

![Figura 37. Andamento nel tempo della temperatura nei contenitori](image)
Il flusso di calore è stato sostituito nell’analisi agli elementi finiti con una curva di temperatura ricavata dalla curva di potenza in funzione del tempo e riportata in Figura 37. La curva di temperatura presenta una rapida crescita dai 30°C ai 95°C nei primi 30 anni, per poi decrescere molto lentamente fino ai 60°C nei successivi 170 anni. Tale curva viene applicata come condizione al contorno in 5 nodi che distano 12,5 m l’uno dall’altro per una profondità totale di 55 m dal piano di posa della galleria.

![Figura 38: Distribuzione delle sorgenti di calore.](image)

Per semplicità si ipotizza che le sorgenti a temperatura imposta siano a diretto contatto con il terreno, trascurando l’eventuale vuoto anulare dentro i contenitori e le pareti dei pozzi.
6.3 DEFINIZIONE DEI PARAMETRI DEL MATERIALE

I parametri elasto-plastici del materiale sono stati ottenuti tramite prove triassiali, realizzate nel laboratorio di geotecnica del B.R.G.M. di Orléans, su dei campioni di argilla ricavati dai carotaggi di Montcornet in condizioni diverse (prove drenate e non, cicliche e monotone, con diverse pressioni di confinamento e con diverse velocità di carico).

In assenza di risultati termici nell’argilla di Montcornet in profondità, i parametri termici sono stati determinati con delle prove sulle argille di Boom.

I parametri ricavati sono riportati nelle seguenti tabelle:

<table>
<thead>
<tr>
<th>Caratteristiche delle prove triassiali</th>
<th>Caso 1</th>
<th>Caso 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carota testata</td>
<td>A 1950</td>
<td>A 2149</td>
</tr>
<tr>
<td>Profondità</td>
<td>437.69/438 m</td>
<td>779.7/780 m</td>
</tr>
<tr>
<td>Pressione di confinamento delle prove</td>
<td>5.3 MPa</td>
<td>12 MPa</td>
</tr>
<tr>
<td></td>
<td>10.6 MPa</td>
<td>19.8 MPa</td>
</tr>
</tbody>
</table>

PARAMETRI FISICI

<table>
<thead>
<tr>
<th></th>
<th>Caso 1</th>
<th>Caso 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso di volume dell’argilla</td>
<td>γ [KN/m³]</td>
<td>20.7</td>
</tr>
<tr>
<td>Porosità</td>
<td>n [%]</td>
<td>37</td>
</tr>
<tr>
<td>Accelerazione di gravità</td>
<td>g [m/s²]</td>
<td>9.81</td>
</tr>
</tbody>
</table>

PARAMETRI IDRAULICHI

<table>
<thead>
<tr>
<th></th>
<th>Caso 1</th>
<th>Caso 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeabilità</td>
<td>K [m/s]</td>
<td>10⁻¹²</td>
</tr>
<tr>
<td>Densità dell’acqua</td>
<td>ρ_0 [Kg/m³]</td>
<td>1000</td>
</tr>
</tbody>
</table>

PARAMETRI TERMICI

<table>
<thead>
<tr>
<th></th>
<th>Caso 1</th>
<th>Caso 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficiente cubico di dilatazione termica</td>
<td>β'₀ [1/K]</td>
<td>0.00003</td>
</tr>
</tbody>
</table>
PARAMETRI ELASTICI

<table>
<thead>
<tr>
<th></th>
<th>Caso 1</th>
<th>Caso 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressione di riferimento</td>
<td>(p_{\text{ref}}) [MPa]</td>
<td>1</td>
</tr>
<tr>
<td>Modulo elastico di volume per (p = p_{\text{ref}})</td>
<td>(K_{\text{ref}}) [MPa]</td>
<td>200 250</td>
</tr>
<tr>
<td>Modulo elastico di taglio per (p = p_{\text{ref}})</td>
<td>(G_{\text{ref}}) [MPa]</td>
<td>120 130</td>
</tr>
<tr>
<td>Esponente elastico non lineare</td>
<td>(n)</td>
<td>0.7</td>
</tr>
<tr>
<td>Modulo di Young (ricavato da (K_{\text{ref}}) e (G_{\text{ref}}))</td>
<td>(E) [MPa]</td>
<td>300 332</td>
</tr>
<tr>
<td>Coefficiente di Poisson (ricavato da (K_{\text{ref}}) e (G_{\text{ref}}))</td>
<td>(\nu)</td>
<td>0.25 0.28</td>
</tr>
</tbody>
</table>

PARAMETRI PLASTICI

<table>
<thead>
<tr>
<th></th>
<th>Caso 1</th>
<th>Caso 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angolo di attrito</td>
<td>(\Phi) [°]</td>
<td>15 28</td>
</tr>
<tr>
<td>Compressibilità plastica (pendenza della funzione lineare (\varepsilon_v^p - \log \sigma_c'))</td>
<td>(\beta) [-]</td>
<td>12</td>
</tr>
<tr>
<td>Pressione di pre-consolidazione iniziale</td>
<td>(\sigma_{c0}') [MPa]</td>
<td>15 36</td>
</tr>
</tbody>
</table>

HARDENING

<table>
<thead>
<tr>
<th></th>
<th>Caso 1</th>
<th>Caso 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametro che fornisce l’evoluzione del grado di mobilità del meccanismo deviatorico</td>
<td>(a)</td>
<td>0.001 0.0007</td>
</tr>
<tr>
<td>Parametro che definisce la forma della superficie di snervamento del meccanismo deviatorico</td>
<td>(b)</td>
<td>1.0</td>
</tr>
<tr>
<td>Parametro che fornisce l’evoluzione del grado di mobilità del meccanismo isotropo</td>
<td>(c)</td>
<td>0.002</td>
</tr>
<tr>
<td>Distanza fra (\sigma_c') e (p_c') (pressione critica di Cam-Clay) nel piano logaritmico</td>
<td>(d)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

DOMINIO DEL COMPORTAMENTO

<table>
<thead>
<tr>
<th></th>
<th>Caso 1</th>
<th>Caso 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rateo tra il limite isotropo di snervamento e l’inizio del dominio elastico isotropo</td>
<td>(r_{i_{\text{ela}}})</td>
<td>0.005</td>
</tr>
<tr>
<td>Rateo tra il limite deviatorico di snervamento e l’inizio del dominio elastico deviatorico</td>
<td>(r_{d_{\text{ela}}})</td>
<td>0.005</td>
</tr>
<tr>
<td>Parametro che definisce la variazione di (\sigma_c') con il variare della temperatura</td>
<td>(\gamma)</td>
<td>0.4</td>
</tr>
</tbody>
</table>
6.4 CONDIZIONI INIZIALI E AL CONTORNO

Il codice usato per la simulazione agli elementi finiti del problema è “Comes-Geo”. Si è proceduto con una trattazione bidimensionale svolta sul piano verticale e sul piano orizzontale separatamente, in quanto possiamo ragionevolmente assumere di essere in presenza di uno stato piano di deformazione.

I gradi di libertà a nostra disposizione sono quattro (Pressione del gas, pressione capillare, temperatura, spostamenti in x e y). Imponendo a queste quattro grandezze determinati valori si cercherà di simulare correttamente lo stato naturale del terreno a consolidazione avvenuta, ipotizzando che lo stato iniziale sia sottoposto solamente alle forze di volume corrispondenti al peso proprio del terreno.

Figura 39. Condizioni al contorno
Pressione del gas

Il terreno è ipotizzato saturo.
In assenza di gas si assume che la sua pressione sia costante e pari a quella atmosferica ($P_{\text{atm}} = 101325\ P_a$).
Questa ipotesi è stata assunta come condizione iniziale e al contorno per tutte le analisi.

Pressione capillare

- **Sezione verticale**

In prima analisi si ipotizza che il valore della pressione interstiziale iniziale sia equivalente alla pressione idrostatica dovuta alla falda freatica a livello della superficie:

$$p^{\text{cap}} = p^{\text{gas}} - p^{\text{w}} = p^{\text{atm}} - \left(p^{\text{atm}} + p^{\text{w,rel}}\right)$$

Ci sarà una distribuzione lineare della pressione capillare, proporzionale alla profondità, pari a

$$p^{\text{cap}} = -\gamma_h \cdot h = \rho \cdot g \cdot h$$

il cui valore è stato imposto solo sui bordi inferiore e superiore della mesh.

<table>
<thead>
<tr>
<th>Caso 1</th>
<th>Caso 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_{sup} [m]</td>
<td>-350</td>
</tr>
<tr>
<td>Y_{inf} [m]</td>
<td>-500</td>
</tr>
<tr>
<td>$P_{c,\text{sup}}$ [Pa]</td>
<td>-3.433.500</td>
</tr>
<tr>
<td>$P_{c,\text{inf}}$ [Pa]</td>
<td>-5.473.980</td>
</tr>
</tbody>
</table>

Si è assunta una media tra le due pressioni estreme come condizione iniziale.
Trovato l’equilibrio iniziale della pressione nel terreno, caratterizzata dalla distribuzione lineare, il grado di libertà viene liberato in tutti i nodi, e imposto solamente nel bordo superiore della mesh.

- **Sezione orizzontale**

In prima analisi, al fine di ricondurci alla condizione di equilibrio iniziale del terreno, si è imposto, sui quattro bordi della mesh e come condizione iniziale, una pressione capillare costante pari al potenziale idraulico all’altezza considerata, ottenendo:

<table>
<thead>
<tr>
<th>Caso 1</th>
<th>Caso 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y [m]</td>
<td>-430</td>
</tr>
<tr>
<td>Pc [Pa]</td>
<td>-4.218.300</td>
</tr>
</tbody>
</table>

Si è poi proceduto lasciando libero questo grado di libertà.

In questo caso si è tralasciata l’analisi di tre anni a temperatura impostata in galleria perché alle profondità considerate (profondità media dei pozzi) non si sente l’effetto di tale imposizione.

Temperatura

- **Sezione verticale**

In prima analisi, al fine di ricondurci alla condizione di equilibrio iniziale del terreno, si è imposta a tutta la mesh la temperatura geotermica, calcolata tenendo conto di una temperatura superficiale costante pari a 15°C e di un gradiente geotermico di 0,03°C/m di profondità secondo la seguente relazione:

\[
T_y = T_{amb} + 0.03 \cdot |y|
\]

\[
T_{amb} = 15°C
\]

\[
[y] = m
\]
Figura 40. Andamento lineare delle temperatura geotermica

<table>
<thead>
<tr>
<th></th>
<th>Caso 1</th>
<th>Caso 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_0 [m]</td>
<td>-400</td>
<td>-750</td>
</tr>
<tr>
<td>y_{sup} [m]</td>
<td>-350</td>
<td>-700</td>
</tr>
<tr>
<td>y_{inf} [m]</td>
<td>-550</td>
<td>-900</td>
</tr>
<tr>
<td>T_0 [°C]</td>
<td>27,00</td>
<td>37,50</td>
</tr>
<tr>
<td>T_{sup} [°C]</td>
<td>25,50</td>
<td>36,00</td>
</tr>
<tr>
<td>T_{inf} [°C]</td>
<td>31,50</td>
<td>42,00</td>
</tr>
</tbody>
</table>

Si è assunta una media tra le due temperature estreme come condizione iniziale. Ricavata la distribuzione lineare delle temperature in funzione della profondità, si è proceduto applicando alla galleria una temperatura costante di 30°C e liberando la temperatura in tutti gli altri nodi. Questa parte dell’analisi può anche essere omessa dato che i 30°C poco si discostano dalla temperatura geodetica all’altezza della galleria (Caso1: 27°C, Caso 2: 37,5°C).

Nelle analisi successive si è continuato a tener libero questo grado di libertà anche nella galleria e imponendo la curva di carico riportata in Figura 37 solo nei cinque nodi, in corrispondenza delle sorgenti di calore. Nei nodi dei bordi laterali e alla base della mesh si libera la temperatura creando una superficie adiabatica, dove la temperatura varia senza scambio di calore. Tale comportamento rispecchia esattamente ciò che accade nelle realtà nei punti che si trovano nell’asse di simmetria delle gallerie.
- **Sezione orizzontale**

In prima analisi, al fine di ricondursi alla condizione di equilibrio iniziale del terreno, si è imposto a tutta la mesh una temperatura costante pari a quella geotermica all’altezza considerata, ottenendo:

<table>
<thead>
<tr>
<th></th>
<th>Caso 1</th>
<th>Caso 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y [m]</td>
<td>-430</td>
<td>-780</td>
</tr>
<tr>
<td>T [°C]</td>
<td>27,90</td>
<td>38,40</td>
</tr>
</tbody>
</table>

Si è poi proceduto applicando in tre nodi la curva di carico termico della Figura 37 e liberando tutti gli altri nodi.

In questo caso si è tralasciata l’analisi di tre anni a temperatura imposta in galleria perché alle profondità considerate (profondità media dei pozzi) non si sente l’effetto di tale imposizione.

La temperatura in entrambi i casi è introdotta come condizione al contorno dipendente dal tempo, dando vita ad un’analisi di tipo transitorio.

Spostamenti lungo x

- **Sezione verticale**

Il piano verticale medio tra due gallerie è soggetto a forze uguali ed opposte, perciò è scarico per simmetria. Sulle frontiere laterali sono imposti spostamenti nulli lungo l’asse delle x.

- **Sezione orizzontale**

Sono imposti nulli gli spostamenti dell’asse di simmetria verticale.
Spostamenti lungo y

- **Sezione verticale**

Sul limite inferiore della mesh gli spostamenti lungo la direzione y sono nulli in quanto si suppone di essere abbastanza lontani da azioni meccaniche tali da doverne considerare l’influenza in termini di sollevamenti o cedimenti.

Un carico verticale \(q \), pari al peso del terreno sovrastante la zona di interesse, è stato imposto nei nodi superiori della mesh in termini di tensione totale. L’intensità di tale carico è calcolata come il peso del terreno riferito al volume solido totale addizionato al peso dell’acqua riferito al volume dei vuoti e vale:

\[
q_y = [\rho_s(1 - n) + \rho_w n] \cdot z \cdot g = 5834547 \text{ Pa}
\]

\[
\rho_s = 2070 \frac{\text{kg}}{\text{m}^3} \quad \text{densità di volume del terreno}
\]

\[
\rho_w = 1000 \frac{\text{kg}}{\text{m}^3} \quad \text{densità di volume dell’acqua}
\]

\[
n = 0.37 \quad \text{porosità del terreno}
\]

\[
g = 9.81 \frac{\text{m}}{\text{s}^2} \quad \text{accelerazione di gravità}
\]

\[
z = 350 \text{ m} \quad \text{profondità del limite superiore della mesh}
\]

- **Sezione orizzontale**

Sono imposti nulli gli spostamenti dell’asse di simmetria orizzontale.

Si è creato lo stato tensionale iniziale, dovuto al peso proprio, imponendo sui quattro lati della mesh una tensione totale pari a quella ricavata dall’analisi verticale.
6.5 DEFINIZIONE DELLA MESH

L’opera di stoccaggio globalmente è caratterizzata da due periodi:
- la distanza \(d = 80 \) m tra le gallerie;
- la distanza \(e = 10-20 \) m tra i pozzi, nella direzione della galleria.

La simmetria che nasce de queste periodicità ci consente di limitare le dimensioni della mesh. Nell’ambito di uno studio bidimensionale sarà necessario considerare due sezioni ortogonali tra di loro, per ottenere la ripartizione globale della temperatura.

- sezione verticale dei pozzi (Figura 41): mesh 80 x 200 m.
 La larghezza di 80 m è giustificata dalla periodicità della maglia delle gallerie, mentre l’altezza (50 m sopra il pano di posa della galleria e 150 m sotto) è stata scelta per applicare alla temperatura delle condizioni al contorno costanti

- sezione orizzontale dei pozzi (Figura 42): mesh 3\(e \) x 80 m
 La lunghezza di 80 m è giustificata dalla periodicità della maglia delle gallerie, mentre la larghezza 3\(e \) è giustificata dalla necessità di capire come interagiscano tra loro due pozzi in funzione della vicinanza.
Figura 43. Sezione verticale

Figura 44. Sezione orizzontale
6.6 RISULTATI DELLE ANALISI

6.6.1 Caso 1-B: Galleria a 400 m di profondità, interasse dei pozzi 10 m

L’analisi è stata svolta con passi di integrazione temporale di 6 mesi, in quanto valore sufficiente per descrivere con accuratezza la storia di carico applicata. Si riportano i grafici riassuntivi dei risultati dalle analisi relativamente ai sei punti della mesh indicati in Figura 45.

Figura 45. Nodi analizzati nella sezione verticale
6.6.2 Confronto tra i risultati dell’analisi elastico-lineare, elastico-non lineare, plastica.

L’analisi è stata eseguita con tre leggi costitutive diverse:

1. Plast 0: Elasticità lineare

 Modulo Elastico medio: \(E = 480 \text{ N/mm}^2 \)

 Coefficiente di Poisson : \(\nu = 0.25 \)

2. Plast 5: Elasticità non lineare

 Moduli ipoelastici dipendenti dalla pressione (quindi dalla profondità)

 \[
 K = K_{\text{ref}} \left(\frac{p'}{p_{\text{ref}}} \right)^n
 \]

 \[
 G = G_{\text{ref}} \left(\frac{p'}{p_{\text{ref}}} \right)^n
 \]

 \[
 K_{\text{ref}} = \frac{E}{3(1-2\nu)}, \quad G_{\text{ref}} = \frac{E}{2(1+\nu)}, \quad p_{\text{ref}} = 1\text{MPa}
 \]

3. Plast 4: Termo-elasto-plasticità (Vedi capitolo 4)
Dal confronto tra i grafici che mostrano l’andamento nel tempo della temperatura si osserva come la diffusione del calore non sia influenzata dalla plasticità, ma che i risultati siano pressoché identici nei tre casi.
BOUNDARY VALUE PROBLEM: GALLERIA DI STOCCAGGIO DI SCORIE RADIOATTIVE

Nodo 1017, -450 m

Plast 0 Plast 5 Plast 4

Nodo 964, -450 m

Plast 4 Plast 5 Plast 0

Nodo 982, -450 m

Plast 4 Plast 5 Plast 0

TIME [Years]

TEMPERATURE [°C]
Le deformazioni volumetriche invece differiscono nei tre casi. Le deformazioni volumetriche termiche sono calcolate in tutti e tre i casi come $\varepsilon_T = \beta \Delta T$ e non presentano differenze.

La differenza tra le deformazioni volumetriche nei casi elastici e nel caso plastico è puramente meccanica, ma graficamente tale differenza si nota solo nelle deformazioni totali che sono dello stesso ordine di grandezza delle deformazioni plastiche (10^{-5}).
Anche per gli spostamenti verticali, la pressione relativa dell’acqua, le tensioni deviatoriche e le tensioni medie effettive il caso plastico va a migliorare la soluzione rispetto ai casi elastici.
Dimostrato che l’analisi termo-elasto-plastica fornisce delle informazioni più precise e corrette rispetto all’analisi puramente plastica, si procederà illustrando i risultati dell’analisi elasto-plastica in più nodi del caso 1-B.
6.6.3 Analisi dei risultati dell’analisi termo-elasto-plastica: sezione verticale

I grafici della temperatura in funzione del tempo mostrano come a mano a mano ci si allontani dalle sorgenti di calore (pozzi) si risenta sempre meno della loro influenza. Verticalmente, ad una distanza di circa 30 m del fondo del pozzo, nei duecento anni studiati, la temperatura cresce molto lentamente portandosi dai 30°C geotermici ai 55°C di molto inferiori ai 95°C della sorgente e la crescita della curva è puramente monotona crescente. Orizzontalmente la temperatura diffonde più velocemente della direzione verticale e presenta un andamento crescente fino ad un massimo di temperatura variabile con la distanza, seguito da una diminuzione della temperatura più lenta.

Grafico 1

Grafico 2
Dai grafici delle deformazioni volumetriche si osserva che il nodo appartenente all’asse verticale più vicino ai pozzi complessivamente si dilata all’aumentare della temperatura con deformazione volumetriche dell’ordine di 10^{-4}, poi contrae al diminuire della temperatura. Questo punto appartiene alla zona del bulbo soggetto alla maggiore influenza termica. Infatti la deformazione volumetrica termica è positiva e dell’ordine di 10^{-3}, comparabile alla deformazione volumetrica meccanica negativa nella zona di riscaldamento.

I nodi più bassi subiscono complessivamente una debole compressione legata al maggiore confinamento dovuto all’espansione del bulbo. Via via che il calore si diffonde il bulbo cresce, facendo aumentare di volume anche le zone più lontane (vedi nodo 582).

L’acqua presente nel terreno risponde a queste deformazioni variando la sua pressione. Dal Grafico 6 si vede che dove il terreno espande la pressione dell’acqua diminuisce molto velocemente, dove il terreno subisce un aumento di temperatura più lento, la pressione dell’acqua scende molto piano. L’andamento nel tempo della variazione della pressione dell’acqua risulta maggiormente condizionata dalle deformazioni volumetriche termiche. All’aumentare di queste ultime la pressione relativa dell’acqua diminuisce, mentre al loro diminuire la pressione aumenta.

![Grafico 3](image-url)
Grafico 4

Grafico 5
Grafico 6

Grafico 7
Grafico 8

Termodinamica elasto-plastica

![Grafico 8](image)

Grafico 9

Termodinamica elasto-plastica

![Grafico 9](image)
Grafico 10

Grafico 11
Parte della deformazione è di tipo plastico e il comportamento è diverso a seconda delle profondità e quindi delle temperature e delle tensioni.

Nei nodi più vicini alle sorgenti di calore, contrariamente a quanto si potesse prevedere, la deformazione plastica è minore di quella sviluppata nei nodi più lontani, ciò è facilmente spiegabile osservando l’andamento globale della deformazione volumetrica. La zona vicina alle sorgenti subisce una dilatazione globale a cui la zona circostante, bloccata negli spostamenti, reagisce con un aumento della compressione che a sua volta causa un maggiore confinamento e quindi deformazioni maggiori. Questo comportamento è accentuato anche dal fatto che nelle zone più lontane dalle sorgenti c’è una deformazione volumetrica termica minore e quindi la parte deviatorica domina su quella isotropa facendo sì che ci si avvicini più rapidamente alla frontiera plastica.

Nota la dipendenza della superficie di snervamento dalla temperatura (Grafico 13), si può pensare che a temperature più basse serva una tensione maggiore per avere deformazioni plastiche.

A tal riguardo ci aiuta il Grafico10: all’aumentare della temperatura, la superficie di snervamento si abbassa sul grafico $q-p$.

\textit{Grafico 12}
Grafico 13: Accoppiamento dei meccanismi termoplastici isotropo e deviatorico

Grafico 14
BOUNDARY VALUE PROBLEM: GALLERIA DI STOCCAGGIO DI SCORIE RADIOATTIVE

Grafico 15

Grafico 16
Grafico 17

Grafico 18
Grafico 19

- **Termo-elasto-plasticità**

 - Grafico di deviatorico stress (MPa) in funzione del tempo (anni) per nodi 964, 982, 1017.

Grafico 20

<table>
<thead>
<tr>
<th>T=2 anni</th>
<th>T=7,5 anni</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BOUNDARY VALUE PROBLEM: GALLERIA DI STOCCAGGIO DI SCORDIE RADIOATTIVE

T=15 anni

T=22,5 anni

T=30 anni

T=85 anni
BOUNDARY VALUE PROBLEM: GALLERIA DI STOCCAGGIO DI SCORIE RADIOATTIVE

T = 145 anni

T = 200 anni
6.6.4 Analisi dei risultati dell’analisi termo-elasto-plastica: sezione orizzontale

L’analisi è stata svolta con passi di integrazione temporale di 6 mesi, in quanto valore sufficiente per descrivere con accuratezza la storia di carico applicata. Si riportano i grafici riassuntivi dei risultati dalle analisi relativamente ai sei punti della mesh indicati in Figura 46.

La sezione orizzontale è stata presa a mezza altezza dei pozzi. Nei nodi nella direzione trasversale l’andamento della temperatura presenta un massimo di valore crescente con l’avvicinarsi alle sorgenti di calore, esattamente come si è visto nella sezione verticale. Tale massimo si manifesta prima nei nodi vicini alle sorgenti, mentre si manifesta più lentamente nei nodi più lontani. La temperatura massima raggiunta è di circa 10°C in meno rispetto a quella della sorgente. Nella direzione verticale invece la distribuzione della temperatura nel tempo è pressoché costante allontanandosi dal pozzo, e il massimo raggiunto è anche in questo caso di circa 85°C.
Le deformazioni volumetriche totali in funzione del tempo danno delle informazioni sul comportamento del bulbo di calore. Nella direzione orizzontale vicino alla sorgente di calore il punto analizzato subisce complessivamente una compressione meccanica dovuta al repentino aumento di calore nelle sorgenti.
Allontanandosi dalla sorgente ci sarà una zona che avrà deformazioni fortemente influenzate dalla variazione di temperatura nella sorgente, infatti la deformazione volumetrica ha inizialmente una dilatazione e poi una compressione molto lenta (Nodo 719). Allontanandosi ancora si nota dapprima una compressione dovuta all’iniziale aumento di volume attorno alla sorgente e poi un aumento di volume a mano a mano che la temperatura della sorgente scende e che la zona circostante subisce una compressione.

La deformazione volumetrica termica presenta un andamento parallelo a quello della temperatura. Le deformazioni meccaniche sono quelle indotte dalla dilatazione termica che non è libera, per questo motivo l’andamento delle due deformazioni è parallelo ma di segno opposto. L’unico punto in cui prevale lo schiacciamento meccanico è quello vicino alle sorgenti probabilmente la forte dilatazione iniziale crea un aumento del confinamento nelle zone adiacenti.
Considerazioni analoghe possono farsi nella direzione verticale, tra un pozzo e il successivo. Di seguito sono riportati i grafici.
Le deformazioni plastiche sono dell’ordine del 10^{-5}, quindi di due ordini di grandezza inferiori a quelle elastiche, la loro influenza è perciò minima.

Anche nella sezione orizzontale la variazione della pressione relativa dell’acqua ha un andamento speculare a quello della deformazione volumetrica termica.
Grafico 31

Grafico 32
BOUNDARY VALUE PROBLEM: GALLERIA DI STOCCAGGIO DI SCORIE RADIOATTIVE

Termo-elasto-plasticità

Grafico 33

Termo-elasto-plasticità

Grafico 34
BOUNDARY VALUE PROBLEM: GALLERIA DI STOCCHAGGIO DI SCORIE RADIOATTIVE

T = 2 anni

T = 7,5 anni

T = 15 anni

T = 22,5 anni
BOUNDARY VALUE PROBLEM: GALLERIA DI STOCCAGGIO DI SCORIE RADIOATTIVE

T=30 anni

T=85 anni

T=145 anni

T=200 anni
6.7 CONCLUSIONI

Il caso visto mostra l’utilità d’aver implementato una legge costitutiva termo-elasto-plastica per mezzi porosi multi-fase (il terreno nell’esempio studiato) e la sua applicabilità ad un caso reale di interesse ingegneristico e per la società civile.

I problemi principali sono stati:
- l’aver trattato un problema di cui non si aveva esperienza;
- l’utilizzo di un codice di ricerca in continua evoluzione;
- l’interpretazione dei risultati a causa dell’accoppiamento di tutti i fenomeni fisici modellati;
- le non linearità presenti nei modelli dei materiali.

I risultati ottenuti evidenziano le potenzialità dell’approccio multi-fase nell’analisi del comportamento idro-termo-mecanico di depositi profondi di scorie radioattive.

Si può affermare di avere contribuito a sviluppare un mezzo indispensabile per l’analisi termo-elasto-plastica dei terreni multi-fase, dato che l’approssimazione che generalmente si adotta trascurando o la plasticità, o il sistema accoppiato, o entrambe le caratteristiche appena citate, non è trascurabile.