Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Visentin, Rosita (2008) Studio sulla sopravvivenza di endospore batteriche in ambiente marziano. [Laurea specialistica biennale]

Full text disponibile come:

[img]
Anteprima
Documento PDF
13Mb

Abstract

In questo lavoro sono stati analizzati gli effetti dell’ambiente marziano, in particolare il forte irraggiamento UV, su endospore di varie specie batteriche e in particolare di Bacillus pumilus SAFR 032.

Tipologia del documento:Laurea specialistica biennale
Corsi di Laurea specialistica biennale:Facoltà di Scienze MM. FF. NN. > Scienze della natura
Parole chiave:Bacillus Marte UV Endospore
Settori scientifico-disciplinari del MIUR:Area 02 - Scienze fisiche > FIS/05 Astronomia e astrofisica
Codice ID:14645
Relatore:Galletta, Giuseppe
Data della tesi:2008
Biblioteca:Polo di Scienze > CIS "A. Vallisneri" - Biblioteca Biologico Medica
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

C. De Duve, Alle origini della vita. Longanesi, 2008. Cerca con Google

C. Chyba e C. Sagan, “Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life,” Nature, vol. 355, pp. 125–132, 1992. Cerca con Google

P. Thaddeus, “The prebiotic molecules observed in the interstellar gas,” Philosophical Transactions of the R oyal Society B: Biological Sciences, vol. 361, pp. 1681–1687, 2006. Cerca con Google

S. A. Sandford, et al., “Organics captured from comet 81P/Wild 2 by the Stardust Spacecraft,” Science, vol. 314, pp. 1720–1724, 2006. Cerca con Google

D. Glavin, J. Dworkin, e S. Sandford, “Detection of cometary amines in samples returned by Stardust,” Meteoritics and Planetary Science, vol. 43, pp. 399–414, 2008. Cerca con Google

N. Balucani e P. Casavecchia, “Gas-phase reactions in extraterrestrial environments: laboratory investigations by crossed molecular beams,” Origin of Life and Evolution of Biospheres, vol. 36, pp. 443–450, 2006. Cerca con Google

A. C. Cheung, D. M. Rank, C. H. Townes, D. D. Thornton, e W. J. Welch, “Detection of NH3 molecules in the interstellar medium by their microwave emission,” Physical Review Letters, vol. 21, pp. 1701–1705, 1968. Cerca con Google

Z. Martins, O. Botta, M. L. Fogel, M. A. Sephton, D. P. Glavin, J. S. Watson, J. P. Dworkin, A. W. Schwartz, e P. Ehrenfreund, “Extraterrestrial nucleobases in the Murchison meteorite,” Earth and Planetary Science Letters, vol. 270, pp. 130–136, 2008. Cerca con Google

Z. Martins, C. M. D’Alexander, G. E. Orzechowska, M. L. Fogel, e P. Ehrenfreund, “Indigenous amino acids in primitive CR meteorites,” Meteoritics and Planetary Science, vol. 42, pp. 2125–2136, 2007. Cerca con Google

O. Botta e J. Bada, “Extraterrestrial organic compounds in meteorites,” Surveys in Geophysics, vol. 23, pp. 411–467, 2002. Cerca con Google

S. Love e D. Brownlee, “A direct measurement of the terrestrial mass accretion rate of cosmic dust,” Science, vol. 262, pp. 550 – 553, 1993. Cerca con Google

G. Ryder, “Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth,” Journal of Geophysical Research, vol. 107, pp. 1–14, 2002. Cerca con Google

A. A. Nemchin, M. J. Whitehouse, M. Menneken, T. Geisler, R. T. Pidgeon, e S. A. Wilde, “A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills,” Nature, vol. 454, pp. 92–95, 2008. Cerca con Google

S. L. Miller, “A production of amino acids under possible primitive Earth conditions,” Science, vol. 117, pp. 528–529, 1953. Cerca con Google

H. J. Cleaves, J. p. Chalmers, A. Lazcano, S. Miller, e J. Bada, “A reassessment of prebiotic organic synthesis in neutral planetary atmospheres,” Origin of Life and Evolution of Biospheres, vol. 38, pp. 105–115, 2008. Cerca con Google

S. D’Amico, T. Collins, J.-C. Marx, G. Feller, e C. Gerday, “Psychrophilic microorganisms: challenges for life,” EMBO Reports, vol. 7, pp. 385–389, 2006. Cerca con Google

V. R. Baker, “Water and the martian landscape,” Nature, vol. 412, pp. 228–236, 2001. Cerca con Google

C. D. Parkinson, M. C. Liang, Y. L. Yung, e J. L. Kirschivnk, “Habitability of Enceladus: Planetary conditions for Life,” Origin of Life and Evolution of Biospheres, vol. 38, pp. 355–69, 2008. Cerca con Google

C. Zimmer, K. K. Khurana, e M. G. Kivelson, “Subsurface oceans on Europa and Callisto: Constraints from Galileo Magnetometer observations,” Icarus, vol. 147, pp. 329–347, 2000. Cerca con Google

T. M. McCollom, “Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa,” Journal of Geophysical Research, vol. 104, pp. 729–742, 1999. Cerca con Google

G. Marion, C. Fritsen, H. Eicken, e M. Payne, “The search for life on Europa: Limiting environmental factors, potential habitats, and Earth analogues,” Astrobiology, vol. 3, pp. 785–811, 2003. Cerca con Google

G. Wachtershauser, “Evolution of the first metabolic cycles,” Proceedings of the National Academy of Sciences, vol. 87, pp. 200–204, 1990. Cerca con Google

B. de Fontenelle, Conversazioni sulla pluralità dei mondi, Theoria, Ed., 1984. Cerca con Google

M. H. Carr e J. W. Head, “Oceans on Mars: An assessment of the observational evidence and possible fate,” Journal of Geophysical Research, vol. 108, pp. 1–28, 2003. Cerca con Google

J. T. Perron, J. X. Mitrovica, M. Manga, I. Matsuyama, e M. A. Richards, “Evidence for an ancient martian ocean in the topography of deformed shorelines,” Nature, vol. 447, pp. 840–843, 2007. Cerca con Google

P. B. James, P. C. Thomas, M. J.Wolff, e B. P. Bonev, “MOC observations of four Mars year variations in the south polar residual cap of Mars,” Icarus, vol. 192, pp. 318–326, 2007. Cerca con Google

H. H. Kieffer, “Mars south polar spring and summer temperatures – A residual CO2 frost,” Journal of Geophysical Research, vol. 84, pp. 8263– 8288, 1979. Cerca con Google

J. Plaut, et al., “Subsurface radar sounding of the South polar layered deposits of Mars,” Science, vol. 316, pp. 92–95, 2007. Cerca con Google

A. D. Howard, “The role of eolian processes in forming surface features of the martian polar layered deposits,” Icarus, vol. 144, pp. 267–288, 2000. Cerca con Google

M. A. Seeds, Foundations of Astronomy, Brooks/Cole, Ed., 2001. [31] G. Galletta e V. Sergi, Astrobiologia: le frontiere della vita, Hoepli, Ed., 2005. Cerca con Google

J. P. Bibring, et al., “Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data,” Science, vol. 312, pp. 400– 404, 2006. Cerca con Google

J. P. Ferris, “Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life,” Philosophical Transactions of the R oyal Society B: Biological Sciences, vol. 361, pp. 1777–1786, 2006. Cerca con Google

H. P. Klein, J. Lederberg, A. Rich, N. H. Horowitz, V. I. Oyama, e G. V. Levin, “The Viking Mission search for life on Mars,” Nature, vol. 262, pp. 24–27, 1976. Cerca con Google

G. V. Levin, “Analysis of evidence of Mars life,” Electroneurobiología, vol. 15, pp. 39–47, 2007. Cerca con Google

J. M. Houtkooper e D. Schulze-Makuch, “A possible biogenic origin for Hydrogen Peroxide on Mars: The Viking results reinterpreted,” International Journal of Astrobiology, vol. 6, pp. 147–152, 2007. Cerca con Google

International Mars Architecture for the Return of Samples (iMARS) Working Group, “Preliminary planning for an international Mars sample return mission,” iMARS, Tech. Rep., 2008. Cerca con Google

D. S. McKay, E. K. Gibson Jr, K. L. Thomas-Keprta, H. Vali, C. S. Romanek, S. J. Clemett, X. D. F. Chillier, C. R. Maechling, e R. N. Zare, “Search for past life on Mars: possible relic biogenic activity in martian meterite ALH84001,” Science, vol. 273, pp. 924–930, 1996. Cerca con Google

Nazioni Unite, Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies, Article IX. U.N. Doc. TIAS No. 6347, 1967. Cerca con Google

Task Group on Planetary Protection, Space Studies Board, National Research Council, Biological Contamination of Mars: Issues and Recommendations. National Academies Press, 1992. Cerca con Google

M. S. Favero, “Microbiologic assay of space hardware,” Environmental Biology and Medicine, vol. 1, pp. 27–36, 1971. Cerca con Google

P. Mahaffy, et al., “Science priorities related to the organic contamination of martian landers,” Mars Exploration Program Analysis Group (MEPAG), Tech. Rep., 2004. Cerca con Google

R. T. Dillon, W. R. Gavin, A. L. Roark, e C. R. Trauth Jr., “Estimating the number of terrestrial organisms on the Moon,” Origins of Life and Evolution of Biospheres, vol. 4, pp. 180–199, 1973. Cerca con Google

D. A. Newcombe, A. C. Schuerger, J. Benardini, D. Dickinson, R. Tanner, e K. Venkateswaran, “Survival of spacecraft- associated microorganism under simulated martian UV irradiation,” Applied and Environmental Microbiology, vol. 71, pp. 8147–8156, 2005. Cerca con Google

H. E. Richter, “Zur darwinschen lehre,” Schmidt’s Jahrbücher der in-und ausländischen gesammten Medicin, vol. 126, pp. 243–253, 1865. Cerca con Google

W. Thomson (Lord Kelvin), Popular Lectures and Addresses, 1894, ch. Presidential Address to the British Association for the Advancement of Science, pp. 132–205. Cerca con Google

S. Arrhenius, “Die Verbreitung des Lebens im Weltenraum,” Die Umschau, vol. 7, pp. 481–485, 1903. Cerca con Google

W. L. Nicholson, N. Munakata, G. Horneck, H. J. Melosh, e P. Setlow, “Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments,” Microbiology and Molecular Biology Reviews, vol. 64, pp. 548–572, 2000. Cerca con Google

W. L. Nicholson, A. C. Schuerger, e P. Setlow, “The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight,” Mutation Research, vol. 571, pp. 249–264, 2005. Cerca con Google

G. Horneck, et al., “Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: First phase of Lithopanspermia experimentally tested,” Astrobiology, vol. 8, pp. 17–44, 2008. Cerca con Google

A. C. Schuerger, R. L. Mancinelli, R. G. Kern, L. J. Rothschild, e C. P. McKay, “Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars,” Icarus, vol. 165, pp. 253–276, 2003. Cerca con Google

B. D. Davis, R. Dulbecco, H. N. Eisen, e H. S. Ginsberg, Microbiologia, Zanichelli, Ed. Lippincott Company, 1993. Cerca con Google

J. Benardini, J. Sawyer, K. Venkateswaran, e W. Nicholson, “Spore UV and acceleration resistance of endolithic Bacillus pumilus and B. subtilis isolates obtained from Sonoran desert basalt: implications for lithopanspermia,” Astrobiology, vol. 3, pp. 709–717, 2003. Cerca con Google

R. H. Vreeland, W. D. Rosenzweig, e D. W. Powers, “Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal,” Nature, vol. 407, pp. 897–900, 2000. Cerca con Google

H. Gest e J. Mandelstam, “Longevity of microorganisms in natural environments,” Microbiological Sciences, vol. 4, pp. 69–71, 1987. Cerca con Google

A. O. Henriques e C. P. Moran Jr., “Structure, assembly and function of the spore surface layers,” Annual Review of Microbiology, vol. 61, pp. 555–588, 2007. Cerca con Google

M. T. Madigan, J. M. Martinko, e J. Parker, Brock Biologia dei Microorganismi, C. E. Ambrosiana, Ed., 2003. Cerca con Google

L. M. Prescott, J. P. Harley, e D. A. Klein, Microbiology. Wm. C. Brown Publisher, 1996. Cerca con Google

P. Setlow, “Resistance of spores of Bacillus species to ultraviolet light,” Environmental and Molecular Mutagenesis, vol. 38, pp. 97–104, 2001. Cerca con Google

J. Applebaum e D. J. Flood, “Solar radiation on Mars,” Solar Energy, vol. 45, pp. 353–363, 1990. Cerca con Google

R. Moeller, G. Horneck, R. Facius, e E. Stackebrandt, “Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation,” Microbiology Ecology, vol. 51, pp. 231–236, 2005. Cerca con Google

W. L. Nicholson, P. Fajardo-Cavazos, R. Rebeil, P. J. Riesenman, e T. A. Slieman, “DNA photochemistry, DNA repair and bacterial spore structure as determinants of spore resistance to solar UV radiation,” 2000. Cerca con Google

M. Paidhungat, B. Setlow, A. Driks, e P. Setlow, “Characterization of spores of Bacillus subtilis which lack Dipicolinic Acid,” Journal of Bacteriology, vol. 182, pp. 5505–5512, 2000. Cerca con Google

Y. Xue e W. L. Nicholson, “The two major spore DNA repair pathways, Nucleotide Excision Repair and Spore Photoproduct lyase, are sufficient for the resistance of Bacillus subtilis spores to artificial UV-C and UVB but not to solar radiation,” Applied and Environmental Microbiology, vol. 62, pp. 2221–2227, 1996. Cerca con Google

G. Galletta, F. Ferri, G. Fanti, M. D’Alessandro, G. Bertoloni, D. Pavarin, C. Bettanini, P. Cozza, P. Pretto, e S. Debei, “S.A.M., the italian martian simulation chamber,” Origin of Life and Evolution of Biospheres, vol. 36, pp. 625–627, 2006. Cerca con Google

D. Garoli e M. Pelizzo, “Misure irradiamento UV all’interno di LISA,” Università degli Studi di Padova, Tech. Rep., 2007. Cerca con Google

C. S. Cockell, D. C. Catling, W. L. Davis, K. Snook, R. L. Kepner, P. Lee, e C. P. McKay, “The ultraviolet environment of Mars: Biological implications past, present, and future,” Icarus, vol. 146, pp. 434–459, 2000. Cerca con Google

J. Gioia, et al., “Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032 ,” PLoS ONE, vol. 2:e928, 2007. Cerca con Google

M. Kempf, F. Chen, M. Satomi, R. Kern, e K. Venkateswaran, “Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a Spacecraft Assembly Facility,” Astrobiology, vol. 5, pp. 391–405, 2005. Cerca con Google

L. Link, J. Sawyer, K. Venkateswaran, e W. Nicholson, “Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultraclean spacecraft assembly facility,” Microbial Ecology, vol. 47, pp. 159–163, 2004. Cerca con Google

J. A. Spudich e A. Kornberg, “Biochemical studies of bacterial sporulation and germination,” Journal of biological chemistry, vol. 243, pp. 4588–4599, 1968. Cerca con Google

B. D’Alessandro, K. Antùnez, C. Piccini, e P. Zunino, “DNA extraction and PCR detection of Paenibacillus larvae spores from naturally contaminated honey and bees using spore-decoating and freeze-thawing techniques,” World Journal of Microbiology and Biotechnology, vol. 23, pp. 593–597, 2007. Cerca con Google

G. D’Angelo, “Sopravvivenza di cellule e spore batteriche esposte a condizioni ambientali estreme,” Tesi di laurea, Università degli Studi di Padova, 2007. Cerca con Google

R. Mancinelli e M. Klovstad, “Martian soil and UV radiation: microbial viability assesment on spacecraft surfaces,” Planetary and Space Science, vol. 48, pp. 1093–1097, 2000. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record