Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Andreazza, Simonetta (2009) Search for new genes involved in Drosophila circadian rhythmicity: behavioural analysis of putative CRYPTOCHROME interacting proteins and molecular characterization of the ubiquitin protease USP5. [Laurea specialistica biennale]

Full text disponibile come:

[img]
Anteprima
Documento PDF
3251Kb

Abstract

Drosophila melanogaster, il moscerino della frutta, si è rivelato un ottimo modello per identificare le basi molecolari dei ritmi circadiani. In particolare, il moscerino condivide con i mammiferi omologhi la gran parte dei geni coinvolti nell’organizzazione molecolare del clock. Decifrare gli elementi che regolano il battito dell’orologio in Drosophila è quindi un importante contributo per la comprensione dei meccanismi che controllano i ritmi circadiani nell’uomo.

Tipologia del documento:Laurea specialistica biennale
Corsi di Laurea specialistica biennale:Facoltà di Scienze MM. FF. NN. > Biologia molecolare
Settori scientifico-disciplinari del MIUR:Area 05 - Scienze biologiche > BIO/18 Genetica
Codice ID:21545
Relatore:Costa, Rodolfo
Data della tesi:2009
Biblioteca:Polo di Scienze > CIS "A. Vallisneri" - Biblioteca Biologico Medica
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Amerik, A. Y., and Hochstrasser, M. (2004). Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695, 189-207. Cerca con Google

Amerik, A. Y., Swaminathan, S., Krantz, B. A., Wilkinson, K. D., and Hochstrasser, M. (1997). In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J 16, 4826-4838. Cerca con Google

Andermarcher, E., Bossis, G., Farras, R., Jariel-Encontre, I., and Piechaczyk, M. (2005). La dégradation protéasomique. Med Sci (Paris) 21, 141-149. Cerca con Google

Bae, K., and Edery, I. (2006). Regulating a circadian clock's period, phase and amplitude by phosphorylation: insights from Drosophila. J Biochem (Tokyo) 140, 609-617. Cerca con Google

Bauch, H., Schaffer, J., GmbH, C. Z. M. I., and Göttingen, G. Optical sections by means of “structured illumination”: background and application in fluorescence microscopy. Cerca con Google

Benito, J., Houl, J. H., Roman, G. W., and Hardin, P. E. (2008). The Blue-Light Photoreceptor CRYPTOCHROME Is Expressed in a Subset of Circadian Oscillator Neurons in the Drosophila CNS. J Biol Rhythms 23, 296-307. Cerca con Google

Benito, J., Zheng, H., and Hardin, P. E. (2007). PDP1epsilon Functions Downstream of the Circadian Oscillator to Mediate Behavioral Rhythms. J Neurosci 27, 2539-2547. Cerca con Google

Chen, X., and Fischer, J. A. (2000). In vivo Structure/Function analysis of the Drosophila fat facets deubiquitinating enzyme gene. Genetics 156, 1829-1836. Cerca con Google

Collins, B., Mazzoni, E. O., Stanewsky, R., and Blau, J. (2006). Drosophila CRYPTOCHROME Is a Circadian Transcriptional Repressor. Curr Biol 16, 441-449. Cerca con Google

Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., Couto, A., Marra, V., Keleman, K., and Dickson, B. J. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151-156. Cerca con Google

Dissel, S., Codd, V., Fedic, R., Garner, K. J., Costa, R., Kyriacou, C. P., and Rosato, E. (2004). A constitutively active cryptochrome in Drosophila melanogaster. Nat Neurosci 7, 834-840. Cerca con Google

Dolezelova, E., Dolezel, D., and Hall, J. C. (2007). Rhythm Defects Caused by Newly Engineered Null Mutations in Drosophila's cryptochrome Gene. Genetics 177, 329-345. Cerca con Google

Dubruille, R., and Emery, P. (2008). A plastic clock: how circadian rhythms respond to environmental cues in Drosophila. Mol Neurobiol 38, 129-145. Cerca con Google

Duffy, J. B. (2002). GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34, 1-15. Cerca con Google

Emery, P., Stanewsky, R., Helfrich-Forster, C., Emery-Le, M., Hall, J. C., and Rosbash, M. (2000). Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26, 493-504. Cerca con Google

Gallego, M., and Virshup, D. M. (2007). Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8, 139-148. Cerca con Google

Grima, B., Chélot, E., Xia, R., and Rouyer, F. (2004). Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431, 869-873. Cerca con Google

Grima, B., Lamouroux, A., Chélot, E., Papin, C., Limbourg-Bouchon, B., and Rouyer, F. (2002). The F-box protein SLIMB controls the levels of clock proteins PERIOD and TIMELESS. Nature 429, 178-182. Cerca con Google

Hamblen-Coyle, M. J., Wheeler, D. A., Rutila, J. E., Rosbash, M., and Hall, J. C. (1992). Behavior of period-altered circadian rhythm mutants of Drosophila in light:dark cycles. J Insect Behav 5, 417-445. Cerca con Google

Hardin, P. E. (2005). The circadian timekeeping system of Drosophila. Curr Biol 15, R714-22. Cerca con Google

Hemsley, M. J., Mazzotta, G. M., Mason, M., Dissel, S., Toppo, S., Pagano, M. A., Sandrelli, F., Meggio, F., Rosato, E., Costa, R., and Tosatto, S. C. (2007). Linear motifs in the C-terminus of D. melanogaster cryptochrome. Biochem Biophys Res Commun 355, 531-537. Cerca con Google

Hoang, N., Schleicher, E., Kacprzak, S., Bouly, J. P., Picot, M., Wu, W., Berndt, A., Wolf, E., Bittl, R., and Ahmad, M. (2008). Human and Drosophila Cryptochromes Are Light Activated by Flavin Photoreduction in Living Cells. PLoS Biol 6, e160. Cerca con Google

Ivanchenko, M., Stanewsky, R., and Giebultowicz, J. M. (2001). Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks. J Biol Rhythms 16, 205-215. Cerca con Google

Klarsfeld, A., Leloup, J. C., and Rouyer, F. (2003). Circadian rhythms of locomotor activity in Drosophila. Behav Processes 64, 161-175. Cerca con Google

Knowles, A., Koh, K., Wu, J. T., Chien, C. T., Chamovitz, D. A., and Blau, J. (2009). The COP9 signalosome is required for light-dependent timeless degradation and Drosophila clock resetting. J Neurosci 29, 1152-1162. Cerca con Google

Ko, H. W., Jiang, J., and Edery, I. (2002). A role for Slimb in the degradation of Drosophila PERIOD protein phosphorylated by DOUBLETIME. Nature 420, 673-678. Cerca con Google

Koh, K., Zheng, X., and Sehgal, A. (2006). JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science 312, 1809-1812. Cerca con Google

Krishnan, B., Dryer, S. E., and Hardin, P. E. (1999). Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400, 375-378. Cerca con Google

Meissner, R. A., Kilman, V. L., Lin, J. M., and Allada, R. (2008). TIMELESS is an important mediator of CK2 effects on circadian clock function in vivo. J Neurosci 28, 9732-9740. Cerca con Google

Murad, A., Emery-Le, M., and Emery, P. (2007). A subset of dorsal neurons modulates circadian behavior and light responses in Drosophila. Neuron 53, 689-701. Cerca con Google

Nitabach, M. N., and Taghert, P. H. (2008). Organization of the Drosophila circadian control circuit. Curr Biol 18, R84-93. Cerca con Google

Partch, C. L., and Sancar, A. (2005). Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem Photobiol 81, 1291-1304. Cerca con Google

Peschel, N., Chen, K. F., Szabo, G., and Stanewsky, R. (2009). Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr Biol 19, 241-247. Cerca con Google

Peschel, N., Veleri, S., and Stanewsky, R. (2006). Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila's circadian clock. Proc Natl Acad Sci U S A 103, 17313-17318. Cerca con Google

Picot, M., Cusumano, P., Klarsfeld, A., Ueda, R., and Rouyer, F. (2007). Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock. PLoS Biol 5, e315. Cerca con Google

Rieger, D., Stanewsky, R., and Helfrich-Förster, C. (2003). Cryptochrome, compound eyes, H-B eyelets and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J Biol Rhythms 18, 377-391. Cerca con Google

Rosato, E., and Kyriacou, C. P. (2006). Analysis of locomotor activity rhythms in Drosophila. Nat Protoc 1, 559-568. Cerca con Google

Sathyanarayanan, S., Zheng, X., Xiao, R., and Sehgal, A. (2004). Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116, 603-615. Cerca con Google

Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K., Kay, S. A., Rosbash, M., and Hall, J. C. (1998). The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681-692. Cerca con Google

Stoleru, D., Nawathean, P., Fernandez Mde, L., Menet, J. S., Ceriani, M. F., and Rosbash, M. (2007). The Drosophila circadian network is a seasonal timer. Cell 129, 207-219. Cerca con Google

Takahashi, J. S, Hong, H. K., Ko, C. H., and McDearmon, E. L. (2008). The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rav Genet 9(10): 764-775. Cerca con Google

Yang, Z., and Sehgal, A. (2001). Role of Molecular Oscillations in Generating Behavioral Rhythms in Drosophila. Neuron 29, 453-467. Cerca con Google

Yoshii, T., Todo, T., Wulbeck, C., Stanewsky, R., and Helfrich-Forster, C. (2008). Cryptochrome is present in the compound eye and a subset of Drosophila's clock neurons. J Comp Neurol 508, 952-966. Cerca con Google

Yu, W., Zheng, H., Houl, J. H., Dauwalder, B., and Hardin, P. E. (2006). PERdependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. Genes Dev 20, 723-733. Cerca con Google

Zheng, X., and Sehgal, A. (2008). Probing the relative importance of molecular oscillations in the circadian clock. Genetics 178, 1147-1155. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record