Indice

Riassunto ... 3

Introduzione .. 5

1. Aspetti storici .. 8

2. L'artroplastica a basso attrito di Charnley .. 12
 2.1. Il ruolo del centro per la chirurgia dell'anca ... 15

3. Artroprotesi totale dell'anca .. 16
 3.1. Anatomia dell'anca .. 16
 3.1.1. Osso coxale ... 16
 3.1.2. Articolazione dell'anca (o coxo-femorale) ... 17
 3.1.3. Femore .. 20
 3.2. Cos'è una protesi d'anca ... 22
 3.3. Indicazioni e obiettivi ... 23
 3.4. La scelta della protesi ... 24
 3.5. Aspetti operativi ... 24
 3.5.1. Tecnica mini-invasiva ... 25
 3.6. I tipi di protesi .. 25
 3.6.1. Protesi totale o artroprotesi ... 25
 3.6.2. Protesi parziali o endoprotesi .. 27
 3.6.3. Protesi di rivestimento .. 30
 3.7. Le componenti dell’artroprotesi totale ... 31
 3.8. Biomeccanica e materiali .. 32
 3.8.1. Cappa acetabolare ... 34
 3.8.2. Stelo femorale ... 36
 3.8.3. Testa femorale ... 39
 3.8.4. Superfici portanti ... 39
4. Artroplastica totale dell’anca cementata e non cementata ... 40
 4.1. Artroplastica totale dell’anca cementata ... 42
 4.1.1. Il cemento ... 42
 4.2. Artroplastica totale dell’anca non cementata ... 43
 4.2.1. Stabilità primaria e stabilità secondaria nelle protesi non cementate 45
 4.3. L’artoplastica ibrida ... 46

5. Complicanze ... 47
 5.1. Complicazioni a breve termine ... 47
 5.1.1. Frattura .. 47
 5.1.2. Risentimento dei nervi ... 47
 5.1.3. Lussazione .. 47
 5.1.4. Trombosi venosa profonda e embolismo polmonare 48
 5.1.5. Complicazioni delle ferite ... 49
 5.1.6. Dismetria ... 49
 5.2. Complicazioni a lungo termine .. 50
 5.2.1. Infezioni (mobilizzazione settica) ... 50
 5.2.2. Ossificazione eterotopica ... 53
 5.2.3. Rottura delle componenti protesiche ... 53
 5.2.4. Usura ... 54
 5.2.5. Mobilizzazione asettica o allentamento dell’impianto 57

6. Direzioni e prospettive future ... 64

Conclusioni .. 66

A. Cenni di anatomia scheletrica .. 67
 A.1 Piani di riferimento e posizione anatomica .. 67
 A.2 Classificazione dei movimenti ... 69
 A.3 Le ossa umane .. 71

Bibliografia .. 73
Riassunto

L'anca, la seconda più grande articolazione del corpo umano, con il suo ruolo primario nella locomozione, è esposta a un elevato numero di rischi, sia traumatici che non, che possono sfociare nella condizione nota come osteoartrite. Indipendentemente dalla patologia iniziale, il risultato è quasi sempre lo stesso: una condizione caratterizzata da dolore, limitazione dei movimenti e da una funzione locomotoria compromessa. In passato sono state progettate e sviluppate varie procedure chirurgiche comprese le osteotomie, le fusioni e le resezioni, senza risultati soddisfacenti. Pertanto è emersa a poco a poco l'idea della sostituzione protesica dell'anca, detta anche artroprotesi.

Cinquant'anni sono ormai passati dalla realizzazione della prima artroplastica totale d'anca dell'era moderna, ad opera di Charnley. Nonostante i notevoli sforzi per migliorare i design delle protesi, in un'area come la chirurgia dell'anca, la protesi cementata di Charnley, introdotta nel 1967, rimane tuttora il gold standard. Lo dimostra il fatto che nella chirurgia di sostituzione dell'articolazione non è apparsa nessuna altra soluzione che abbia generato una analoga “rivoluzione”.

Nella sua forma corrente, la sostituzione totale dell'anca (total hip arthroplasty, THA) è una delle operazioni di maggior successo della moderna chirurgia ortopedica poiché consente ai pazienti, affetti da patologie invalidanti, di migliorare la qualità di vita ripristinando la funzionalità articolare e abolendo la sintomatologia dolorosa. L'intervento di sostituzione protesica dell'anca costituisce una soluzione sempre più diffusa per numerose patologie come l'artrosi, l'artrite reumatoide e le fratture del collo del femore che colpiscono prevalentemente, ma non solo, le persone anziane.

All'intervento di artroplastica totale dell'anca sono associati alcuni insuccessi clinici. Tra le cause più comuni di fallimento dell'impianto vi sono state e vi sono tuttora la mobilizzazione asettica, l'usura e le infezioni. Nonostante questo, ogni anno in tutto il mondo si eseguono centinaia di migliaia di sostituzioni d'anca e oramai è disponibile una vasta gamma di impianti. Negli USA, ad esempio, si praticano annualmente più di 55.000 sostituzioni d'anca e questo numero è destinato ad aumentare.

L'indiscusso successo della chirurgia protesica dell'anca ha determinato non solo il continuo incremento del numero di interventi, ma anche un'importante evoluzione tecnologica e dei materiali.

Questo lavoro si propone di offrire, in primo luogo, una panoramica sulla storia dello sviluppo della protesi d'anca, dal punto di vista dei materiali e delle modalità di trattamento. La
seconda fase del lavoro si occupa dell'attualità, con particolare attenzione alle tipologie di protesi, alle possibili complicanze dell'intervento e ai materiali utilizzati.

La conclusione è affidata ad alcune considerazioni sui possibili sviluppi futuri e sull'attesa di riscontri relativi a tecniche o impianti eseguiti di recente e dei quali non è ancora possibile valutare la resa a lungo termine.
Introduzione

La prima sostituzione totale dell’anca si ritiene sia stata eseguita a Londra da Philip Wiles nel 1938. Prima di questa data era possibile solo la sostituzione di teste femorali troppo usurate con protesi di relativa semplicità. La procedura usata da Wiles fu ulteriormente sviluppata negli anni 1950 da pionieri come McKee.

Quest’opera iniziale ha posto le basi per gli studi innovativi di Sir John Charnley che, alla fine degli anni ’60 affrontò il problema del modello di articolazione artificiale dell’anca basandosi sui principi biomeccanici. Ripetute prove e sperimentazioni con vari materiali e modelli di protesi culminarono nella creazione dell’artoartolastica di Charnley a basso attrito, procedura tuttora considerata da molti come lo standard della sostituzione totale dell’anca. Le notevoli innovazioni dell’artoartolastica di Charnley comprendevano: la riduzione dell’attrito data da una testa femorale di piccolo diametro, 22.25 mm, in combinazione con una componente acetabolare di polietilene ad alta densità e il fissaggio di queste componenti protesiche all’osso mediante l’utilizzo del cemento (polimetilmetacrilato, PMMA).

Negli ultimi anni la chirurgia protesica dell’anca si è evoluta: il chirurgo dispone di tecniche operatorie sempre più affinate che permettono di effettuare l’intervento con sicurezza e con notevole risparmio delle strutture anatomiche (tecnica mini-invasiva). Le indicazioni si sono ampliate, l’età media dei pazienti da sottoporre all’intervento si è ridotta, le aspettative di vita notevolmente incrementate, creando però al chirurgo una serie di problematiche talvolta di difficile soluzione.

L’artoartolastica totale dell’anca, ovvero la sostituzione chirurgica dell’articolazione dell’anca con una protesi artificiale, è una procedura ricostruttiva che ha migliorato la gestione di quelle patologie dell’articolazione dell’anca che hanno dato scarsa risposta alla terapia medica convenzionale.

Gli scopi di una protesizzazione d’anca sono quelli di ottenere una “nuova anca” stabile, non dolente, con una buona articolarietà che possa permettere al paziente di svolgere le attività quotidiane senza particolari problemi; inoltre, deve durare nel tempo e non determinare fenomeni di intolleranza.

Le cause più frequenti che portano all’intervento di protesi d’anca sono riconducibili a: artrosi primaria (consumo precoce dei capi articolari), necrosi idiomatica (morte cellulare per alterazione del circolo sanguigno) della testa del femore, frattura del collo del femore, artriti reumatiche, artrosi e necrosi post-traumatiche. La causa principale di intervento è comunque riconducibile all’artrosi primaria.
L’artroplastica totale dell’anca è una delle procedure più eseguite attualmente nella pratica ortopedica in tutto il mondo grazie agli ottimi risultati ottenuti nella maggior parte dei pazienti. Dalla sua introduzione, nel 1960, ha dimostrato di avere particolare successo nell’eliminare il dolore e nel ristabilire la funzione di anche gravemente affette da malattie quali l’osteoartrite. L’intervento di protesi d’anca permette il recupero di una buona qualità di vita, con una sopravvivenza degli impianti che supera il 90% a 10 anni e permette di risolvere, o alleviare sensibilmente, la sintomatologia dolorosa e migliorare le capacità fisiche e le prestazioni motorie del paziente.

La protesi d’anca è costituita da alcuni elementi che sostituiscono funzionalmente le due componenti acetabolare e femorale dell’articolazione fisiologica: il cotile, generalmente metallico, in cui viene posizionato un inserto di polietilene, di ceramica o di metallo, e lo stelo metallico sulla cui estremità superiore, denominata collo, viene inserita una testa metallica o di ceramica. Lo stelo e il cotile possono essere saldamente fissati all’osso utilizzando il cemento polimetilmetacrilato (protesi cementata) o, come accade sempre più frequentemente, semplicemente inserendo le componenti protesiche nella sede opportunamente preparata, senza l’utilizzo del cemento (protesi non cementate). Queste ultime sono generalmente realizzate in titanio e presentano una superficie porosa e un rivestimento (di solito in HA) per favorire la crescita di tessuto osseo attorno alla protesi, dando così luogo ad un fissaggio biologico. In questo modo si assicura sia la stabilità primaria, cioè a breve termine, della protesi mediante press-fit, sia una stabilità secondaria, cioè a lungo termine. Quest’ultima si ottiene grazie ad un ancoraggio biologico dovuto alla crescita e al rimodellamento del tessuto osseo che circonda la protesi.

Di recente sta prendendo sempre più piede anche il concetto di artroplastica ibrida, una combinazione di elementi cementati (lo stelo femorale) e non (la coppa acetabolare). La qualità dell’osso, la morfologia femorale e acetabolare, l’età dei pazienti e le loro condizioni cliniche indirizzano la scelta del sistema protesico e del mezzo di fissaggio.

Oltre alla classificazione in base al metodo di fissaggio, gli interventi di sostituzione protesica dell’anca possono essere suddivisi in due tipologie in base alla parte di osso asportata e sostituita: la sostituzione totale (o artroprotesi) che prevede di intervenire su entrambe le componenti articolari (femorale e acetabolare); la sostituzione parziale (endoprotesi), riservata al trattamento delle fratture mediali del collo del femore, che permette di preservare l’acetabolo sostituendo la sola componente femorale.

Nonostante l’alto numero di interventi eseguiti ogni anno, all’artroplastica totale dell’anca sono associati alcuni insuccessi clinici. Le principali cause di fallimento si possono
riassumere in mobilizzazione asettica globale, del cotile e dello stelo, mobilizzazione settica, rottura di componenti, lussazione protesica, frattura ossea e usura.

L’esperienza accumulata negli ultimi decenni ha portato alla creazione di due filoni principali nel campo della ricerca sull’artroplastica totale dell’anca. Per quanto riguarda le protesi cementate si stanno sperimentando materiali con caratteristiche di flessibilità e resistenza sempre più simili a quelle dell’osso naturale. Per le protesi non cementate l’obiettivo della ricerca è invece puntato all’individuazione o creazione di nuovi materiali che favoriscano lo sviluppo di nuovo tessuto osseo e quindi migliorino il fissaggio della protesi. Entrambi questi ambiti di ricerca tengono ben presente anche il fine di un abbattimento dei costi per migliorare il già soddisfacente rapporto costo-effetto-beneficio.
1. Aspetti storici

Questo capitolo è basato principalmente sull’articolo [1]. Nel corso della trattazione sono presenti riferimenti ad altri articoli, dove indicato.

Il primo tentativo di sostituzione dell’articolazione dell’anca fu eseguito nel 1880 da Gluck originario di Berlino (Germania). La protesi fu realizzata con avorio e ovviamente non ebbe successo. Anche un secondo tentativo, realizzato nel 1890 ad opera del chirurgo francese Jules Pean, fallì. Egli utilizzò una protesi in platino. Nel 1902 Robert Jones eseguì un tentativo di ricopertura con una lamina d’oro della testa femorale artrosica. Dopo il 1935 fu realizzato un ulteriore tentativo, questa volta negli USA, ad opera di Smith-Peterson di Boston, che produsse la prima cupola in materiale non biologico (vetro, celluloide, bakelite, metallo), riportata in Figura 1.1. Il design di vetro e bachelite che egli usò non poteva tuttavia resistere alla sollecitazione meccanica e inevitabilmente fallì [2].

Figura 1.1: la prima cupola in materiale non biologico.

Nel 1937 Philip Wiles realizzò la prima artroprotesi totale d’anca in acciaio (Figura 1.2). Nel 1938, a Parigi, i fratelli Judet inventarono una protesi d’anca acrilica (Figura 1.3) che, nonostante la buona tenuta meccanica immediata, fallì poiché diventava dondolante, portava ad una sintomatologia dolorosa e dopo alcuni anni ad una mobilità ridotta. Per questo si dovette rimuoverla [3].

Diventò ovvio che la sostituzione dell’articolazione dell’anca non poteva avere successo finché non si fossero trovati o prodotti materiali appropriati. Milestones, su questa strada, ebbe l’idea di utilizzare la lega cromo-cobalto (caratterizzata da alta resistenza meccanica e superficiale), il polietilene ad alta densità e il cemento osseo.
Inizialmente era solo la testa femorale ad essere sostituita. Venivano utilizzate o le protesi cementate di Thomson (Figura 1.4, sx) o quelle non cementate di Moore (Figura 1.4, dx) [4],[5]. Questi espedienti, tuttavia, si potevano usare solo quando l'acetabolo era intatto, limitandone l'uso al caso di fratture al collo del femore. Anche questo tipo di protesi presentava dei problemi legati soprattutto all'usura e alla non considerazione delle proprietà meccaniche di contatto.

Negli anni '50 Mc Kee di Norwich in Gran Bretagna e poi Herbert di Aix les Bains in Francia usarono la prima generazione di protesi su supporti di metallo che fu poi generalmente abbandonata a causa dell'eccessiva usura e del rilascio di particelle metalliche che causavano metallosi [6]. In Figura 1.5 è riportata la protesi realizzata da Mc Kee.
La prima serie di impianti di protesi totale d'anca eseguiti con successo immediato e aventi anche eccellenti risultati a medio termine, si ebbe negli anni ‘60 del secolo scorso ad opera di Sir John Charnley, un rinomato chirurgo inglese proveniente dal centro ortopedico di Wrightington. La protesi iniziale consisteva di una coppa acetabolare in Teflon e di una componente femorale monoblocco in acciaio inox. Il diametro della testa usato era 22.2 mm, coerentemente con l'idea di Charnley dell'artroplastica a basso attrito (low friction arthroplasty, LFA). La protesi con superfici di carico stabili era fissata stabilmente all'osso usando polimetilmetacrilato, un polimero ad indurimento a freddo che lega la protesi con il letto osseo. Il Teflon si rivelò essere inadatto come supporto protesico a causa dell'alta usura e
della lacerazione e nei design successivi fu rimpiazzato con polietilene ad alta densità. La protesi di Charnley (Figura 1.6) fu quella di maggiore successo e la più durevole nel tempo. Diventò un *gold standard* per le sostituzioni dell'anca ed è tuttora usata in versioni modificate per quanto riguarda il modello, la tecnica di cementazione e la pratica chirurgica [7].

Figura 1.6: protesi di Charnley. La “low friction arthroplasty” segna l’avvento del cemento e polietilene.
2. L'artroplastica a basso attrito di Charnley

Il concetto dell'artroplastica dell'anca di Charnley scaturì da tre fattori:

- l'osservazione clinica di un caso di sostituzione di una testa femorale cigolante;
- i risultati clinici insoddisfacenti delle artroplastiche della coppa;
- l'imprevedibilità dell'osteotomia intertrocanterica.

Nel suo modello di protesi iniziale Charnley usò, in forma di gusci interposti concentrici e senza fissaggio all'osso, il politetrafluoretilene (PTFE, Teflon), noto per il basso coefficiente d'attrito. Questo approccio, che esclude l’utilizzo del cemento, era basato sul presupposto che il momento d'attrito si sarebbe verificato tra gli strati di plastica piuttosto che tra osso e plastica. Nella pratica il Teflon non ebbe successo a causa della rapida usura e della conseguente formazione di granulomi che portavano alla distruzione dell'osso.

Partendo dal presupposto che un film fluido non era essenziale per la lubrificazione, la misura della testa della componente femorale venne gradualmente ridotta a 7/8 di pollice (22.25 mm). Fu così introdotto il concetto base della creazione di Charnley, il momento di basso attrito. Infatti, essendo il momento d'attrito proporzionale al raggio della sfera, una testa piccola e una cavità in Teflon spessa, rendono minimo l'attrito. I risultati clinici a breve termine furono così eccezionali da convincere Charnley della correttezza della sua idea. Una testa piccola ha però maggiori probabilità di predisporre a lussazione post-operatoria. Uno studio su 14 672 casi di LFA ha infatti messo in luce un tasso di lussazione dello 0.63% in pazienti con artroprotesi caratterizzata da testa piccola, con lo 0.11% che richiedevano una revisione. Questa incidenza non è tuttavia maggiore quando si utilizzano altri metodi.

A questo punto la tecnica dell'artroplastica era già pienamente consolidata per quanto riguarda l'esposizione tramite l'osteotomia trocanterica, la strumentazione, la progettazione della componente e l'iniezione con cemento acrilico [8]. A tal proposito è curioso sapere come nacque e si sviluppò l'idea del cemento. Charnley si rivolse a Dennis Smith, un chimico che lavorava per un dottorato presso l'ospedale dentale Turner a Manchester (UK), e lo interpellò riguardo all'iniezione di materiale plastico per fissare la componente femorale. Alla domanda di Charnley su che tipo di plastica si potesse usare per fissare una protesi d'anca al femore, Smith rispose “metilmetacrilato”. La sua risposta si basava sull'uso di questo materiale nella bocca, che è però lontano dall'essere equivalente al suo uso in un ambiente interno al corpo. Nonostante ciò, la sua risposta si rivelò valida tanto da essere tuttora funzionante, anche a distanza di 50 anni.
A Charnley rimaneva tuttavia un grave problema da risolvere, quello dell'usura del Teflon che venne quindi abbandonato nella ricerca di un materiale più adatto per la cavità. Questo si rivelò essere il polietilene ad alta densità. L'introduzione del polietilene ad altissimo peso molecolare (UHMWPE) ad opera di Charnley è stata un fatto fortuito. Un venditore di UHMWPE, infatti, fece l'inusuale deduzione che, poiché il suo polietilene veniva usato nella realizzazione di ingranaggi meccanici, si poteva usare anche per il corpo umano e in particolare per la costruzione di protesi. Questo venditore fece visita al tecnico del laboratorio di Charnley, che testò il materiale la notte senza dirlo al suo capo. Charnley, infatti, non convinto della validità dell'idea, aveva respinto il materiale. L'uso del polietilene segnò un punto di svolta non indifferente nella storia delle protesi grazie ai buoni risultati sull'usura e alla migliore durabilità della protesi stessa, rispetto al precedente uso del Teflon [9].

A partire dalla casuale introduzione, nel Novembre 1962, del polietilene ad alta densità (HDP) che cambiò radicalmente il mondo delle THA, nella pratica clinica vennero usati due metodi:

- adattamento a pressione (press-fit) nella cavità acetabolare non cementata in HDP;
- cementazione della cavità in HDP.

Al giorno d'oggi entrambi questi metodi sono usati in combinazione con teste della componente femorale del diametro di 22.25 mm, realizzate in acciaio inox. L'uso di metallo su plastica ha creato un sistema “autolubrificante” che non si basa su fluidi sinoviali.

La misura del successo a lungo termine dell'LFA è data dalla scarsa frequenza di allentamento delle componenti con conseguente necessità di revisione. I risultati clinici a lungo termine vanno quindi messi in relazione alla qualità del sollievo dal dolore e all'integrità del fissaggio della componente, mentre la conferma finale è data dai risultati sul comportamento dell'HDP e della giunzione osso-cemento. Altre complicazioni o la destinazione finale della plastica o del cemento, sebbene siano fondamentali nello studio dell'operazione, non formano invece parte integrante del concetto di basso attrito.

I principi esposti da Charnley devono essere definiti al fine di consentire lo studio sistematico dei risultati a lungo termine e delle complicazioni quali la non unione trocanterica, la dislocazione, l'infezione, l'allentamento delle componenti e la frattura dello stelo. Questi principi sono:

- piccolo diametro della testa in acciaio inox della componente femorale che consente un minor attrito;
- articolazione con cavità di HDP spessa;
- entrambe le componenti cementate con polimetilmetacrilato;
esposizione dell'anca tramite osteotomia trocanterica, non solo per permettere un'adeguata esposizione e preservare l'integrità degli adduttori ma anche per garantire la stabilità della nuova articolazione;

esecuzione dell'operazione in ambiente ristretto e asettico facendo ricorso ad abiti monouso che coprono tutto il corpo.

Con il tempo sono diventati chiari tre aspetti della procedura operativa:

- l'eccessivo approfondimento dell'acetabolo e il posizionamento prossimale della cavità, nel tentativo di medializzare il centro della rotazione e ridurre il rapporto di leva mediale, spesso ha rimosso il forte osso subcondrale che supporta il peso esponendo così un osso calluso e di scarsa qualità;

- una buona ricostruzione della meccanica dell'anca si poteva ottenere altrettanto bene con la sostituzione anatomica della cavità pur mantenendo, nel completare la ricostruzione, la copertura completa con offset dello stelo, la lunghezza del collo e l'angolatura asse-collo;

- l'osteotomia trocanterica e la sua collocazione distale e laterale hanno giocato un ruolo minore nel ripristino dei rapporti di leva ma hanno avuto un ruolo molto più importante nell'accurata esposizione, nella collocazione corretta e nel fissaggio saldo delle componenti garantendo al tempo stesso l'integrità degli adduttori e permettendo un accurato controllo della lunghezza della gamba e della stabilità della nuova articolazione [8].

A partire dall'introduzione della protesi di Charnley, si sono sviluppate diverse varianti di articolazioni artificiali dell'anca; nessuna ha tuttavia dimostrato di essere superiore in ambito clinico. Ad esempio, nonostante i teorici vantaggi circa l'uso di una testa femorale di grande diametro e di una cavità di plastica sottile, che alcuni ritengono permetta un movimento maggiore, generi minore sforzo e si lussi meno facilmente, la protesi di Charnley ha avuto una maggiore e più durevole longevità proprio grazie all'uso della testa di piccolo diametro. Questa, infatti, riducendo l'attrito e la quantità di residui da usura prodotti, genera una minore incidenza di allentamento acetabolare. Ciò è testimoniato dai risultati a lungo termine che sottolineano come la qualità del sollievo dal dolore rimanga eccellente [10].

Poiché l'usura più lenta dell'UHMWPE era un fatto molto rassicurante, nessuno avrebbe mai immaginato che si sarebbe andati incontro ad una malattia mai vista prima: l'osteolisi periprotesica. La generazione di un'infinità di particelle microscopiche, causate dal meccanismo dell'usura, portava infatti ad una risposta distruttiva indotta dai macrofagi.
L'osteolisi periprotesica, ovvero una tardiva perdita ossea massiva, che all'epoca era totalmente sconosciuta, minava gravemente i successi a lungo termine della THA, in particolare per il fatto che è molto lenta a svilupparsi, insidiosa, clinicamente silente e assai diffusa [9].

2.1. Il ruolo del centro per la chirurgia dell'anca

Nessuna revisione del lavoro di John Charnley sarebbe completa senza qualche riferimento alla creazione del “Centro di Chirurgia dell'Anca”, che continua a rispondere alle esigenze non solo locali e regionali ma anche nazionali. Dopo 21 anni di esperienza clinica, compresi gli inevitabili cambiamenti nel design e nelle tecniche chirurgiche, il concetto di momento di basso attrito e il principio base del suo funzionamento restano comunque solidi, permettendo di guardare con fiducia al futuro di tale procedura [8].
3. Artroprotesi totale dell'anca

3.1. Anatomia dell'anca

3.1.1. Osso coxale

L'osso coxale (od osso dell'anca) è un voluminoso osso piatto che si forma per la fusione delle tre ossa della cintura pelvica primitivamente separate: ileo, ischio e pube. Il punto di incontro e di saldatura è l'acetabolo, una grossa cavità articolare situata sulla faccia esterna dell'osso coxale che accoglie la testa del femore (Figura 3.1).

Figura 3.1: (sinistra) osso coxale visto lateralmente; (destra) osso coxale visto medialmente.

L'ileo (in giallo) è formato da un'ala, a forma di ventaglio, e da un corpo spesso che forma i 2/5 superiori dell'acetabolo. L'ala presenta, superiormente, un margine ispessito e convesso: la cresta iliaca, che è formata da una linea intermedia e da due labbri: esterno ed interno; queste formazioni danno attacco ai muscoli ed alle fasce dell'addome. Anteriormente, la cresta iliaca termina con la spina iliaca antero-superiore e, posteriormente, con la spina iliaca postero-superiore. Inferiormente alle spine superiori e separate da due incisure, vi sono le spine iliache antero-inferiore e postero-inferiore. Sotto la spina iliaca postero-inferiore vi è una profonda incisura: la grande incisura ischiatica. La faccia interna dell'ala dell'ileo è incavata e presenta la fossa iliaca che accoglie il muscolo omonimo; inferiormente alla fossa iliaca, la linea arcuata separa l'ala dell'osso coxale dal corpo. La faccia esterna è percorsa dalle linee glutee
anteriore, superiore e posteriore che delimitano le superfici di origine dei muscoli glutei. L'eminenza ileo-pubica (od ileo-pettinea) corrisponde al punto di unione tra ileo e pube. Posteriormente alla fossa iliaca, inferiormente, vi è la faccia auricolare per l'articolazione con la superficie auricolare del sacro; superiormente, la tuberosità iliaca che dà inserzione ai legamenti sacro-iliaci posteriori.

Ischio (in azzurro) è la porzione postero-inferiore dell'osso coxale; la sua estremità inferiore, spessa ed irregolare, la tuberosità ischiatica, è il punto di appoggio del corpo nella posizione seduta. Il margine posteriore dell'ischio, poco sopra la tuberosità ischiatica, presenta la piccola incisura ischiatica che, mediante la spina ischiatica, è separata dalla grande incisura ischiatica. Il corpo dell'ischio corrisponde ai 2/5 postero-inferiori dell'area articolare del contorno acetabolare. La faccia interna del corpo dell'ischio è liscia, circonda il foro otturato e dà origine a parte delle fibre del muscolo otturatore interno. Il ramo dell'ischio si estende dalla tuberosità ischiatica in avanti ed in alto, fino ad unirsi al ramo inferiore del pube per formare il ramo ischio-pubico.

Il pube (in rosa) è la parte più piccola dell'osso coxale ed è posto antero-inferiormente. Antero-medialmente, presenta la faccia sinfisiana che partecipa alla costituzione della sinfisi pubica. La crestetta pettinea è una sottile cresta che unisce il tubercolo pubico, posto sul ramo superiore del pube lateralmente alla sinfisi pubica, all'eminenza ileo-pubica e si continua nella linea arcuata. Il corpo del pube forma il quinto anteriore dell'acetabolo. Il ramo inferiore del pube circonda, inferiormente, il foro otturato e si unisce al ramo superiore dell'ischio. L'acetabolo (o cotile) è una profonda cavità articolare emisferica dell’osso iliaco del bacino che accoglie la testa del femore nell’articolazione dell’anca (vedi Figure 3.2 e 3.3). La sua robusta parete è costituita da una porzione articolare semilunare, la superficie lunata, delimitata esternamente dal margine (o limbus), e da una profonda porzione centrale, non articolare, la fossa acetabolare. L’incisura acetabolare interrompe la superficie lunata e viene scavalcata, a ponte, dal legamento trasverso; sui suoi margini si inserisce il legamento rotondo del femore.

3.1.2. Articolazione dell'anca (o coxo-femorale)

L’articolazione dell’anca è un'enartrosi costituita dall'acetabolo dell'osso coxale e dalla testa del femore. Essa unisce il femore all’osso dell’anca mettendo in rapporto l’acetabolo con la testa del femore. La testa del femore forma circa i due terzi di una sfera piena (del diametro di 4 cm circa) ed è ricoperta da cartilagine articolare più spessa superiormente e più sottile a mano a mano che si avvicina al collo del femore.
L'acetabolo dell'osso coxale presenta una superficie articolare semilunare, la superficie lunata, posta intorno alla fossa acetabolare che è riempita da tessuto adiposo ricoperto dalla membrana sinoviale; il legamento trasverso dell'acetabolo chiude inferiormente la fossa acetabolare. La fibro cartilagine del labbro acetabolare si inserisce sul contorno osseo e sul legamento trasverso dell'acetabolo. Il suo sottile margine libero amplia la cavità articolare e si avvolge intorno alla testa del femore, stabilizzandola.
La capsula articolare è robusta ed aderisce al contorno osseo dell’acetabolo (avvolge l’articolazione); sul femore, si fissa anteriormente alla linea intertrocanterica ed al punto di giunzione del collo del femore al grande e piccolo trocantere. Posteriormente, la capsula presenta un margine libero arcuato che corrisponde al confine tra i due terzi superiori ed il terzo inferiore del collo del femore. La maggior parte delle fibre della capsula articolare ha decorso longitudinale, portandosi dall'osso coxale al femore; altre fibre, più profonde, hanno decorso circolare. Le fibre della zona orbicolare sono più abbondanti nella regione posteriore della capsula articolare e contribuiscono a mantenere la testa del femore nell'acetabolo.
Tre legamenti rendono spessa e resistente la capsula articolare. Il legamento ileo-femorale, molto robusto, è posto sulla faccia anteriore della capsula ed ha la forma di una Y rovesciata. La sua radice aderisce alla porzione inferiore della spina iliaca antero-inferiore; i fasci divergenti si inseriscono a tutta l'estensione della linea intertrocanterica. Il legamento ileo-femorale entra in tensione nella completa estensione del femore e contribuisce a mantenere la stazione eretta. Il legamento pubo-femorale rinforza le superfici mediale ed inferiore della capsula articolare; origina dalla porzione pubica dell'acetabolo e dalla cresta ottruratoria del ramo superiore del pube, si inserisce al margine inferiore del collo del femore ed al legamento ileo-femorale. Il legamento pubo-femorale si tende nell'estensione e limita il movimento di abduzione del femore. La capsula articolare è sottile tra i legamenti ileo-femorale e pubo-femorale dove è ricoperta dal robusto tendine del muscolo ileo-psosas. La borsa mucosa ileo-pettinea si trova tra tale tendine e la capsula articolare. Il legamento ischio-femorale forma il margine posteriore della capsula articolare; origina dalla porzione ischiatica dell'acetabolo e si porta, con decorso spirale, lateralmente e verso l'alto, per inserirsi a livello della parte superiore del collo del femore. Il legamento rotondo (o della testa) del femore, lungo circa 2,5 cm, è posto all'interno della capsula articolare ed origina dai margini dell'incisura acetabolare e dal margine inferiore del legamento trasverso dell'acetabolo; termina nella fossetta della testa del femore (vedi Figura 3.4). Il legamento rotondo entra in tensione nei movimenti di addizione del femore.
La membrana sinoviale dell'articolazione dell'anca riveste la superficie interna della capsula articolare, ricopre il labbro acetabolare e si estende, come un manicotto, sopra il legamento rotondo del femore. La membrana ricopre il tessuto adiposo dell'incisura acetabolare e si riflette all'indietro, lungo il collo del femore e fino all'inserzione della capsula articolare sul femore.

Le arterie dell'articolazione sono rami delle arterie circonflesse mediale e laterale del femore, del ramo profondo dell'arteria glutea superiore e dell'arteria glutea inferiore. Il ramo posteriore dell'arteria otturatoria vascolarizza parte della testa del femore.

L'innervazione per l'articolazione dell'anca proviene dai nervi per i muscoli quadrato e retto del femore, dal ramo anteriore del nervo otturatorio e dal nervo gluteo superiore. In Figura 3.2 è riportata l’articolazione dell’anca vista anteriormente e posteriormente mentre in Figura 3.3 è riportata l’articolazione aperta vista lateralmente.

![Diagram](image)

Figura 3.2: (sinistra) articolazione dell’anca vista anteriormente; (destra) articolazione dell’anca vista posteriormente.
3.1.3. Femore

Il femore è l'osso più lungo e voluminoso del corpo umano che forma lo scheletro della coscia. In esso si possono distinguere: un corpo (o diafisi), che non è esattamente rettilineo, e due estremità (o epifisi) prossimale e distale che, con le loro superfici articolari, partecipano alle articolazioni dell'anca e del ginocchio.

L'epifisi prossimale (estremità superiore) presenta una testa, un collo ed i due trocanteri. La testa corrisponde a circa due terzi di sfera, è liscia e presenta una superficie articolare più ampia antero-superiormente; essa è interrotta da una depressione, la fossetta della testa, nella quale si inserisce il legamento rotondo del femore (vedi Figura 3.3).

Il collo, lungo circa 5 cm, è cilindrico ed unisce la testa del femore alla diafisi con un angolo che varia da 115 a 140 gradi (nella femmina è inferiore rispetto al maschio). Il collo è appiattito dall'avanti all'indietro e presenta numerosi fori nutritizi per il passaggio di vasi sanguiferi.

Alla base del collo, vi sono due pronunciati rilievi ossei: lateralmente, il grande trocantere e, medialmente, il piccolo trocantere. Il grande trocantere è la prominenza ossea palpabile sulla superficie laterale dell'anca, circa 13 cm sotto la cresta iliaca; è ampio e quadrangolare e segna il limite superiore della diafisi del femore. Il margine posteriore arrotondato della superficie laterale del grande trocantere delimita la fossa trocanterica che continua, verso il
basso, come cresta intertrocanterica. La fossa trocanterica è una cavità profonda situata sulla faccia mediale del grande trocantere. Il piccolo trocantere è un processo osseo, conoide e smusso, posto nel punto di giunzione tra il margine inferiore del collo e la diafisi del femore. I due trocanteri sono uniti, posteriormente, mediante la cresta intertrocanterica e, anteriormente, dalla linea intertrocanterica. Quest'ultima fornisce l'inserzione alla capsula articolare dell'articolazione dell'anca sulla faccia anteriore dell'osso. Sotto il piccolo trocantere vi è il collo chirurgico del femore che segna la fine tra epifisi e diafisi.

La diafisi del femore (o corpo femorale) è formata da un astuccio di tessuto osseo compatto all’interno del quale è presente il canale midollare (dove viene alloggiato lo stelo protesico) mentre le epifisi sono costituite da una lamina superficiale compatta che avvolge un trabecolato spugnoso. La diafisi ha sezione triangolare, con una faccia anteriore, una posterolaterale ed una postero-mediale; le facce, lisce e regolari, sono separate da due margini arrotondati, laterale e mediale e da un margine posteriore sporgente e rugoso: la linea aspra. La diafisi ha calibro regolare che aumenta verso le epifisi; presenta una convexità anteriore ed è inclinata in basso e medialmente. La linea aspra è il margine posteriore della diafisi ed è formata da due labbri: laterale e mediale; essa è più pronunciata nel terzo medio del femore dove i suoi labbri sono più sporgenti. Prossimalmente, è presente anche un labbro intermedio, detto linea pettinea, che si estende fino al margine posteriore del piccolo trocantere; il labbro laterale si fonde con la sporgenza della tuberosità glutea; il labbro mediale si continua come linea spirale che raggiunge, antero-superiormente, la linea intertrocanterica. Il forame nutritizio del femore, diretto prossimalmente, è posto lungo la linea aspra.

L’epifisi distale (estremità inferiore) del femore, a livello dell’articolazione del ginocchio, è circa tre volte più larga della diafisi. Le sue facce, tranne quelle laterali, presentano superfici articolari. La faccia distale presenta i due condili: laterale e mediale, di forma convessa ed oblunga, per l’articolazione con l’epifisi prossimale della tibia. I condili, emisferici in direzione antero-posteriore ed incurvati trasversalmente, sono separati dalla fossa intercondiloidea; in avanti, si continuano nella superficie patellare per l’articolazione con la faccia posteriore della patella (o rotula). Il condilo mediale è più lungo di quello laterale; i condili femorali si articolano con i condili tibiali che sono posti su un piano quasi orizzontale. Gli epicondili sono rilievi ossei che servono per l’inserzione di legamenti e muscoli e sporgono sopra i condili. L’epicondilo mediale è il più prominente e dà inserzione al legamento collaterale tibiale dell’articolazione del ginocchio. Sulla sua superficie prossimale vi è un rilievo accentuato: il tubercolo adduttore, che dà inserzione al muscolo grande adduttore. L’epicondilo laterale dà invece inserzione al legamento collaterale fibulare. Un solco, posto
distalmente al margine inferiore dell'epicondilo, delimita il margine articolare.
L'estremità inferiore del femore presenta quindi una vasta superficie articolare soprattutto per tibia e rotula [11]. In Figura 3.4 è riportato il femore visto anteriormente (sinistra) e posteriormente (destra).

![Diagram of human femur with labels](image)

Figura 3.4: (sinistra) femore visto anteriormente; (destra) femore visto posteriormente.

3.2. **Cos’è una protesi d’anca**

L’artroprotesi d’anca è un’articolazione artificiale realizzata in leghe metalliche, materiali plastici e/o ceramiche, che sostituisce l’articolazione coxo-femorale ammalata e ormai irrecuperabilmente alterata. Eliminando la fonte del dolore in modo efficace e permanente si consente al paziente un miglioramento della mobilità articolare.

La protesi d’anca è generalmente costituita da due componenti: la coppa cotiloidea, fissata all'osso iliaco del bacino, e la componente femorale, formata dal collo e dallo stelo che viene
inserito nel canale midollare del femore. Sullo stelo viene poi assemblata una testa protesica, in metallo o ceramica, che si articolerà con la superficie interna della coppa. La fissazione delle componenti all'osso, un tempo spesso demandata al cemento acrilico, è oggi più frequentemente biologica, ovvero affidata alla penetrazione dell'osso nella superficie porosa della protesi [12].

3.3. Indicazioni e obiettivi

La condizione più comune per cui si esegue l'artroplastica totale dell'anca è una grave osteoartrite, responsabile del 70% dei casi. L'indicazione primaria che porta all'intervento è il forte dolore con la conseguente limitazione nelle attività quotidiane che questo provoca. La principale causa di dolore è rappresentata dal deterioramento della cartilagine, la cui funzione è proprio quella di rendere scorrevoli le superfici articolari. Per giustificare la sostituzione totale dell'anca, il dolore deve tuttavia essere refrattario a misure conservative quali la terapia antiinfiammatoria non steroidea (FANS), la riduzione del peso, la limitazione dell'attività e l'uso di supporti come il bastone. La displasia evolutiva dell'anca, il morbo di Paget, il trauma e l'osteonecrosi della testa femorale sono altre condizioni che predispongono allo sviluppo di un'osteoartrite secondaria, per le quali è consigliata la sostituzione protesica dell'anca. Anche i pazienti con artrite reumatoide o con altre malattie del collagene, come il lupus eritematoso sistemico e la spondilite anchilosante, possono beneficiare di questo intervento.

Il grande numero di interventi eseguiti negli USA ogni anno (Figura 3.5) riflette il fatto che oltre il 90% dei pazienti ottiene un totale sollievo dal dolore e un notevole miglioramento della funzione motoria. Tuttavia capita spesso che i pazienti possano coltivare aspettative non realistiche riguardo al grado di attività che la protesi consentirà. Per questo, nel consulto pre-operatorio i medici devono sottolineare che l'obiettivo primario dell'operazione resta comunque il sollievo dal dolore.

Generalmente si preferisce l'artroplastica totale in pazienti meno attivi e oltre i 60 anni perché a quest'età minori sono le prestazioni richieste alla protesi e, inoltre, la longevità dell'intervento si avvicina all'aspettativa di vita del paziente stesso.

Per quanto riguarda la vita media di una protesi articolare artificiale, questa è di circa 8-12 anni anche se, purtroppo, la durata si riduce per le persone più giovani ed attive.

Nonostante l'alto livello di successo, l'artroplastica totale dell'anca di quando in quando è associata a complicazioni. Ad esempio, il carico da impatto ripetitivo che si riscontra con attività quali la corsa può predisporre a usura e allentamento protesico, accorciando così la vita della protesi stessa [10].
3.4. La scelta della protesi

L’individuazione del modello protesico più adatto per un paziente è sempre affidata all’esperienza del chirurgo e varia in funzione dell’età, della patologia e della qualità dell’osso ricevente. Nei soggetti più giovani si preferisce in genere l’utilizzo delle protesi non cementate, date le maggiori potenzialità osteogeniche e di rimodellamento del tessuto osseo, mentre in quelli anziani (o comunque affetti da patologie del metabolismo osseo) si utilizzano di solito protesi cementate. L’evoluzione tecnologica e la scoperta di nuovi materiali, oltre a rendere gli impianti sempre più affidabili, hanno permesso l’esistenza in commercio di numerosissimi modelli protesici [12].

3.5. Aspetti operativi

Come in qualsiasi procedura chirurgica importante, per tutti i pazienti sottoposti ad artroplastica totale dell’anca è necessario un controllo delle funzioni cardiovascolari, renali e polmonari prima dell’operazione. L’intervento si può eseguire sia in anestesia locale sia in anestesia generale, consentendo ai pazienti con controindicazioni all’anestesia generale di accedere a quella locale.

L’artroplastica totale è controindicata se è in atto un'infezione locale, nella regione pelvica, o in qualsiasi altro punto dell'organismo. L'intervento si può eseguire attraverso vari tipi di approccio chirurgico; in tutte le tecniche si prendono comunque strette precauzioni per impedire la contaminazione batterica della ferita aperta. Normalmente vengono usati antibiotici intravenosi di profilassi e, per ridurre la possibilità di infezioni, alcuni chirurghi usano precauzioni aggiuntive, come intervenire in campi operatori ristretti a flusso laminare.
con aria filtrata o indossare speciali cappucci pensati per far fluire l’aria espirata lontano dal campo operatorio [10].

3.5.1. Tecnica mini-invasiva

La moderna chirurgia dell’anca con la sua tecnica mini-invasiva, che rispetta i tessuti muscolari minimizzando il sacrificio osseo, oltre a ridurre in maniera importante la cicatrice chirurgica offre ulteriori vantaggi come: diminuzione del dolore post-operatorio, minor perdita di sangue, riduzione significativa del rischio di lussazione, precoce ripresa delle attività quotidiane, ridotta degenza ospedaliera e riabilitazione in tempi brevi [13].

3.6. I tipi di protesi

Oltre alla classificazione in base al metodo di fissaggio, che verrà analizzata nel Capitolo successivo, è possibile un’altra suddivisione riguardante la parte di osso asportata e sostituita.

3.6.1. Protesi totale o artroprotesi

L’artroprotesi (Figure 3.6 e 3.7) è l’asportazione e la sostituzione protesica sia della testa del femore che della coppa acetabolare. Questo tipo di protesi, formato da una componente acetabolare (o cotiloidea) e da una femorale, viene applicato nelle persone che usano frequentemente e normalmente la propria articolazione.

![Figura 3.6: vista anteroposteriore del bacino che mostra, in entrambi i lati, le componenti acetabolari e femorali cementate (stelo Exeter). La testa femorale destra è in ceramica mentre la testa femorale sinistra è metallica. Entrambe le teste si articolano con una componente acetabolare in polietilene. Un indicatore opaco alle radiazioni è mostrato nel restrittore del cemento. Questo è un tappo distale posto a 10 mm dal livello previsto per la punta dello stelo, il cui scopo è quello di tappare il canale intramidollare favorendo la penetrazione del cemento nell’osso spugnoso (freccia in basso a sinistra). Il centralizzatore, piccolo dispositivo cilindrico installato sulla punta distale dello stelo che viene usato per evitare un malposizionamento dello stelo stesso, è invece indicato dalla lucentezza in punta allo stelo femorale (punta di freccia più in alto).](image)
3.6.1.1. \textit{Artroprotesi ibrida}

L'artroprotesi ibrida (Figura 3.8) è la sostituzione sia della testa del femore che della coppa acetabolare, la prima con una componente cementata e la seconda con una componente non cementata. Il termine artroprotesi ibrida designa quindi la combinazione di uno stelo femorale cementato con una coppa acetabolare non cementata.

Figura 3.8: artroprotesi ibrida.
3.6.1.1. Artroprotesi ibrida inversa

L'artroprotesi ibrida inversa è invece la combinazione di una coppa acetabolare cementata con uno stelo non cementato.

3.6.2. Protesi parziali o endoprotesi

L'endoprotesi (Figura 3.9) sostituisce, con una superficie artificiale, solo metà dell’articolazione dell'anca, solitamente la componente femorale. Per endoprotesi si intende quindi la sostituzione parziale della sola componente femorale e l'accoppiamento dell'impianto con l'acetabolo fisiologico del bacino.

![Fig.3.9: protesi parziale o endoproteisi.](image)

Viene eseguita più comunemente a seguito di fratture al collo del femore. La testa del femore viene quindi rimossa e sostituita con una protesi femorale, di tipo cementato o non cementato. Questo intervento viene eseguito su persone particolarmente anziane che non utilizzano molto l'articolazione. In tali pazienti, con limitazioni funzionali gravi e/o con importanti malattie generali, la scelta di applicare un'endoprotesi riduce i tempi chirurgici e permette una veloce ripresa della verticalità e della deambulazione.

Nel paziente giovane o comunque funzionalmente più attivo, la presenza della testa protesica a diretto contatto con il cotile osseo può portare ad un'usura precoce del cotile stesso, detta cotiloidite (Figura 3.10). E’ quindi necessario rioperare il paziente per “completare”
l'intervento applicando un cotile protesico. In questo modo l'endoprotesi viene trasformata in un'artroprotesi. Nei pazienti giovani e/o più attivi quindi, anche in presenza di frattura, si procede subito all'applicazione di un'artroprotesi totale dell'anca, sostituendo sia il femore prossimale che il cotile.

![Figura 3.10: cotiloidite](image)

3.6.2.1. Endoprotesi unipolare

L'endoprotesi unipolare (Figura 3.11a) è costituita da una componente femorale che si articola direttamente con la superficie cartilaginea nativa dell'acetabolo.

3.6.2.2. Endoprotesi bipolare

L'endoprotesi bipolare (Figura 3.11b) è costituita da una componente femorale che si articola con una coppa inserita senza fissaggio nel nativo acetabolo. La coppa è generalmente realizzata in polietilene con un supporto di metallo e può normalmente muoversi all'interno della cavità acetabolare nativa, come risultato dell'assenza di fissaggio [14].
Figura 3.11: (a) vista anteroposteriore di un’anca destra che mostra un’endoprotesi unipolare cementata (Thompson). La testa non si muove in relazione allo stelo femorale e perciò è localizzata centralmente rispetto ad esso (vedi freccia). (b) Radiografia anteroposteriore dell’anca destra che mostra un’endoprotesi bipolare cementata (JRI). La coppa si articola con lo stelo e perciò può essere visualizzata in una posizione eccentrica sulla radiografia anteroposteriore (vedi freccia).

Tabella 3.1: percentuali di sostituzioni protesiche totali (pta, protesi totale anca) e parziali eseguite in Italia in un arco di tempo che va dal 1999 al 2001 [15].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8151</td>
<td>Sostituzione totale dell’anca</td>
<td>42.198</td>
<td>64</td>
<td>44.001</td>
<td>63</td>
<td>4.543</td>
</tr>
<tr>
<td>8152</td>
<td>Sostituzione parziale dell’anca</td>
<td>19.167</td>
<td>29</td>
<td>20.263</td>
<td>29</td>
<td>20.643</td>
</tr>
<tr>
<td>8153</td>
<td>Revisione di sostituzione dell’anca</td>
<td>5.010</td>
<td>7</td>
<td>5.421</td>
<td>8</td>
<td>5.517</td>
</tr>
<tr>
<td>s/totale anca</td>
<td></td>
<td>66.375</td>
<td>75</td>
<td>69.685</td>
<td>73</td>
<td>71.591</td>
</tr>
</tbody>
</table>

[15]
3.6.3. Protesi di rivestimento

Le protesi di rivestimento (Figura 3.12) sono protesi in cui la componente femorale consiste in un cappuccio di rivestimento della testa del femore con una scarsa invasività a livello del collo.

![Figura 3.12: protesi di rivestimento](image)

I vantaggi connessi all'uso di questo tipo di protesi sono: una normale distribuzione dei carichi a livello del femore prossimale, la conservazione del collo del femore e della testa femorale e, in particolare, la preservazione della propriocezione dell'anca (non c'è la sensazione di arto estraneo o arto senza controllo, come spesso accade con le protesi tradizionali). Altri due vantaggi, da non sottovalutare, sono: la riduzione al minimo del rischio di lussazione grazie all'elevato diametro della testa femorale e il fatto che, in caso di fallimento, questo tipo di protesi può essere facilmente convertita in una protesi convenzionale.

Gli svantaggi sono invece legati all'uso del cemento, al tempo operatorio più lungo, al rischio di fratture del collo del femore e all'incisione più ampia di quella utilizzata in una protesi convenzionale (20 cm circa). Infine c'è da sottolineare anche il fatto che non sono ancora conosciuti la durata e gli effetti a lungo termine dei detriti, soprattutto metallici.

Le protesi di rivestimento hanno avuto un recente sviluppo ma le casistiche internazionali più accreditate hanno denunciato alcune complicazioni poco tollerabili per i pazienti, soprattutto per quelli giovani (ad esempio la frattura del collo del femore) [12].
3.7. **Le componenti dell’artroprotesi totale**

L’artroprotesi o protesi totale d'anca può essere suddivisa concettualmente in varie parti (Figura 3.13) [10].

![Diagram of hip prosthesis components](image)

- **cotile (o coppa acetabolare o acetabolo protesico):** è la parte che viene fissata al bacino mediante viti, cemento chirurgico, avvitamento o forzamento meccanico nell’acetabolo primario. Può presentarsi rivestito di idrossiapatite, che aumenta l’ancoraggio biologico, filettato o poroso;

- **testina (o epifisi protesica):** è la parte terminale della componente femorale, normalmente di forma sferica, che si accoppia con la cavità interna del cotile per formare l’articolazione protesica. La testina può essere un solo pezzo con lo stelo oppure modulare, cioè separata dallo stelo femorale e ad esso fissata durante l’intervento mediante accoppiamento conico. È disponibile in diametri diversi;

- **stelo:** è la parte che viene inserita nella cavità femorale ed è fissato mediante cemento chirurgico o meccanicamente. Può anche essere rivestito da uno strato di idrossiapatite.
per aumentare l’osteointegrazione. Può essere standard (impiantabile sia a destra che a sinistra) oppure anatomico (stelo destro o stelo sinistro);

- collo: può essere definito come la porzione di stelo che unisce la testina, o il cono di fissaggio, al corpo dello stelo;

- colletto: presente in alcuni modelli protesici, è una linguetta solidale con lo stelo che, all’inserimento di questo nel canale femorale, dovrebbe appoggiarsi sulla parte superiore del femore trasferendogli parte del carico.

3.8. Biomeccanica e materiali

L’anca umana, durante la normale deambulazione, subisce un carico ciclico che può esercitare sui componenti protesici forze da tre a cinque volte quelle del peso corporeo. Durante le attività più strenue, come la corsa o l'arrampicata, l'articolazione è invece esposta a forze maggiori, fino a dodici volte quelle del peso corporeo. L’analisi biomeccanica di queste forze ha spinto gli ingegneri progettisti a posizionare i componenti protesici in modo tale da massimizzare il sostegno dell'impianto, nel corso di tutto il ciclo di deambulazione.

Gli impianti protesici sono pensati per avvicinarsi il più possibile alla funzione dell'articolazione naturale. Tuttavia, le considerazioni inerenti la tecnologia dei materiali e la loro produzione dettano delle caratteristiche nei componenti protesici che possono limitare il raggiungimento di questo obiettivo [10].

I materiali impiegati per la costruzione delle protesi d'anca devono possedere diversi requisiti:

- elevata resistenza e buone proprietà di rigidezza, per assicurare che lo stress sia mantenuto entro limiti accettabili e che vi sia una buona stabilità geometrica che consenta il corretto funzionamento della protesi;

- elevata resistenza meccanica;

- elevata resistenza all'usura chimica e alla fatica;

- buona biocompatibilità.

I materiali costituenti le protesi possono essere di vario tipo: si va dalle ceramiche al polietilene ai metalli. Quelli più usati sono in particolar modo il titanio e alcune leghe come l’acciaio o il cromo-cobalto-molibdeno, solitamente rivestiti di alluminia (Al$_2$O$_3$) o di idrossiapatite (Ca$_{10}$[PO$_4$]$_6$OH$_2$), la cui composizione chimica è molto simile a quella della matrice minerale ossea. In Figura 3.14 è mostrata la somiglianza strutturale dell’idrossiapatite (HA) con l’osso. E’ compito del chirurgo valutare, di volta in volta, il materiale e soprattutto la morfologia migliore della protesi per il paziente specifico.
Oggi la maggior parte delle protesi d'anca consiste in una coppa acetabolare di polietilene ad altissimo peso molecolare (UHMWPE), in uno stelo femorale realizzato con lega di metallo (in particolare acciaio inox, leghe di cobalto-cromo o di titanio), e in una testa femorale realizzata in metallo o in ceramica. In Figura 3.15 sono visibili esempi di teste femorali e coppe acetabolari.

Nelle tecniche a cementazione si usa un cemento, il polimetilmetacrilato, per fissare la componente femorale all'osso, mentre nelle artroplastiche non cementate la protesi si interfaccia direttamente con l'osso. Nella pratica corrente i componenti acetabolari sono raramente cementati, mentre per quanto riguarda la componente femorale, il chirurgo di solito sceglie di fissarlo con il cemento. Le componenti acetabolari non cementate vengono fissate alla pelvi tramite crescita ossea in un guscio di metallo poroso esterno che circonda la coppa di polietilene [16].

Per la costruzione di un impianto sono richieste quindi fondamentalmente tre parti: la coppa, che rimpiazza la cavità dell'anca, la testa, che rimpiazza la testa femorale naturale e lo stelo, che si infila nella metafisi e nella diafisi del femore (Figura 3.16). Si analizza ora nel dettaglio ciascuna parte dal punto di vista dei materiali e della progettazione [10], [14].
3.8.1 Coppa acetabolare

3.8.1.1 Costruzione

Nello scorso decennio il polietilene ad altissimo peso molecolare è stato introdotto in sostituzione di quello ad alta densità, in virtù della sua maggiore resistenza all’usura. Prima dell’opera di Charnley si usavano coppe acetabolari di metallo che si articolavano direttamente con teste femorali di metallo, come nelle protesi di McKee-Farrar e Ring. Il difetto di questo tipo di protesi era l’alto momento di attrito tra le due superfici di metallo che si traduceva in usura e allentamento della protesi. L’uso del polietilene ad alta densità da parte di Charnley ha ridotto notevolmente questi problemi, ma la ricerca continua ancora e si stanno sperimentando altri materiali più resistenti all’usura e più biocompatibili.

Oggigiorno la coppa acetabolare è fatta solitamente di polietilene ad altissimo peso molecolare, di ceramica, di metallo o di un guscio con parte posteriore in metallo (usato come rinforzo per limitare le deformazioni) unito a un’incamiciatura con superficie portante in metallo, ceramica, o polietilene.
3.8.1.2. Fissaggio

Per quanto riguarda il fissaggio, questo può avvenire con o senza cemento. Nel primo caso si ricorre appunto all'uso del cemento osseo; quello più comunemente usato per fissare la coppa acetabolare all'osso è il polimetilmetacrilato. Invece, nel caso in cui si ricorra al fissaggio senza cemento, le coppe acetabolari hanno una superficie porosa rivestita con altri materiali, ad esempio l’HA (Figura 3.17), per stimolare la crescita ossea all'interno della superficie (Figura 3.18).

Figura 3.17: superficie porosa di titanio rivestita con idrossiapatite pentacalcica.

Figura 3.18: cellula ossea che cresce sulla superficie di HA. La microporosità consente alle cellule di attaccarsi più facilmente.
Le coppe acetabolari sono quindi costituite da un'incamiciatura di polietilene e da un guscio esterno di metallo (Figura 3.19) al quale sono spesso aggiunti rivestimenti della superficie, come l'idrossiapatite, per favorire la crescita ossea. Il fissaggio nell'osso può essere rinforzato poi con viti, chiodi o alette (inserzioni a forma di pinna) per agevolare la crescita ossea interna.

Figura 3.19: vista anteroposteriore di un’anca destra che mostra le componenti, acetabolare e femorale, entrambe non cementate (stelo Corail). La testa femorale è in metallo e si articola su un’incamiciatura di polietilene contenuta all’interno di un guscio metallico.

3.8.1.3. Progettazione

Le componenti acetabolari possono essere costituite da un singolo pezzo (non modulari) o da due parti intercambiabili (modulari). Le componenti modulari sono costituite da un inserto intraosseo e da un guscio che riceve la testa femorale, solitamente fatto di polietilene, metallo o, in alternativa, di ceramica.

3.8.2. Stelo femorale

3.8.2.1. Costruzione

L’obiettivo principale, nella produzione della componente femorale, è di garantire una biocompatibilità a lungo termine e un’alta resistenza ai carichi ciclici ripetuti che si riscontrano durante la normale funzione dell’anca. I metalli più comunemente usati per la
componente femorale sono: leghe di titanio (Ti6Al4V), leghe a base di cobalto-cromo-molibdeno (Cr-Co-Mo) o acciaio inox. Anche se i modelli in cobalto-cromo si sono dimostrati validi per molti anni, vengono sempre più usati anche gli impianti al titanio. I sostenitori del titanio citano, infatti, il fatto che questo è il più biologicamente inerte tra tutti i metalli e che il suo basso modulo elastico è quello che assomiglia maggiormente all'osso corticale del femore.

3.8.2.2. Fissaggio

Come per la coppa acetabolare, il fissaggio può avvenire con o senza cemento. Nel caso in cui si ricorra all'uso del cemento, il PMMA è attualmente il cemento usato per legare lo stelo all'osso femorale spugnoso. Il fissaggio con cemento spesso richiede l'uso di limitatori di cemento o di tappi distali posti a 10 mm dal livello previsto per la punta dello stelo. L'obiettivo del tappo nel canale intramidollare, durante l'artroplastica totale dell'anca, è quello di aumentare la penetrazione del cemento nell’osso spugnoso che si trova vicino all’inserzione intramidollare. Questi tappi sigillano il canale femorale, migliorano il fissaggio e impediscono al cemento osseo di fuoriuscire durante l’inserimento e la pressurizzazione dello stelo. Essi sono fatti di polietilene, titanio o di componenti biodegradabili e contengono indicatori radiopachi (vedi Figura 3.6).

La crescita ossea, frequente alternativa al fissaggio con cemento, richiede una superficie che permetta l’osteoointegrazione strutturata su tutto lo stelo o su una parte. Inoltre, per favorire la nuova crescita ossea si rende ruvida la parte prossimale dello stelo (Figura 3.20, sinistra) e si ricorre ad un’ulteriore superficie di rivestimento in HA.

3.8.2.3. Design

Le caratteristiche del design e le finiture dello stelo femorale dipendono dal metodo di fissaggio scelto dal chirurgo. I diversi modelli e i diversi tipi di fissaggio producono schemi differenti di forze di carico all’osso nativo. E’ quindi importante avere un'adeguata conoscenza dei maggiori tipi di design esistenti.

Per quanto riguarda gli steli femorali cementati, sono disponibili due tipi di design, caratterizzati da una diversa finitura della superficie e da una differente forma della parte distale dello stelo: steli rastremati e lucidati e steli ad asta composita:

- steli femorali rastremati e lucidati: sono attualmente molto usati. Al momento dell’inserimento, questi modelli richiedono l’uso di un “accentratore dello stelo” che consiste in un piccolo dispositivo cilindrico, installato sulla punta distale dello stelo, che evita il malposizionamento nei piani mediolaterali e anteroposteriori. Questo
accentratore permette inoltre di creare un manto di cemento uniforme attorno alla punta dello stelo (vedi Figura 3.6). Nei primi mesi post-operatori può verificarsi un certo grado di abbassamento all’interno del rivestimento di cemento, che non è tuttavia da considerarsi un indice di futuro insuccesso della protesi;

- stelo ad asta composita: questo tipo di stelo, che non è rastremato e non ha una finitura lucidata (Figura 3.20, destra), ha lo scopo di creare un saldo legame all’interfaccia stelo-cemento, su cui si basa il fissaggio dell’asta composita in ogni momento e per tutte le direzioni di carico.

Gli steli femorali non cementati sono caratterizzati dall’avere una superficie strutturata che coinvolge tutta la superficie dell’impianto o solo la parte prossimale di questo (Figure 3.19 e 3.20 sinistra) e una più larga porzione prossimale, in confronto agli steli cementati. Come per le componenti acetabolari, si ricorre spesso ad un rivestimento aggiuntivo di HA al fine di promuovere la crescita ossea. La forma generale degli steli femorali non cementati può essere cilindrica o rastremata, mentre l’asse può essere dritto o curvo, a seconda della forma dell’asta femorale.

![Figura 3.20: (sinistra) radiografia anteroposteriore di un’anca destra che mostra uno stelo femorale rastremato e cementato assieme ad una componente acetabolare, anch’essa non cementata. L’accoppiamento articolare è di tipo “metallo su metallo”. Nello stelo femorale è visibile inoltre un punto di transizione, di non facile identificazione, che rappresenta la giunzione tra l’area in prossimità della finitura ruvida e la parte liscia dello stelo rastremato inferiormente (vedi freccia). (destra) Radiografia anteroposteriore di un’anca destra che mostra una componente femorale ad asta composita ed una componente acetabolare, entrambe cementate (Charnley). La testa femorale è incorporata in uno stelo (non modulare) e si articola con un acetabolo in polietilene.](image)
3.8.3. Testa femorale

La sfera che rimpiazza la testa femorale può essere incorporata con lo stelo oppure essere parte di una protesi modulare. Se è parte di un impianto modulare, la testa è di solito fatta di materiali metallici (leghe a base di cobalto-cromo) o ceramici (ossido di alluminio o di zirconio).

Un’innovazione nella progettazione della componente femorale è stata l’introduzione di teste cobalto-cromo modulari, fissate alla porzione del collo dello stelo tramite inserimento ad interferenza. La ceramica è stata introdotta recentemente come materiale alternativo per la testa femorale. Dopo la sua introduzione, molti sono i chirurghi che usano, nella pratica chirurgica, componenti di testa in ceramica modulare con steli femorali di metallo, piuttosto che ricorrere a componenti di testa in cobalto-cromo. Nonostante le prove in vitro abbiano dimostrato il basso coefficiente d’attrito delle ceramiche, la loro efficienza a lungo termine non è ancora nota. Inoltre resta molta preoccupazione la fragilità che contraddistingue le componenti in ceramica che, se dovessero sbriciolarsi, porterebbero al fallimento della protesi.

3.8.4. Superfici portanti

![Figura 3.21: accoppiamenti articolari disponibili.](image)
4. Artroplastica totale dell'anca cementata e non cementata

Tutti i modelli di protesi d'anca attualmente impiegati possono essere suddivisi in tre tipologie: cementate, non cementate o ibride a seconda del tipo di legame con l'osso ospite. Nelle protesi cementate viene usato il cemento osseo per fissare la protesi, mentre in quelle non cementate l'impianto è direttamente fissato all'osso attraverso press-fit seguito da una reazione dell'osso, nota come osteointegrazione, che porta alla stabilizzazione finale dell'impianto. Nelle protesi ibride, infine, è solo la componente femorale ad essere cementata. Esempi di queste protesi sono riportati nella Figura 4.1.

Figura 4.1: Protesi d'anca: (a)-(d) cementata; (b) ibrida; (c)-(e) non cementata.
La vita della protesi dipende dal processo d’integrazione fra due entità profondamente diverse: osso e protesi. Il primo ha una struttura complessa e in costante evoluzione, mentre la seconda ha una struttura notevolmente sollecitata, sia dall’ambiente chimicamente aggressivo, sia dai carichi indotti dall’attività motoria. L’integrazione totale fra queste due entità è attualmente irraggiungibile, non solo per le diverse proprietà meccaniche delle due componenti ma anche per l’impossibilità della protesi di modificarsi in relazione al continuo cambiamento dell’ambiente circostante. Per questo non si può pensare di realizzare una protesi che assicuri una durata illimitata dell’impianto, ma si può cercare di affinare sempre più il processo di ottimizzazione dell’impianto stesso. Ciò significa trovare una soluzione che alteri il meno possibile la distribuzione del carico e delle tensioni fisiologiche originarie e, nello stesso tempo, che assicuri un ancoraggio duraturo.

La ricerca di un buon ancoraggio ha portato alla nascita di due diverse scuole di pensiero: una fa riferimento a protesi cementate e l’altra a quelle non cementate. Entrambe le soluzioni presentano problemi comuni, come la reazione tessutale agli inevitabili prodotti dell’usura e problemi specifici.

L’uso di protesi cementate comporta in generale i seguenti problemi:

- reazione necrotica dell’osso dovuta al calore durante la polimerizzazione del cemento, che è costituito da una resina acrilica che indurisce con una reazione esotermica (producedo temperature dell’ordine di 80°C);
- scarse caratteristiche meccaniche del cemento, soprattutto in termini di resistenza alla fatica, alle quali si affiancano problemi di invecchiamento, con decadimento delle proprietà meccaniche nel tempo: il cemento tende a fessurarsi o sbirciarsi e a mobilizzare l’impianto;
- elevate tensioni all’interfaccia tra stelo e cemento, dovute alla forte differenza di modulo elastico tra i due materiali (3.000 MPa per il cemento contro 210.000 MPa per le leghe Cr-Co e 107.000 MPa per le leghe di titanio), che provocano nel tempo il distacco dello stelo dal cemento.

L’utilizzo di protesi non cementate elimina i problemi connessi all’utilizzo del cemento, ma presenta alcuni aspetti critici:

- ottenimento di una stabilità primaria (di tipo meccanico);
- ottenimento di una stabilità secondaria (di tipo biologico);
- schermatura delle tensioni trasmesse (stress-shielding), soprattutto nella regione prossimale del femore che risulta sollecitata in misura notevolmente inferiore rispetto
alle condizioni fisiologiche del femore intatto: questa situazione costituisce il presupposto per l’insorgere di problemi di riassorbimento osseo [10], [17], [18].

4.1. **Artroplastica totale dell'anca cementata**

Come già accennato all'inizio del capitolo, nelle protesi cementate le componenti vengono fissate all'osso mediante l'interposizione di un cemento acrilico a polimerizzazione rapida che ha lo scopo di colmare completamente lo spazio tra la superficie protesica e il tessuto osseo. L'impianto risulta così immediatamente stabile e il paziente può camminare, salvo controindicazioni, già dopo alcuni giorni dall'intervento. Le protesi cementate vengono usate soprattutto in pazienti che il chirurgo ritiene possano un tessuto osseo estremamente povero, vale a dire osteoporotico e di debole resistenza meccanica. La convenzionale artroplastica totale dell'anca cementata migliora drasticamente nel paziente sia la funzionalità sia la qualità di vita. L'originaria artroplastica dell'anca di Charnley ha infatti dato buoni ed eccellenti risultati in casi che vanno dall'80% all'85% dei pazienti osservati negli ultimi 15 - 20 anni.

Un'importante causa di insuccesso clinico, che porta alla revisione chirurgica nell'artroplastica totale cementata dell'anca, è l'allentamento biologico dovuto ad un'aggressiva osteolisi. La fagocitosi di detriti dovuti all'usura del metallo, del polietilene e delle componenti acriliche, da parte dei macrofagi, porta ad un riassorbimento localizzato dell'osso, con conseguente allentamento delle componenti protesiche. Il processo è caratterizzato istologicamente dalla presenza di macrofagi, cellule giganti multinucleo, e di particelle intracellulares di cemento e polietilene. Ad un esame radiografico si vede il riassorbimento osseo che amplia progressivamente i centri di lisi attorno alle componenti protesiche.

L'allentamento meccanico del dispositivo protesico, infine, si verifica talvolta con ulteriore frammentazione del cemento che circonda le componenti. Un riassorbimento osteolitico simile può verificarsi nelle artroplastiche senza cemento, a causa dei detriti prodotti dall'usura della testa del femore contro la componente acetabolare in polietilene [10], [17].

4.1.1. **Il cemento**

Il cemento polimetilmetacrilato è un polimero acrilico autoindurente, senza proprietà adesive, che viene usato come agente di iniezione per fissare saldamente le componenti protesiche all'osso. Il polimero raggiunge la fissazione attraverso processi noti come “microancoraggio” e “macroancoraggio”. Durante il microancoraggio il cemento penetra negli interstizi dell'osso calloso per garantire il fissaggio su tutta l'interfaccia osso-cemento. Nel processo di
macroancoraggio, invece, il cemento aumenta la fissazione riempiendo grandi spazi irregolari all'interno dell'osso che circonda l'impianto.

La tecnica di impianto del cemento è stata di grande importanza nel garantire un buon fissaggio a lungo termine. Vi si pone quindi particolare cura per garantire una corretta penetrazione del cemento nell'osso e un adeguato riempimento di tutti gli spazi vuoti adiacenti la superficie della protesi. Questo si ottiene introducendo il cemento in pressione. Durante le prime fasi della polimerizzazione può sorgere il problema della formazione di bolle d'aria. Per rimuoverle si usa o una centrifuga intraoperatoria oppure la preparazione di una mistura di cemento sottovuoto. Le bolle che rimangono nel cemento, dopo che si è indurito, possono infatti costituire punti deboli o punti di aumento di sforzo che facilitano la propagazione di incrinature nel rivestimento di cemento.

In alcune circostanze il cemento viene impregnato di antibiotici per ridurre l'incidenza delle infezioni postoperatorie. Non tutti i chirurghi prediligono questa opzione perché alcuni studi hanno mostrato che antibiotici aggiuntivi possono indebolire il polimero. Altri hanno invece espresso la preoccupazione che l'uso di routine di antibiotici possa contribuire ad un aumento della resistenza di certi batteri ai farmaci [10].

4.2. Artroplastica totale dell'anca non cementata

L'artroplastica totale dell'anca non cementata, in cui le componenti vengono fissate all'osso mediante un accoppiamento diretto, fu sviluppata in risposta alla dimostrazione che i detriti del cemento giocano un importante ruolo nel facilitare la lisi e l'allentamento osseo. Sono stati sviluppati dispositivi protesici senza cemento che raggiungono il fissaggio tramite press-fit e successiva crescita biologica. Con la tecnica del press-fit lo stelo della protesi viene forzato nella cavità midollare ossea preparata, mentre l'acetabolo della protesi viene fissato nella cavità cotiloidea, ottenendo così la stabilizzazione, tramite innesto, dell'impianto nel femore. In tal modo viene assicurata una stabilità primaria della protesi mediante forzatura meccanica, per raggiungere poi una stabilità secondaria grazie all'ancoraggio biologico, dovuto alla crescita e al rimodellamento del tessuto osseo circostante. Per questo motivo le protesi non cementate sono spesso ricoperte con materiale rugoso (porous coated) nei cui interstizi può crescere ed integrarsi il tessuto osseo. Con la tecnica della crescita biologica il fissaggio avviene quindi grazie allo sviluppo osseo in una superficie porosa. L'ancoraggio biologico richiede alcune settimane per cui il decorso operatorio è più lungo di quello necessario per le protesi cementate: il paziente può rimettersi in piedi già alcuni giorni dopo l'intervento, ma solo dopo almeno quarantacinque giorni può camminare caricando completamente l'arto.
I dispositivi non cementati sono per lo più usati in pazienti giovani con alte richieste fisiche, nei quali una procedura chirurgica di revisione in futuro è altamente probabile. I dati preliminari suggeriscono che le artroplastiche totali non cementate hanno un tasso di revisione relativamente basso e un’eccellente durata, fino a 15 anni. Da un confronto con le artroplastiche cementate dell’anca, tuttavia, risulta che i pazienti sottoposti ad artroplastica non cementata hanno una più alta incidenza di dolore alla coscia temporaneo e di basso livello.

Sebbene i risultati a breve termine sembrino meno soddisfacenti, se paragonati all’artroplastica cementata dell’anca, dopo un periodo da 5 a 20 anni (lungo termine), i risultati delle due procedure sono simili o addirittura le protesi non cementate, se raggiungono l’osteointegrazione, presentano risultati migliori.

Come già detto, nonostante l'assenza di residui di cemento, nelle protesi non cementate l'osteolisi femorale può ancora verificarsi nel 5% dei pazienti come conseguenza della formazione di detriti da usura del polietilene.

L'artroplastica totale dell'anca non cementata richiede una tecnica di intervento chirurgico più complicata di quanto non richieda l'artroplastica cementata, a causa del raggiungimento del massimo contatto tra protesi e osso. Tuttavia, anche nel migliore dei casi, può essere difficile raggiungere un contatto completo. Alcuni produttori si sono occupati di questo problema creando una varietà di impianti per abbinare meglio le varie forme interne e le misure dei diversi femori. Purtroppo questo approccio crea un problema logistico e di costi a causa dell'ampia gamma di impianti da avere a disposizione [10], [18].

Galante e Rostoker e i loro collaboratori ricevettero il premio Kappa Delta nel 1970 per la loro idea innovativa, chiamata bony ingrowth, una forma biologica di fissaggio del componente [9]. Galante e Rostoker studiarono l’utilizzo di composti di fibre di metallo sintetizzate come base per il fissaggio dell’impianto all’osso. La loro indagine si concentrò sulla possibilità di far crescere il tessuto osseo all’interno di un composto di fibre al titanio.

Tale materiale fu scelto per l’eccellente resistenza alla corrosione e per la nota compatibilità coi tessuti animali. L’idea di partenza di Galante e Rostoker prevedeva l’individuazione di un materiale poroso che consentisse al tessuto osseo di formarsi al suo interno e, contemporaneamente, presentasse caratteristiche di resistenza agli sforzi, agli urti e alla deformazione. Queste considerazioni portarono alla scelta di un aggregato poroso preparato stampando e sinterizzando fibre di metallo corte del diametro di 0.19 mm. In questo aggregato i pori sono collegati e consentono al tessuto osseo in crescita di permeare il corpo del composto. Il risultato è una compliance maggiore di quella dell’osso naturale.
Nella fase di applicazione sugli animali furono prodotti campioni impiantati nei femori di cani e conigli. L'osservazione permise di registrare un’evidente formazione ossea periferica a distanza di dieci giorni dall’impianto; la crescita ossea interna era rilevabile a distanza di due settimane e a tre settimane era evidente una profonda penetrazione del tessuto osseo nei campioni. Dai loro studi emerse quindi la fattibilità di tale applicazione [19].

Dopo trentotto anni, i progetti a crescita biologica sono oggigiorno ampiamente usati in tutto il mondo e costituiscono la forma dominante di fissazione delle THA. Gli studi sugli animali hanno messo in luce un’eccellente crescita ossea che si sviluppa sulle superfici porose negli impianti sia in cobalto-cromo che in titanio. Un metodo usato per produrre una superficie di crescita porosa nelle protesi cromo-cobalto è quello di fondere, sulla superficie degli impianti, sferette di metallo, con un diametro che va da 250 a 400 µm, tra le quali sono presenti dei piccoli pori. Gli studi hanno messo in luce che la crescita ossea nella superficie porosa inizia entro le prime settimane, da sei a dodici dopo l'impianto.

Gli studi sul recupero della protesi nell'essere umano hanno confermato la crescita dell'osso e del tessuto fibroso; tuttavia, anche nelle protesi che ad un esame radiografico dimostrano di essere ben fissate, risulta a sorpresa che c'è una bassa percentuale di superficie disponibile alla crescita ossea.

Nonostante le preoccupazioni riguardo alla quantità di crescita che effettivamente si verifica, gli studi clinici hanno messo in luce che alcuni modelli non cementati, a crescita biologica e porosi hanno lo stesso successo degli impianti cementati.

Alcuni ricercatori hanno evidenziato il fatto che il rilascio di ioni metallici dal rivestimento poroso della protesi può causare una reazione osteolitica nell'osso adiacente. Altri hanno suggerito che il fissaggio osseo può essere migliorato rivestendo l'impianto di idrossiapatite o fosfato tricalcico poiché entrambi questi biomateriali assomigliano moltissimo al minerale dell'osso naturale. Questi composti inoltre possono servire come barriera contro il trasferimento di ioni elementari dal dispositivo protesico ai tessuti circostanti.

4.2.1. Stabilità primaria e stabilità secondaria nelle protesi non cementate

Nelle protesi non cementate la stabilità primaria costituisce un requisito fondamentale per ottenere una buona stabilità secondaria. Con il concetto di stabilità primaria si intende la stabilità della protesi a breve termine (meccanica) che viene ottenuta tramite l’inserimento a pressione dello stelo della protesi nel canale osseo femorale (press-fitted), che è stato preparato per consentire la migliore adesione all’impianto. Per la stabilità primaria delle
protesi non cementate risulta particolarmente critica la tecnica chirurgica; una rugosità eccessiva, dell’ordine dei 200 μm, è infatti sufficiente per compromettere l’osteointegrazione. La qualità dell’osso prima dell’operazione non costituisce, da un punto di vista biomeccanico, un fattore determinante per il raggiungimento di una stabilità primaria (esclusi i casi di una demineralizzazione estrema), mentre è un fattore sicuramente critico da un punto di vista biologico.

Con il concetto di stabilità secondaria, invece, si intende la stabilità della protesi a lungo termine (biologica) garantita dalla crescita del tessuto osseo che stabilisce un intimo contatto con l’interfaccia dell’impianto (osteointegrazione). Per stimolare il processo di accrescimento e fissaggio, la superficie dell’impianto è sagomata con opportune porosità e ricoperta di idrossiapatite (HA).

Sebbene il meccanismo del processo di rimodellamento non sia ancora chiaro, è desiderabile che al di sotto o intorno ad un impianto protesico continuino a generarsi sforzi paragonabili a quelli fisiologici. Sforzi troppo bassi o troppo alti danno luogo, rispettivamente per fenomeni di stress shielding o per effetto di concentrazioni degli sforzi, a risposte anomale dell’osso e ad eventuale perdita di fissaggio della componente [10], [18].

4.3. L'artoplastica ibrida

Poiché i primi rapporti rilevavano nelle artroplastiche cementate un aumento del tasso di allentamento acetabolare, relativo all'allentamento femorale, è stato adottato, da parte di molti chirurghi, il concetto di protesi ibrida. L'artroplastica ibrida consiste in una combinazione di elementi cementati e non cementati; più comunemente sono usati uno stelo femorale cementato e una coppa acetabolare non cementata. La cementazione dello stelo, usando le tecniche attuali, consente un carico più precoce e senza limitazioni e presenta una frequenza più bassa di lieve dolore alla coscia, mentre il fatto di lasciare la componente acetabolare non cementata evita le conseguenze della frammentazione e dell'allentamento del cemento.

In molti centri la protesi ibrida è ora la tecnica preferita per l'artroplastica primaria nei pazienti oltre i 60 anni. I risultati su pazienti osservati per un periodo che va da 2 a 4 anni mostrano che la resa dell'artroplastica ibrida è uguale a quella dell'artroplastica cementata a breve termine [10].
5. Complicanze

5.1. Complicazioni a breve termine

5.1.1. Frattura
L'incidenza della frattura, che è di circa l'1%, è stata ridotta con l'uso delle moderne protesi e delle tecniche chirurgiche contemporanee. Una maggiore incidenza della frattura (6%) si verifica invece nelle revisioni artroplastiche con protesi non cementate. Il femore rappresenta il più comune punto di frattura, sia durante la procedura primaria sia durante la revisione, mentre fratture all'acetabolo e al ramo pubico capitano solo raramente. La frattura può avvenire sia nell'osso sollecitato da un trauma sia a causa di una gravissima osteolisi attorno all'impianto, dovuta all'usura. Si parla in questo caso di frattura patologica che avviene solo per debolezza dell'osso, anche senza un trauma violento o una caduta.

5.1.2. Risentimento dei nervi
Con l'artroplastica totale dell'anca può verificarsi, come complicanza, anche il risentimento transitorio o permanente dei nervi. Il nervo più comunemente investito è quello sciatico, con una percentuale dello 0,7%. Il risentimento a questo nervo avviene solitamente a causa di un trauma intraoperatorio e la prognosi è buona a meno che il nervo sciatico non sia gravemente danneggiato. Il trauma operatorio si presenta meno frequentemente nel caso del nervo otturatore, gluteale e femorale.

5.1.3. Lussazione
La fuoriuscita della testa femorale dalla cavità dell'acetabolo si verifica con una percentuale che va dall'1% al 3% nei pazienti sottoposti ad intervento primario. Le cause principali della dislocazione includono: la scarsa adesione del paziente alle precauzioni postoperatorie e il malposizionamento delle componenti protesiche, in particolare di quella acetabolare, al momento dell'operazione. La lussazione (Figura 5.1), assieme all'allentamento, è una delle più importanti cause di revisione (Tabella 5.1). La maggior parte delle lussazioni si verifica entro sei mesi dall'intervento chirurgico e quasi tutti i pazienti possono essere gestiti in modo conservativo, se le lussazioni sono occasionali. Invece le lussazioni ricorrenti, che possono provocare l'instabilità dell'impianto o un'usura della componente cotiloidea, richiedono la revisione chirurgica e quindi la sostituzione.
5.1.4. Trombosi venosa profonda e embolismo polmonare

La trombosi è la formazione di un trombo all'interno delle pareti venose che si può manifestare con sintomi vari o addirittura anche senza nessun tipo di sintomo. La pericolosità del trombo nasce dalla possibilità o di occludere una vena, creando un'insufficienza del circolo venoso, o di staccarsi formando un embolo che, migrando, produce un'occlusione di vasi importanti. Un'embolia polmonare da trombo distaccato può portare anche al decesso del paziente e quindi deve essere trattata o prevenuta prontamente.

Si è prestata molta attenzione alla trombosi venosa profonda e all'embolismo polmonare come cause principali di mortalità nei pazienti sottoposti ad artroplastica totale dell'anca. In assenza di profilassi, l'incidenza della trombosi venosa profonda può arrivare al 70%, mentre quella dell'embolismo polmonare al 20%. La mortalità per embolia polmonare è pari invece al 2%. Nell'artroplastica totale dell'anca è quindi raccomandata una profilassi di routine contro la tromboflebite venosa profonda. Calze elastiche a compressione graduata e mobilizzazione precoce sono usate come precauzioni minime associate alla somministrazione di vari regimi anticoagulanti. I ricercatori, tuttavia, non concordano su quale sia il farmaco più efficace. Ad esempio, l'eparina a basso dosaggio è comunemente usata ma si sostiene che sia di dubbio beneficio, a meno che non venga combinata con l'antitrombina III. Anche il warfarin a basso dosaggio è usato in diversi centri ma molti chirurghi sono restii ad accettare il rischio da sanguinamento che si verifica con questi ed altri anticoagulanti. Nonostante la profilassi, il tromboembolismo può ugualmente verificarsi; per questo è necessario vigilare attentamente e in caso di sospetto clinico ricorrere ad alcuni esami come: l'ultrasuono Doppler, la venografia...
alle gambe, lo scanning o l'angiografia polmonare.
In confronto all'anestesia generale, l'uso dell'anestesia regionale nell'artroplastica totale dell'anca risulta aver diminuito di circa due terzi l'incidenza della trombosi venosa profonda e dell'embolismo polmonare.

5.1.5. Complicazioni delle ferite
Nell'artroplastica totale dell'anca le complicazioni delle ferite che sono maggiormente degne di nota sono: l'ematoma, la cui incidenza totale è del 3,5%, e l'infezione che può verificarsi come complicazione secondaria. L'ematoma può infatti agire come terreno di coltura per i batteri.
Alcune alterazioni cutanee locali che possono disturbare la cicatrizzazione della ferita sono: lo slargamento, l'ipertrofia, la necrosi e le complicazioni settiche. Tuttavia le infezioni superficiali della ferita sono rare e devono essere differenziate dalle infezioni profonde che coinvolgono le componenti protesiche.

5.1.6. Dismetria
La dismetria è una differente lunghezza degli arti che può insorgere dopo l'intervento di protesizzazione. Può essere in eccesso, ipermetria, o in difetto, ipometria. Entrambe possono essere corrette mediante cunei alle calzature [10].
5.2. Complicazioni a lungo termine

5.2.1. Infezioni (mobilizzazione settica)

La carica batterica presente sulle protesi prima dell'impianto può essere facilmente eliminata trattando le superfici contaminate con disinfettanti, o prevenuta usando protesi e procedure chirurgiche sterili. La crescita batterica sulle protesi dopo l'impianto rappresenta invece un problema critico; è infatti sufficiente anche un piccolo numero di microorganismi per contaminare l'impianto. In Figura 5.2 l’incidenza delle infezioni tra il 1990 e il 2005.

Figura 5.2: numero delle infezioni all’articolazione protesica dell’anca riscontrate dal 1990 al 2004 negli USA.

I batteri, data la loro grande capacità di aderire ai tessuti e agli impianti, formano complesse strutture multistrato sulla superficie della protesi, denominate biofilm (Figura 5.3, sinistra), che agiscono come vere e proprie barriere chimico-fisiche capaci di proteggere i batteri localizzati al loro interno dall'attacco degli antibiotici e del sistema immunitario. Uno dei contaminanti più comuni è lo Staphylococcus epidermis (Figura 5.3, destra), un batterio della pelle che risulta essere molto dannoso qualora riesca ad entrare nell'organismo.
La contaminazione batterica costituisce quindi la causa più comune sia delle infezioni acute sia di quelle croniche. La formazione di biofilm batterici può anche essere la causa di infezioni irreversibili che obbligano alla rimozione della protesi o dell'impianto [20], [21]. L'infezione è spesso accompagnata da dolore, febbre, malessere generale, arrossamento della cute fino alla comparsa di fistole, tramiti tra la zona di infezione e l'esterno, da cui fuoriesce materiale purulento. In questo caso l'iter diagnostico potrà essere simile a quello usato per le protesi non infette, ma il trattamento preverà provvedimenti differenziati quali pulizie chirurgiche e terapie antibiotiche mirate, fino ad arrivare, se necessario, ad espiantare la protesi. L'infezione di una protesi o una perdita di osso troppo abbondante attorno ad un impianto possono richiedere, infatti, l'asportazione della protesi stessa, data l'impossibilità momentanea di ottenere un impianto stabile e una guarigione dall'infezione. Spesso si ricorre all'inserimento momentaneo, tra bacino e femore, di un cemento spaziatore (Figura 5.4) in grado di evitare la formazione di tessuti che ostacolerebbero poi l'impianto di una nuova protesi, da riapplicare una volta risolta l'infezione e ripristinata la massa ossea. Nei rari casi in cui la carica batterica sia scarsa e si riesca quindi a debellare l'infezione, si può procedere nella stessa seduta chirurgica a sostituire la protesi. La maggior parte degli studi riporta un tasso di infezione inferiore all'1% nell'artroplastica totale primaria mentre nelle artroplastiche di revisione questo tasso è superiore al 3%
Le infezioni diagnosticate entro le prime settimane dopo l'intervento o nell'arco dell'anno successivo sono per lo più dovute a contaminazioni durante l'operazione. Questo tasso di
infezione relativamente basso è dovuto soprattutto all'uso di routine di antibiotici di profilassi nel periodo perioperatorio. A questo scopo sono usati più frequentemente farmaci antistafilococcico come vancomicina o cefalosporine. Un'altra tecnica profilattica, adottata da alcuni chirurghi, è l'aggiunta diretta di antibiotici al cemento (usato nelle protesi), che consente al farmaco di diffondersi nel tessuto adiacente. Sebbene alcuni usino normalmente questa tecnica, altri ne limitano l'uso solo ad anche che siano già state precedentemente infettate. Infine, l'uso aggiuntivo di ambienti ad atmosfera ultra-pulita può ridurre a meno dell'1% i tassi di infezione.

Combinando le varie strategie profilattiche durante le procedure di artroplastica totale, l'incidenza dell'infezione profonda è pari allo 0.4%. È stato soprattutto grazie all'introduzione della microarea operativa asettica che questo tasso è sceso gradualmente, man a mano che è stato aumentato il numero di cambiamenti dell’aria. Solo quando il numero di cambiamenti è arrivato a 300 per ora e sono stati adottati camici totali usa e getta, il tasso di infezione è sceso dall’8% a meno dell’1%, senza l’uso continuativo di antibiotici. L'infezione profonda nell'artroplastica totale dell'anca che si manifesta più di un anno dopo l'intervento può essere il risultato della semina ematogena dell'impianto da parte di organismi che possono anche provenire da un punto distante. Le infezioni della pelle, del tratto urinario, del tratto gastrointestinal e della bocca sono quelle più frequentemente coinvolte come fonti di infezione. Per questo, ai pazienti che hanno subito un'artroplastica totale, si consiglia di curare rapidamente qualsiasi sospetta infezione batterica. La terapia profilattica antibiotica è raccomandata non solo in questo caso, ma anche per qualsiasi intervento invasivo che potrebbe dare luogo ad una diffusione ematogena di batteri. L'infezione profondamente stabilizzata ha la tendenza a persistere nonostante tutto il materiale protesico venga rimosso, i tessuti infetti vengano completamente ripuliti dai residui e venga somministrata un'appropriata terapia antibiotica.

L'analisi retrospettiva di vari gruppi di pazienti, ritenuti a rischio, ha messo in luce che l’incidenza della sepsi profonda è la seguente: chirurgia primaria in osteoartrite, 0.3%; pazienti con artrite reumatoide, 1.2%; uomini con strumentazione uretale postoperatoria, 6.1%; pazienti con psoriasi, 5.5%; diabetici, 5.6%. In pazienti con precedente intervento all’anca il rischio di infezione profonda era invece raddoppiato [8], [10], [22].
5.2.2. Ossificazione eterotopica

L'ossificazione eterotopica si può verificare nel 70% dei pazienti che subiscono l'artroplastica totale dell'anca. L'incidenza di questa complicanza nella forma più grave e limitante è molto inferiore ed è circa il 4%. Nei casi gravi, in cui l'ossificazione eterotopica compromette i movimenti piuttosto che produrre dolore, l'escissione chirurgica può essere d'aiuto per risolvere il problema. Questa procedura viene solitamente eseguita a distanza di circa un anno per consentire all'osso ectopico di maturare del tutto.

I pazienti a rischio di ossificazione eterotopica comprendono quelli con: precedente formazione di osso eterotopico, iperostosi scheletrica idiopatica, spondilite anchilosante o, nel caso specifico degli uomini, quelli con osteoartite ipertrofica. La profilassi con alcuni farmaci antiinfiammatori non steroidei o con terapia radiante a basso dosaggio è risultata essere efficace nei pazienti a rischio di tale complicanza [10].

5.2.3. Rottura delle componenti protesiche

La rottura di una componente della protesi può verificarsi in seguito ad un trauma violento o a causa di traumi minori ma ripetuti. In questi casi l'intervento sostituirà solo le parti protesiche che si sono deteriorate. In Figura 5.5 è riportato un esempio di rottura dello stelo protesico [10].
5.2.4. Usura

Essendo un giunto meccanico, la protesi va incontro ad usura con formazione di detriti ossei (Figure 5.6). Il normale uso della protesi di giuntura comporta la ciclica articolazione della testa nella cavità cotiloidea. Le notevoli forze di contatto, localizzate all'interfaccia tra la sfera metallica o ceramica e la cavità corrispondente rivestita in materiale polimerico, scalfiscono il polimero provocando il distacco di fibrille dalla superficie. Queste, a loro volta, vengono frantumate dando luogo alla formazione di microscopiche particelle che generano un'infiammazione che, con il passare del tempo, cronicizza o può, in alcuni casi, degenerare. Il materiale perso, rilasciato nei pressi dell'impianto, scatena la reazione dell'organismo che chiama macrofagi, cellule che tentano di fagocitare le microfibrille di materiale polimerico [20]. I macrofagi inglobano le particelle per cercare di digerirle ma, data la presenza di una notevole quantità di materiale estraneo indigeribile, non riescono a debellarle del tutto. Per questo i macrofagi si ingrossano e si fondono con altri dando così origine a cellule giganti, dette anche cellule di Langhans o cellule da corpo estraneo. Queste creano, a loro volta, un'infiammazione cronica e un processo granulomatoso che porta alla mobilizzazione della protesi [23]. I macrofagi inoltre, stimolati dalla presenza di detriti, producono citochine. Queste molecole proteiche, secrete in risposta ad un determinato stimolo, sono in grado di modificare il comportamento di altre cellule inducendo nuove attività di crescita, di differenziamento o, come nel caso considerato, di morte. Le citochine infatti stimolano sia
l’attività degli osteoclasti, che “mangiano” l’osso, sia quella dei fibroblasti, che producono tessuto fibroso. Il risultato finale è quindi la scomparsa del tessuto osseo [24]. Questo meccanismo è illustrato in Figura 5.7 e nello schema riportato in Figura 5.8.

Figura 5.6: esempi di usura del componente cotiloideo con conseguente produzione di detriti.

Figura 5.7: meccanismo dell’osteolisi, causata dalla presenza di detriti da usura, con conseguente mobilizzazione protesica.
Le forze che si esercitano nello scorrimento reciproco tra materiali possono, oltre che erodere il polimero, rovinarlo provocandone una deformazione geometrica (Figura 5.9) al punto che non c'è più perfetto accoppiamento e allineamento tra le componenti (Figura 5.10). Questo causa, a sua volta, una cattiva deambulazione del paziente.

L'usura, che è strettamente legata all'erosione, provoca quindi due effetti nell'organismo, uno di tipo patologico, ovvero un'infiammazione cronica, e uno di tipo clinico, cioè una cattiva deambulazione.

Le protesi usurate devono essere rimosse e sostituite con un nuovo impianto. Le operazioni di rimozione comportano, inevitabilmente, l'ablazione di una certa quantità di osso e pertanto la sostituzione, generalmente, può essere attuata una sola volta [20], [25], [26], [27].
5.2.5. Mobilizzazione asettica o allentamento dell’impianto

La mobilizzazione asettica protesica, così denominata perché non associata a fenomeni infettivi (avviene, cioè, in assenza di batteri), è l’espressione di un’insufficiente stabilità della protesi che comporta, per l’appunto, una mobilità della stessa con dolore e riassorbimento osseo. La perdita di fissaggio della componente protesica all’osso è caratterizzata da un riassorbimento osseo periprotesico radiograficamente rilevabile, prima ancora che il paziente provi dolore (Figura 5.11) [10], [20].
La mobilizzazione asettica globale, cioè del cotile e dello stelo, continua ad essere una delle principali cause di fallimento delle protesi d'anca (Tabella 1.1) ed è maggiormente presente nei soggetti più giovani e di maggiore massa corporea [28]. Essa è la più frequente delle complicate a lungo termine con un’incidenza del 80% dei casi ed è il motivo più ricorrente di revisione [24].

Tabella 5.1: incidenza delle cause di fallimento dell’impianto protesico primario su 4858 revisioni effettuate dal 1979 al 1990.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Numero pazienti</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobilizzazione asettica</td>
<td>3846</td>
<td>79</td>
</tr>
<tr>
<td>Infusione</td>
<td>472</td>
<td>9,7</td>
</tr>
<tr>
<td>Errore di tecnica</td>
<td>285</td>
<td>5,9</td>
</tr>
<tr>
<td>Lussazione</td>
<td>117</td>
<td>2,4</td>
</tr>
<tr>
<td>Rottura stelo</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>Dolore</td>
<td>21</td>
<td>0,4</td>
</tr>
<tr>
<td>Altre cause</td>
<td>77</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Il mancato fissaggio dello stelo si evidenzia radiologicamente quasi sempre entro un anno dall’intervento ed è determinato da un fissaggio inadeguato al momento dell’operazione. L’allentamento della cavità, dovuto prevalentemente all’usura, rappresenta invece un problema molto più complesso sia perché i suoi cambiamenti sono tridimensionali e non è quindi semplice studiarli in una singola radiografia (una radiografia a contrasto può essere d’aiuto, sebbene non sia giustificata nell’uso quotidiano), sia perché questo problema non si verifica se non dopo il settimo anno [8].

Qualunque sia il meccanismo che conduce alla mobilizzazione, questa è certamente favorita dalla mancanza di stabilità dell'impianto nell'immediato post-operatorio. Subito dopo l’intervento chirurgico è possibile notare all’interfaccia osso-impianto uno strato di tessuto molle, dotato di scarse proprietà meccaniche, che può essere composto da:

- grumi di sangue generati dal normale processo di guarigione;
- frammenti di tessuto osseo che non sono stati interamente rimossi prima dell’inserimento dello stelo;
- fluidi organici.

In questa fase il tessuto che circonda la protesi è soggetto ad un’intensa attività biologica di adattamento. Nella maggioranza dei casi questo processo adattativo conduce alla completa
integrazione della superficie dell’impianto con il tessuto osseo. Le regioni che presentano tessuto molle sono sporadiche e limitate, mentre all’interfaccia si può evidenziare la presenza di ponti ossei che garantiscono la stabilità dell’impianto in qualsiasi condizione fisiologica di carico. Questo processo viene detto di osteointegrazione ed è all’origine della stabilità secondaria. Tuttavia, l'eccessiva quantità di tessuto molle, se non viene riassorbito o osteointegrato, può dare avvio ad un processo degenerativo che, autoalimentandosi, conduce in un primo tempo alla mobilizzazione e poi al definitivo fallimento protesico. Questo fenomeno rappresenta la prima causa della mobilizzazione asettica.

Una seconda causa è dovuta a fattori meccanici, come la presenza di micromovimenti tangenziali, dovuti alle diverse caratteristiche dei materiali a contatto (ad esempio, la differente rigidezza delle strutture) che possono provocare la produzione di detriti, sia metallici che polimerici [10], [29]. Nel 1975 Charley si accorse per primo della presenza di processi osteolitici ma attribuì il problema alle infezioni. Nel 1976 Harris segnalò invece quattro casi di esteso riassorbimento osseo, con mobilizzazione degli steli cementatati, in assenza di infezione. Si individuò così la “malattia da cemento” chiamata anche, in seguito, “malattia da detriti”. Inizialmente si pensava che la causa di tale malattia fosse dovuta esclusivamente all'uso del cemento. Uno studio effettuato sull'incidenza dell’allentamento asettico nelle tecniche di cementazione di prima generazione ha messo in luce un tasso di mobilizzazione elevato, mentre studi più recenti, effettuati sulle tecniche di cementazione di seconda generazione, hanno mostrato un tasso di allentamento ridotto. L'inizio del fallimento di una protesi cementata è nell'interfaccia cemento-protesi. Per questo motivo, negli anni 70, ci si concentrò sulla costruzione di nuovi modelli non cementati. Furono Brown e Ring, nel 1985 a segnalare la presenza di aree osteolitiche anche in protesi non cementate, come testimonia la radiografia riportata in Figura 5.12.
Figura 5.12: riassorbimento osseo in protesi non cementata, localizzato in basso e in alto sullo stelo femorale destro. Tracce di osteolisi sono presenti anche a sinistra e a destra del centro del femore.

Si capì quindi che la mobilizzazione asettica è il risultato di una nuova patologia: la malattia da detriti. Essa è una reazione biologica al particolato generato dall'usura delle componenti protesiche (Figura 5.13) [10], [24], [30]. L'usura provoca infatti la delaminazione del materiale polimerico, con formazione di miliardi di piccolissime particelle di polimero che si diffondono nel liquido sinoviale circostante. Il sistema immunitario tenta inutilmente di digerirle liberando enzimi degradativi che, con il tempo, possono provocare la morte delle cellule del tessuto osseo adiacente (Figura 5.14). La presenza di particelle, causate dall'usura tra lo stelo e la cavità, innesca quindi un processo cellulare che causa l'osteolisi. La progressiva osteolisi è la causa della mobilizzazione meccanica dell'impianto che, alla fine, deve essere sostituito [20]. La gravità della malattia da detriti e la velocità nel provocare la mobilizzazione dell'impianto, attraverso il riassorbimento dell'osso periprotetico, sono determinate da una serie di fattori quali:

- quantità, dimensioni e tipo dei detriti;
- accesso dei detriti all'interfaccia osso-impianto e all'osso periprotetico;
- risposta biologica ai detriti, che varia da individuo a individuo.
Con il termine usura si intende quindi il consumo delle componenti protesiche che formano l'accoppiamento articolare fra testina e inserto acetabolare. In particolare, l'accoppiamento che prevede l'uso del polietilene (materiale plastico usato per diminuire gli attriti) presenta la più alta incidenza di usura, se paragonato agli altri accoppiamenti (ceramica-ceramica o metallo-metallo). L'ordine delle sostanze, sulla base della formazione di detriti, è dunque il seguente: polietilene (Figura 5.15), polimetilmetacrilato, metallo e ceramica. Esempi di accoppiamento ceramica-ceramica sono visibili in Figura 5.16, mentre in Figura 5.17 sono illustrati i valori di usura annua degli accoppiamenti disponibili, ovvero metallo-metallo, ceramica-ceramica, ceramica-polietilene e metallo-polietilene.
Figura 5.15: usura, con conseguente formazione di detriti, di componenti realizzate in polietilene.

Figura 5.16: esempi di accoppiamento ceramica-ceramica.

Figura 5.17: volume di usura dei vari accoppiamenti in un anno.
Si stanno studiando materiali alternativi, come il polietilene di 2a generazione, che riducano al minimo il rischio di usura e la conseguente produzione di detriti, garantendo una maggiore stabilità articolare. Sono altresì allo studio sistemi per modulare farmacologicamente la reazione biologica ai detriti e inibire il riassorbimento osseo attorno alle protesi [24].

Una terza causa, che può innescare il processo di distacco dell’impianto osteointegrato e portare quindi alla mobilizzazione meccanica della protesi, è l’insorgere di tensioni superiori alla resistenza meccanica dell’interfaccia. In questo contesto, l’insorgere di micromovimenti di una certa entità può portare alla formazione di tessuto fibroso, con conseguente peggioramento delle caratteristiche meccaniche dell’interfaccia.

Il tessuto fibroso è un tessuto molle, ricco di fibre di collagene e microscopicamente simile al tessuto connettivo, ma con una struttura e con caratteristiche che assomigliano a quelle della cartilagine. Lo strato fibroso che si genera attorno alle pareti dell’impianto comporta uno scarso ancoraggio dell’impianto al tessuto osseo. Il tessuto fibroso, infatti, non è in grado di stabilizzare la protesi che quindi è soggetta a micromovimenti di entità crescente; questi, a loro volta, stimolano la formazione di nuovo tessuto fibroso. Il processo appena descritto viene definito “mobilizzazione asettica” e rappresenta un iter graduale nel quale sono implicati sia fattori meccanici (micromovimenti e tensioni) sia fattori biologici (formazione del tessuto fibroso) [29].

Infine, come altra causa che può portare al riassorbimento osseo e alla conseguente mobilizzazione protesica, va considerato lo stress shielding dell’osso che circonda l’impianto, dovuto ad un errato accoppiamento nel comportamento strutturale. L’allentamento meccanico deriva infatti da un carico che supera la forza del materiale protesico o della sua interfaccia con l’osso. Il carico eccessivo può essere dovuto ad un uso fuori dal normale, ad un modello protesico inadeguato o a una tecnica di inserzione sbagliata. Il fenomeno dello stress shielding, indotto dall’elemento protesico più rigido, causa una riduzione della massa ossea, corticale e trabecolare, che a sua volta riduce la resistenza dell’osso e la sua capacità di sopportare i carichi trasmessi. La riduzione della massa ossea può anche raggiungere valori del 50% dopo pochi anni [10],[29].

Altre cause di minore importanza che concorrono a determinare la mobilizzazione asettica sono:

- la qualità dell’osso in cui è posto l’impianto;
- le alterazioni meccaniche e geometriche legate al processo di invecchiamento, sia per la minore capacità dell’osso porotico di compensare l’elevata rigidezza degli impianti, sia per l’aumento delle dimensioni interne del canale midollare.
6. Direzioni e prospettive future

L'artroplastica totale dell'anca è in continua evoluzione in termini di tecnologia, materiali, modelli di protesi, tecnica chirurgica, prevenzione delle complicanze e gestione post-operatoria. Questi progressi, associati a una maggiore comprensione delle reazioni dei tessuti, daranno certamente luogo a ulteriori successi nella scelta dell'impianto.

Il futuro modello di protesi d'anca si basa sullo sviluppo di nuovi materiali con una buona biocompatibilità e migliori proprietà fisiche e meccaniche, che permetteranno di migliorare l'osteointegrazione e di ridurre il problema dell'usura.

Una delle direzioni in cui si sta muovendo la ricerca di nuovi modelli è lo sviluppo di una protesi isoeletastica con proprietà fisiche simili all’osso. In vista di tale traguardo alcuni ricercatori stanno eseguendo esperimenti avvalendosi di composti di polimeri e metalli, elementi che possono conferire, allo stesso tempo, flessibilità e resistenza.

La ricerca nell'area delle protesi non cementate e a crescita interna si sta invece concentrando su modelli che permetteranno maggiore sviluppo osseo favorendo quindi un migliore fissaggio sia a breve sia a lungo termine. Inoltre i ricercatori stanno puntando all’individuazione di materiali più idonei per la realizzazione delle superfici dei componenti protesici. L'obiettivo è quello di cercare di eliminare l'osteolisi indotta dai detriti dell'usura.

Anche le protesi su misura, progettate per migliorare l'adattamento al singolo individuo, sono state oggetto di attenzione negli ultimi anni. L'obiettivo di un inserimento protesico preciso è quello di abbassare l'incidenza del disagio postoperatorio nell'artroplastica totale permettendo così una vita più lunga all'artroplastica stessa.

Non può tuttavia mancare una considerazione di tipo economico. L'elevato costo dei materiali e del lavoro di progettazione saranno infatti la causa della limitazione dello sviluppo di questi dispositivi, anche se i miglioramenti nella tecnologia potranno consentire la produzione di impianti su misura ad un costo minore. Si sta cercando anche di ridurre il costo degli impianti protesici, in generale, sia attraverso la limitazione dei tipi di impianti usati, sia tramite contratti con i fornitori basati sulle grandi quantità che produrrebbero una riduzione del costo unitario.

In un epoca in cui si presta sempre più attenzione ai benefici relativi ai servizi medici, si stanno intraprendendo anche numerosi studi sui risultati finora ottenuti per documentare l'esito di procedure come l'artroplastica totale. Ad esempio uno studio in prospettiva eseguito in Canada ha dimostrato con chiarezza ed in maniera definitiva che, da un punto di vista della salute pubblica, le artroplastiche totali, sia cementate sia non cementate, hanno un buon
rapporto costo-effetto-beneficio. Studi similari saranno sicuramente necessari per monitorare la qualità della cura offerta ai pazienti, che risulta essere sempre più influenzata dalle politiche di riduzione dei costi e per confermare i risultati delle nuove tecniche di artroplastica [10].
Conclusioni

In relazione all’argomento dell’artroprotesi totale dell’anca si possono, in conclusione, evidenziare tre aspetti principali: la tecnica operatoria, la scelta e l’uso di nuovi materiali e la prevenzione di complicanze post-operatorie.

Per quanto riguarda la tecnica operatoria, è possibile osservare che l’evoluzione è stata portata a compimento nell’arco di pochi decenni grazie all’opera, davvero innovativa, di Charnley: ad oltre quarant’anni di distanza, non si prospettano grossi cambiamenti ma solo perfezionamenti dovuti alla disponibilità di nuove strumentazioni ad alta precisione.

Il settore nel quale l’evoluzione maggiore si è avuta in anni recenti è quello dell’uso e della scelta di nuovi materiali. Esigenze come resistenza, flessibilità e biocompatibilità hanno trovato risposta in materiali quali polietilene, acciaio, titanio, idrossiapatite, alluminia. La ricerca costante di nuovi materiali pone come primo obiettivo la biocompatibilità, indispensabile per una sempre migliore osteointegrazione.

L’aspetto finale, dovuto alle possibili complicanze post-operatorie, presenta alcune incognite. A breve termine sono state messe a punto e già si applicano tecniche e metodi di prevenzione. Per quanto riguarda le complicazioni a lungo termine, esse potrebbero eventualmente derivare dall’applicazione delle più recenti tecniche. Nei prossimi anni sarà quindi necessario attivare un attento monitoraggio per capirne la frequenza e poter mettere a punto tecniche per contrastarle e prevenirle.
Appendice

A. Cenni di anatomia scheletrica

A.1 Piani di riferimento e posizione anatomica

Le immagini anatomiche tradizionali mostrano l’uomo nella cosiddetta posizione anatomica. Egli è in piedi, con le gambe unite, i piedi poggiati sul pavimento e le mani poste lungo i fianchi con i palmi rivolti verso il davanti. Nella Figura A.1, l’individuo è in posizione anatomica, visto dal davanti (sinistra) e dal dietro (destra).

Figura A.1. Punti di riferimento anatomici (in neretto il nome tra parentesi l’aggettivo).
In generale, in anatomia, si fa riferimento ad una terna principale di piani perpendicolari fra loro (Figura A.2).

- il piano antero-posteriore, che suddivide il corpo in due parti uguali (destra e sinistra, chiamate anche antimeri), è detto piano sagittale mediano. I piani paralleli a questo e tangenziali al lato destro e sinistro del corpo sono invece detti piani sagittali laterali. Vengono indicate perciò come mediane le parti che stanno in corrispondenza del piano sagittale mediano; come mediali (o interne) quelle che sono più vicine al piano stesso; come laterali (o esterne) le parti più vicine ai piani sagittali laterali;

![Figura A.2. Assi e piani principali di riferimento](image)

- i piani frontali sono quelli che, verticali come i piani sagittali, decorrono perpendicolarmente ad essi, da destra a sinistra. Viene chiamato piano frontale anteriore (o piano frontale ventrale) quello che è tangenziale alla faccia anteriore del corpo mentre il piano frontale posteriore (o piano frontale dorsale) è quello posto tangenzialmente alla faccia posteriore del corpo stesso. Il piano coronale è il piano frontale passante per il baricentro del corpo. Corrispondentemente, vengono indicate
come anteriori (o ventrali) le parti più vicine al piano frontale anteriore e come posteriori (o dorsali) le parti più vicine al piano frontale posteriore;

- i piani trasversali o orizzontali sono quelli che, disposti perpendicolarmente ai due sistemi di piani precedenti, si immaginano tracciati attraverso il corpo in senso perfettamente orizzontale. Il piano orizzontale principale è quello passante per il baricentro del corpo.

Per riferire la posizione di una parte del corpo rispetto ad un’altra si usano i seguenti termini, in relazione alla posizione anatomica:

- prossimale: una parte del corpo si dice prossimale se si trova più vicina al baricentro di un’altra; ad esempio il ginocchio è prossimale rispetto al piede;
- distale: una parte del corpo si dice distale se è più lontana dal baricentro rispetto ad un’altra;
- mediale: una parte del corpo si dice mediale se si trova più vicina di un’altra al piano sagittale; ad esempio il collo è mediale rispetto alla spalla;
- laterale: una parte del corpo si dice laterale se si trova più lontana al piano sagittale, rispetto ad un’altra;
- superiore: una parte del corpo si dice superiore se si trova più in alto rispetto ad un’altra;
- inferiore: una parte del corpo si dice inferiore se si trova più in basso rispetto ad un’altra;
- anteriore: una parte del corpo si dice anteriore se si trova davanti rispetto ad un’altra;
- posteriore: una parte del corpo si dice posteriore se si trova dietro rispetto ad un’altra.

A.2 Classificazione dei movimenti

Tra i possibili movimenti del corpo umano sono di particolare interesse, nel caso in esame, le rotazioni delle articolazioni. Queste vengono classificate, con riferimento alla posizione anatomica, in:

- flessione (Figura A.3a): è la rotazione in un piano parallelo al piano sagittale che tende a chiudere l’articolazione. La flessione del ginocchio porta la gamba all’indietro, mentre in generale, per le altre articolazioni, la parte in questione è portata in avanti. L’ampiezza massima della flessione è condizionata da alcuni fattori come il fatto che essa sia di tipo attivo o passivo e la flessione del ginocchio. Nei movimenti attivi
dell’anca la flessione è di circa 90° con ginocchio esteso e di 120° con ginocchio flesso. Nella flessione passiva i valori cambiano rispettivamente in 120° e 140°;

- estensione (Figura A.3c): è il movimento che porta l’arto inferiore posteriormente al piano frontale. Come per la flessione la sua ampiezza è differente a seconda che sia di tipo attivo o passivo e che avvenga a ginocchio flesso o esteso. I valori tipici per un’estensione attiva sono: 20° e 10° rispettivamente per ginocchio esteso e flesso. I valori caratteristici per un’estensione passiva sono invece 20° e 30°, rispettivamente per affondo a ginocchio esteso e per ginocchio flesso tirato all’indietro;

- abduzione (Figura A.3b): è la rotazione in un piano parallelo a quello coronale che tende ad allontanare l’arto dal piano sagittale. L’abduzione dell’anca, misurata come angolo fra l’asse longitudinale dell’arto inferiore e l’asse formato dall’intersezione del piano sagittale con quello frontale, raggiunge i 45° se è di tipo attivo ma può arrivare anche a 180° con movimenti passivi;

- adduzione (Figura A.3d): è il movimento opposto all’abduzione che porta l’arto ad avvicinarsi al piano sagittale mediano del corpo umano. A causa del contatto degli arti inferiori non esiste un movimento di adduzione puro; esso è possibile solo se accompagnato da una lieve flessione o estensione dell’anca. In questo caso, poiché il movimento di adduzione dipende dal grado di flessione o estensione dell’anca, non si parla di escursione angolare tipica;

- extra rotazione o rotazione laterale (Figura A.3e): è una rotazione attorno ad un asse perpendicolare al piano orizzontale, che tende a portare lateralmente la parte anteriore dell’arto. L’intra rotazione o rotazione mediale è invece il movimento opposto. La relativa escursione massima viene misurata con il ginocchio flesso a 90°. A partire da questa posizione, quando la gamba s’inclina in fuori, si misura la rotazione interna (la cui ampiezza massima varia da 30° a 40°), quando si inclina in dentro, si misura la rotazione esterna (la cui ampiezza massima è di 60°).
Figura A.3. (a) flessione, (b) abduzione, (c) estensione, (d) adduzione, (e) extra rotazione o rotazione laterale.

A.3 Le ossa umane

Le ossa hanno conformazioni molto variabili ed i vari segmenti scheletrici si dividono in:

- ossa lunghe (p. es. femore, omero);
- ossa corte (p. es. carpo della mano, astragalo);
- ossa piatte (p. es. osso della volta del cranio, scapola);
- ossa irregolari (p. es. vertebre);
- ossa sesamoidee (p. es. patella ginocchio).

La parte principale di un osso rappresenta il corpo e con vari nomi, a seconda della forma, sono indicate le componenti unite al corpo e le sporgenze. Nelle ossa lunghe, ad esempio, il corpo è detto anche diafisi mentre le estremità sono chiamate epifisi, prossimale e distale.

Le ossa possono inoltre essere suddivise, per quanto riguarda l’aspetto macroscopico, in compatte (o corticali) e spugnose (o spongiose).

L’osso corticale è denso, omogeneo, con poche, o addirittura senza, cavità interne. Presenta una struttura ossea solida, continua, rigida, resistente e dotata di scarsa porosità (5-10%). L’osso corticale forma il guscio esterno di quasi tutte le ossa dello scheletro ed il fusto delle ossa lunghe (Figura A.4). L’osso spongioso, che possiede un aspetto alveolare, è invece
formato da un insieme di laminette e sottili trabecole, delimitanti cavità numerose, piuttosto ampie e con un’alta porosità (30-90%). Le trabecole sono ramificate in una rete tridimensionale, al cui interno è accolto il midollo osseo, addetto alla formazione del sangue. Queste sono prevalentemente orientate secondo le direzioni di trasmissione delle sollecitazioni e del carico a cui l’osso è sottoposto.

L’osso spongioso forma l’interno di molte ossa e l’estremità delle ossa lunghe (Figura A.4). In Figura A.5 è riportata la struttura dell’osso corticale e quella dell’osso spongioso [11].

Figura A.4: osso spongioso (all'interno) e osso corticale (all'esterno).

Figura A.5: struttura dell’osso spongioso (sinistra); struttura dell’osso corticale (destra).
Bibliografia

Ringraziamenti

Desidero ringraziare innanzitutto il prof. Andrea Bagno, per la disponibilità e l’attenzione dedicata a questo lavoro di tesi.

Ringrazio inoltre il dr. Alvise Marton, specialista in ortopedia presso il Policlinico di Abano Terme, il dr. Fabio Gelain, specialista in radiografia diagnostica presso l’Ospedale dell’Angelo (Mestre) e il dr. Martin Tsemzang, specialista in ortopedia presso l’Ospedale dell’Angelo (Mestre) per la cortesia e l’interesse dimostrato, nonché per la collaborazione e la disponibilità a fornire il materiale necessario alla realizzazione del lavoro di tesi.