Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Pasin, Alessandra (2009) La luce come segnale morfogenetico per le piante. [Laurea triennale]

Full text disponibile come:

[img]
Anteprima
Documento PDF
116Kb
[img]
Anteprima
Documento PDF
798Kb

Abstract

Le piante, in quanto organismi sessili, devono continuamente adattare eventi di crescita e di sviluppo per potersi adeguare alle condizioni ambientali fluttuanti. Questa plasticità viene resa possibile dalla capacità che le piante hanno di percepire, trasdurre e integrare molteplici segnali provenienti dall'ambiente circostante. Uno dei segnali più importanti è indubbiamente la luce, che oltre a fornire l'energia necessaria per condurre la fotosintesi, si comporta, a bassa intensità, come segnale morfogenetico. In particolare, recenti evidenze hanno mostrato che anche lunghezze d'onda corrispondenti al verde sono un segnale biologicamente attivo per le piante e forniscono informazioni che portano a discrete risposte morfogenetiche e funzionali.

Tipologia del documento:Laurea triennale
Corsi di Laurea Triennale:Facoltà di Scienze MM. FF. NN. > Biologia
Parole chiave:Fotorecettori, Fitocromo, Criptocromo, Fototropine, Fotomorfogenesi
Settori scientifico-disciplinari del MIUR:Area 05 - Scienze biologiche > BIO/04 Fisiologia vegetale
Codice ID:23774
Relatore:Rascio, Nicoletta
Data della tesi:2009
Biblioteca:Polo di Scienze > CIS "A. Vallisneri" - Biblioteca Biologico Medica
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:No

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Ahmad M., Grancher N., Heil M., Black RC., Giovani B., Galland P., Lardemer D. 2002. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Plant Physiology 129: 774–785. Cerca con Google

Altamura MM., Biondi S., Colombo L., Guzzo F. 2007. Elementi di biologia dello sviluppo delle piante. EdiSES, pp 195. Cerca con Google

Aukerman M.J., Hirschfeld M., Wester L., Weaver M., Clack T., Amasino R.M., Sharrock RA. 1997. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. The Plant Cell 9: 1317–132 Cerca con Google

Bae G., Choi G., 2008. Decoding of light signals by plant phytochromes and their interacting proteins. Annual Rewiew of Plant Biology 59: 281-311. Cerca con Google

Ballaré C.L., Casal J.J., Kendrick R.E. 1991a. Responses of light-grown wild-type and long-hypocotyl mutant cucumber seedlings to natural and stimulated shade light. Photochemistry and Photobiology 54: 819–826. Cerca con Google

Ballaré C.L., Sánchez R.A., Scopel A.L., Casal J.J., Ghersa C.M. 1987. Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant, Cell & Environment 10: 551–557. Cerca con Google

Ballaré C.L., Scopel A.L., Sánchez R.A. 1991b. Photocontrol of stem elongation in plant neighbourhoods: effects of photon fluence rate under natural conditions of radiation. Plant, Cell & Environment 14: 57–65. Cerca con Google

Boardman N.K. 1977. Comparative photosynthesis of sun and shade plants. Annual Review of Plant Physiology 28: 355–377. Cerca con Google

Bouly J.P., Schleicher E., Dionisio-Sese M. 2007. Cryptochrome blue-light photoreceptors are activated through interconversion of flavin redox states. Journal of Biological Chemistry 282: 9383-9381. Cerca con Google

Briggs W.R., Christie J.M. 2002. Phototropins 1 and 2: versatile plant blue-light receptors. Trends in Plant Science 7: 204-210. Cerca con Google

Castillon A., Shen H., Hug E. 2007. Phytochrome interacting factors: central player in phytochrome-mediated light signalling networks. Trends in Plant Science 12: 514-521. Cerca con Google

Chen M. 2008. Phytochrome nuclear body: an emerging model to study interphase nuclear dynamics and signalling. Current Opinion in Plant Biology 11: 503-508. Cerca con Google

Christie J.M., Reymond P., Powell G.K., Bernasconi P., Raibekas A.A., Liscum E., Briggs W.R. 1998. Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropis. Science 282: 1698–1701. Cerca con Google

Clack T., Mathews S., Sharrock R.A. 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Molecular Biology 25: 413–427. Cerca con Google

De Lucas M., Davière J.M., Rodríguez-Falcón M., Pontin M., Iglesias-Pedraz J.M, Lorrain S., Fankhauser C., Blázquez M.A., Titarenko E., Prat S. 2008. A molecular framework for light and gibberellin control of cell elongation. Nature 451: 480–486. Cerca con Google

Devlin P.F., Patel, S.R., Whitelam G.C. 1998. Phytochrome E influences internode elongation and flowering time in Arabidopsis. The Plant Cell 10: 1479–1487. Cerca con Google

Devlin P.F., Robson P.R.H., Patel S.R., Goosey L., Sharrock R.A., Whitelam G.C. 1999. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation and flowering time. Plant Physiology 119: 909–915. Cerca con Google

Dill A., Thomas S.G., Hu J., Steber C.M., Sun T.P. 2004. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signalling repressors for gibberellin-induced degradation. The Plant Cell 16: 1392–1405. Cerca con Google

Djakovic-Petrovic T., de Wit M., Voesenek L.A.C.J, Pierik R. 2007. DELLA protein function in growth responses to canopy signals. Plant Journal 51: 117–126. Cerca con Google

Donohue K., Pyle E.H., Messiqua D., Heschel M.S., Schmitt J. 2001. Adaptive divergence in plasticity in natural populations of Impatiens capensis and its consequences for performance in novel habitats. Evolution 55: 692–702. Cerca con Google

Dudley S.A., Schmitt J. 1995. Genetic differentiation in morphological responses to simulated foliage shade between populations of Impatiens capensis from open and woodland sites. Functional Ecology 9: 655–666. Cerca con Google

Duek P.D., Fankhauser C. 2005. bHLH class transcription factors take centre stage in phytochrome signalling. Trends in Plant Science 10: 51-54. Cerca con Google

Fankhauser C., Chen M. 2008. Transposing phytochrome into the nucleus. Trends in Plant Science 13: 596-601. Cerca con Google

Feng S., Martinez C., Gusmaroli G., Wang Y., Zhou J., Wang F., Chen L., Yu L., Iglesias-Pedraz J.M., Kircher S., et al. 2008. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451: 475–480. Cerca con Google

Folta K.M., Maruhnich S.A. 2007. Green light: a signal to slow down or stop. Journal of Experimental Botany 58: 3099-3111. Cerca con Google

Franklin K.A. 2008. Shade avoidance. New Phytologist 179: 930-944. Cerca con Google

Frechilla S., Talbott L.D., Bogomolni R.A., Zeiger E. 2000. Reversal of blue light-stimulated stomatal opening by green light. Plant Cell Physiology 41: 171–176. Cerca con Google

Giovani B., Byrdin M., Ahmad M., Brettel K. 2003. Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nature Structural Biology 10: 489–490. Cerca con Google

Halliday K.J., Koornneef M., Whitelam G.C. 1994. Phytochrome B and at least one other phytochrome mediate the accelerated flowering response of Arabidopsis thaliana L. to low red/far-red ratio. Plant Physiology 104: 1311–1315. Cerca con Google

Hayama R., Coupland G. 2004. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiology 135: 677684. Cerca con Google

Holmes M.G., Smith H. 1977. The function of phytochrome in the natural environment. II. The influence of vegetation canopies on the spectral energy distribution of natural daylight. Photochemistry and Photobiology 25: 539–545. Cerca con Google

Huq E., Quail P.H. 2002. PIF4, a phytochrome-interacting bHLH factor functions as a negative regulator of phytochrome B signalling in Arabidopsis. The EMBO Journal 21: 2441–2450. Cerca con Google

Izawa T., Takahashi Y., Yano M. 2003. Comparative biology comes into bloom: genomic and genetic comparison of flowering pathway in rice and Arabidopsis. Current Opinion in Plant Biology 6: 133-120. Cerca con Google

Jarillo J.A., Ahmad M., Cashmore A.R. 1998. NPL1: a second member of the NPH serine/threonine kinase family of Arabidopsis. Plant Physiology 117: 719. Cerca con Google

Jarillo J.A., Gabrys H., Capel J., Alonso J.M., Eker J.R., Cashmore A.R. 2001. Cerca con Google

Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410: 592–594. Cerca con Google

Jiao Y., Lan O. S., Deng X. W., 2007. Light-regulated transcriptional networks in higher plants. Nature Rewiew Genetics 8: 217-230. Cerca con Google

Kevei E., Schafer E., Nagy F. 2007. Light-regulated nucleo-cytoplasmic partitioning of phytochromes. Journal of Experimental Botany 58: 3113-3124. Cerca con Google

Khanna R., Huq E., Kikis E.A., Al-Sady B., Lanzatella C., Quail P.H. 2004. A novel molecular recognition otif necessary for targeting photoactivated phytochrome signalling to specific basic helix-loop-helix transcription factors. The Plant Cell 16: 3033–3044. Cerca con Google

Kimura M., Kagawa T. 2006. Phototropin and light-signalling in phototropism. Current Opinion in Plant Biology 9: 1-6. Cerca con Google

Kircher S., Gil P., Kozma-Bagnar L., Fejes E., Speth V., Husselstein-Muller T., Bauer D., Adam E., Schafer E., Nagy F. 2002. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D and E is regulated differentially by light and exhibits a diurnal rhythm. The Plant Cell 14: 1541-1555. Cerca con Google

Klar T., Pokorny R., Moldt J., Batschauer A., Essen LO. 2007. Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna. Journal of Molecular Biology 366: 954-964. Cerca con Google

Lin C., Robertson D.E., Ahmad M., Raibekas A.A., Jorns M.S., Dutton P.L., Cashmore A.R. 1995b. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269: 968–970. Cerca con Google

Lin C., Shalitind M. 2003. Cryptochrome structure and signal transduction. Annual Review of Plant Biology 54: 469-496. Cerca con Google

Lin C., Yang. H., Guo H., Mockler T., Chen J., Cashmore A.R. 1998. Enhancement of blue light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proceedings of the National Academy of Sciences, USA 95: 7686–7699. Cerca con Google

López-Juez E., Buurmeijer W.F., Heeringa G.H., Kendrick R.E., Wesselius J.C. 1990. Response of light-grown wild-type and long hypocotyl mutant cucumber plants to end-of-day far-red light. Photochemistry and Photobiology 52: 143–149. Cerca con Google

Lorrain S., Allen T., Duek P.D., Whitelam G.C., Fankhauser C. 2008. Cerca con Google

Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant Journal 53: 312–323. Cerca con Google

Malhotra K., Kim S.T., Batschauer A., Dawut L., Sancar A. 1995. Putative bluelight photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry 34: 6892–6899. Cerca con Google

Mazzella M.A., Cerdán P.D., Staneloni R.J., Casal J.J. 2001. Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development 128: 2291–2299. Cerca con Google

McGinnis K.M., Thomas S.G., Soule J.D., Strader L.C., Zale J.M., Sun T.P., Steber C.M. 2003. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. The Plant Cell 15: 1120–1130. Cerca con Google

Middleton L. 2001. Shade-tolerant flowering plants: adaptations and horticultural implications. Acta Horticulturae (ISHS) 552: 95–102. Cerca con Google

Monte E., Al-Sady B., Leivar P., Quail PH. 2007. Out of the dark: how the PIFs are unmasking a dual temporal mechanism of phytochrome signalling. Journal of Experimental Botany 58: 3125-3133. Cerca con Google

Morgan D.C., Smith H. 1979. A systematic relationship between phytochromecontrolled development and species habitat, for plants grown in simulated natural irradiation. Planta 145: 253-258. Cerca con Google

Nagatani A., Chory J., Furuya M. 1991. Phytochrome B is not detectable in the hy3 mutant of Arabidopsis, which is deficient in responding to end-of-day far-red light treatments. Plant and Cell Physiology 32: 1119–112. Cerca con Google

Ni M., Tepperman J.M., Quail P.H. 1998. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loophelix protein. Cell 95: 657–667. Cerca con Google

Ni M., Tepperman J.M., Quail P.H. 1999. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400: 462–466. Cerca con Google

Pierik R., Cuppens M.L.C., Voesenek L.A.C.J, Visser EJW. 2004b. Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiology 136: 2928–2936. Cerca con Google

Pupillo P., Cervone F., Cresti M., Rascio N. 2003. Biologia vegetale. Zanichelli, pp 482 Cerca con Google

Sakai T., Kagawa T., Kasahara M., Swartz T.E., Christie J.M., Briggs W.R., Wada M., Okada K. 2001. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proceedings of the National Academy of Sciences, USA 98: 6969–6974. Cerca con Google

Sakamoto K., Briggs W.R. 2002. Cellular and subcellular localization of phototropin 1. The Plant Cell 14: 1723–1735. Cerca con Google

Sharrock R.A., Quail P.H. 1989. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes and Development 3: 1745–1757. Cerca con Google

Shen Y., Khanna R., Carle C.M., Quail P.H. 2007. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiology 145: 1043–1051. Cerca con Google

Shimazaki K., Doi M., Assmann SM., Kinoshita T. 2007. Light regulation of stomatal movement. Annual Review of Plant Biology 58: 219–47 Cerca con Google

Smith H., Whitelam G.C. 1997. The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant, Cell & Environment 20: 840–844. Cerca con Google

Somers D.E., Sharrock R.A., Tepperman J.M., Quail P.H. 1991. The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B. The Plant Cell 3: 1263–1274. Cerca con Google

Spalding E.P. 2000. Ion channels and the transduction of light signals. Plant, Cell & Environment 23: 665-674. Cerca con Google

Taiz L., Zeiger E. 2009. Fisiologia vegetale (3a edizione italiana) Piccin, pp 1014 Cerca con Google

Takemiya A., Inoue S., Doi M., Kinoshita T., Shimazaki K. 2005. Phototropins promote plant growth in response to blue light in low light environments. The Plant Cell 17: 1120–1127. Cerca con Google

Talbott L.D., Nikolova G., Ortiz A., Shmayevich I., Zeiger E. 2002. Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. American Journal of Botany 89: 366–368. Cerca con Google

Tanada T. 1997. The photoreceptors in the high irradiance response of plants. Physiologia Plantarum 101: 451–454. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record