Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Zaina, Sara (2009) Aggregazione amiloide di domini strutturali di lisozima umano. [Laurea specialistica biennale]

Full text disponibile come:

[img]
Anteprima
Documento PDF
5Mb

Abstract

In questo lavoro di Tesi sono state analizzate le caratteristiche strutturali e di aggregazione di due domini complementari di lisozima, i frammenti 58-108 e 1-57/109-130, ottenuti mediante proteolisi con pepsina in ambiente acido e purificati mediante RP-HPLC.

Tipologia del documento:Laurea specialistica biennale
Corsi di Laurea specialistica biennale:Facoltà di Scienze MM. FF. NN. > Biotecnologie industriali
Parole chiave:Fibrille amiloidi
Settori scientifico-disciplinari del MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Codice ID:23778
Relatore:Polverino de Laureto, Patrizia
Data della tesi:2009
Biblioteca:Polo di Scienze > CIS "A. Vallisneri" - Biblioteca Biologico Medica
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Booth, D. R., Sunde, M., Bellotti, V., Robinson, C. V., Hutchinson, W. L., Fraser, P. E., Hawkins, P. N., Dobson, C. M., Radford, S. E., Blake, C. C. & Pepys, M. B. (1997). Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature, 27, 787−793. Cerca con Google

Booth, D. R., Pepys, M. B. & Hawkins, P. N. (2000). A novel variant of human lysozyme (T70N) is common in the normal population. Hum. Mutat. 16, 180. Cerca con Google

Bouchard, M., Zurdo, J., Nettleton, E. J., Dobson, C. M. & Robinson, C. V. (2000). Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci. 9, 1960−1967. Cerca con Google

Bousset, L., Redeker, V., Decottignies, P., Dubois, S., Le Maréchal, P. & Melki, R. (2004). Structural characterization of the fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p. Biochemistry, 43, 5022−5032. Cerca con Google

Burstein, E. A., Vedenkina, N. S. & Ivkova, M. N. (1973). Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol. 18, 263−279. Cerca con Google

Canet, D., Last, A. M., Tito, P., Sunde, M., Spencer, A., Archer, D. B., Redfield, C., Robinson, C. V. & Dobson, C. M. (2002). Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nat. Struct. Biol. 9, 308−315. Cerca con Google

Carulla, N., Caddy, G. L., Hall, D. R., Zurdo, J., Gairi, M., Feliz, M., Giralt, E., Robinson, C. V. & Dobson, C. M. (2005). Molecular recycling within amyloid fibrils. Nature, 436, 554−558. Cerca con Google

Chamberlain, A. K., MacPhee, C. E., Zurdo, J., Morozova-Roche, L. A., Hill, H. A., Dobson, C. M. & Davis, J. J. (2000). Ultrastructural organization of amyloid fibrils by atomic force microscopy. Biophys. J. 79, 3282−3293. Cerca con Google

Chiti, F. & Dobson, C. M. (2006). Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333−366. Cerca con Google

Come, J. H., Fraser, P. E. & Lansbury, P. T. Jr. (1993). A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc. Natl. Acad. Sci. U S A. 90, 5959−5963. Cerca con Google

Dobson, C. M., Evans, P. A., & Radford, S. E. (1994). Understanding how proteins fold: The lysozyme story so far. Trends Biochem. Sci. 19, 31−37. Cerca con Google

Dobson, C. M. (1999). Protein misfolding, evolution and disease, Trends Biochem. Sci. 24, 329−332. Cerca con Google

Dobson, C. M. (2003). Protein folding and misfolding. Nature, 426, 884−890. Cerca con Google

Dumoulin, M., Canet, D., Last, A. M., Pardon, E., Archer, D. B., Muyldermans, S., Wyns, L., Matagne, A., Robinson, C. V., Redfield, C. & Dobson, C. M. (2005). Reduced global cooperativity is a common feature underlying the amyloidogenicity of pathogenic lysozyme mutations. J. Mol. Biol. 25, 773-788. Cerca con Google

Dumoulin, M., Kumita, J. R. & Dobson, C. M. (2006). Normal and aberrant biological self-assembly: Insights from studies of human lysozyme and its amyloidogenic variants. Acc. Chem. Res. 39, 603−610. Cerca con Google

Fändrich, M. (2007). On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell. Mol. Life Sci. 64, 2066−2078. Cerca con Google

Fink, A. (1998). Protein aggregation: Folding aggregates, inclusion bodies and amyloid. Folding Des. 3, R9-R23. Cerca con Google

Fontana, A., Fassina, G., Vita, C., Dalzoppo, D., Zamai, M., & Zambonin, M. (1986). Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 25, 1847−1851. Cerca con Google

Fontana, A., Polverino de Laureto, P., De Filippis, V., Scaramella, E. & Zambonin, M. (1997). Probing the partly folded states of proteins by limited proteolysis. Fold. Des. 2, R17−R26. Cerca con Google

Fontana, A., Polverino de Laureto, P., Spolaore, B., Frare, E., Picotti, P. & Zambonin, M. (2004). Probing protein structure by limited proteolysis. Acta Biochim. Pol. 51, 299−321. Cerca con Google

Frare, E., Polverino de Laureto, P., Zurdo, J., Dobson, C. M. & Fontana, A. (2004). A highly amyloidogenic region of hen lysozyme. J. Mol. Biol. 23, 1153-1165. Cerca con Google

Frare, E., Mossuto, M. F., Polverino de Laureto, P., Dumoulin, M., Dobson, C. M. & Fontana, A. (2006). Identification of the core structure of lysozyme amyloid fibrils by proteolysis. J. Mol. Biol. 361, 551−561. Cerca con Google

Frare, E., Mossuto, M. F., Polverino de Laureto, P., Tolin S., Menzer, L., Dumoulin, M., Dobson, C. M. & Fontana, A. (2009). Characterization of oligomeric species of the aggregation pathway of human lysozyme. J. Mol. Biol. 10.1016/j.jmb.2009.01.049 Cerca con Google

Fruton, J. S. (1970). The specificity and mechanism of pepsin action. Adv. Enzymol. Relat. Areas Mol. Biol. 33, 401−443. Cerca con Google

Funahashi, J., Takano, K., Ogasahara, K., Yamagata, Y. & Yutani, K. (1996). The structure, stability, and folding process of amyloidogenic mutant human lysozyme. J. Biochem. 120, 1216−1223. Cerca con Google

Gill, S. G. & von Hippel, P. H. (1989). Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326. Cerca con Google

Gillmore, J. D., Booth, D. R., Madhoo, S., Pepys, M. B. & Hawkins, P. N. (1999). Hereditary renal amyloidosis associated with variant lysozyme in a large English family. Nephrol. Dial. Transplant. 14, 2639–2644. Cerca con Google

Giurleo, J. T., He, X. & Talaga, D. S. (2008). Beta-lactoglobulin assembles into amyloid through sequential aggregated intermediates. J. Mol. Biol. 381, 1332–1348. Cerca con Google

Goda, S., Takano, K., Yamagata, Y., Maki, S., Namba, K. & Yutani, K. (2002). Elongation in a beta-structure promotes amyloid-like fibril formation of human lysozyme. J. Biochem. 132, 655−661. Cerca con Google

Haezebrouck, P., Joniau, M., Van Dael, H., Hooke, S. D., Woodruff, N. D. & Dobson, C. M. (1995). An equilibrium partially folded state of human lysozyme at low pH. J. Mol. Biol. 246, 382-387. Cerca con Google

Hooke, S. D., Radford, S. E. & Dobson, C. M. (1994). The refolding of human lysozyme: A comparison with the structurally homologous hen lysozyme. Biochemistry, 33, 5867−5876. Cerca con Google

Hoshino, M., Katou, H., Hagihara, Y., Hasegawa, K., Naiki, H. & Goto, Y. (2002). Mapping the core of the beta(2)-microglobulin amyloid fibril by H/D exchange. Nat. Struct. Biol. 9, 332−336. Cerca con Google

Ikeda, K., Hamaguchi, K., Miwa, S. & Nishina, T. (1972). Circular dichroism of human lysozyme. J. Biochem. 71, 371−378. Cerca con Google

Jaroniec, C. P., MacPhee, C. E., Bajaj, V. S., McMahon, M. T., Dobson, C. M., & Griffin, R. G. (2004). High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc. Natl. Acad. Sci. U S A 101, 711−716. Cerca con Google

Jarrett, J. T., Lansbury, P. T. Jr. (1993). Seeding "one-dimensional crystallization" of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie? Cell. 73, 1055-1058. Cerca con Google

Jiménez, J. L., Guijarro, J. I., Orlava, E., Zurdo, J., Dobson, C. M., Sunde, M. & Saibil, H. R. (1999). Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18, 815−821. Cerca con Google

Jiménez, J. L., Nettleton, E. J., Bouchard, M., Robinson, C. V., Dobson, C. M. & Saibil, H. R. (2002). The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA 99, 9196−9201. Cerca con Google

Johnson, R. J., Christodoulou, J., Dumoulin, M., Caddy, G. L., Alcocer, M. J., Murtagh, G. J., Kumita, J. R., Larsson, G., Robinson, C. V., Archer, D. B., Luisi, B., Dobson, C. M. (2005). Rationalising lysozyme amyloidosis: Insights from the structure and solution dynamics of T70N lysozyme. J. Mol. Biol. 352, 823−836. Cerca con Google

Kelly, J. W. (1996). Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6, 11−17. Cerca con Google

Kelly, J. W. (1998). The alternative conformations of amyloidogenic proteins and their multistep assembly pathways. Curr. Opin. Struct. Biol. 8, 101−106. Cerca con Google

Kelly, S. M., Jess, T. J. & Price, N. C. (2005). How to study proteins by circular dichroism. Biochim Biophys Acta, 1751, 119−139. Cerca con Google

Kheterpal, I., Zhou, S., Cook, K. D. & Wetzel, R. (2000). A beta amyloid fibrils possess a core structure highly resistant to hydrogen exchange. Proc. Natl. Acad. Sci. USA 97, 13597−13601 Cerca con Google

Kheterpal, I., Lashuel, H. A., Hartley, D. M., Walz, T., Lansbury, P. T. Jr & Wetzel, R. (2003). A beta protofibrils possess a stable core structure resistant to hydrogen exchange. Biochemistry, 42, 14092−14098. Cerca con Google

Kozhukh, G. V., Hagihara, Y., Kawakami, T., Hasegawa, K., Naiki, H. & Goto, Y. (2002) Investigation of a peptide responsible for amyloid fibril formation of beta 2-microglobulin by achromobacter protease I. J. Biol. Chem. 277, 1310−1315. Cerca con Google

Krebs, M. R., Wilkins, D. K., Chung, E. W., Pitkeathly, M. C., Chamberlain, A. K., Zurdo, J., Robinson, C. V., & Dobson, C. M. (2000). Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J. Mol. Biol. 300, 541−549. Cerca con Google

Lansbury, P. T. Jr, Costa, P. R., Griffiths, J. M., Simon, E. J., Auger, M., Halverson, K. J., Kocisko, D. A., Hendsch, Z. S., Ashburn, T. T., Spencer, R. G., Tidor, B. & Griffin, R. G. (1995). Structural model for the beta-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide. Nat. Struct. Biol. 2, 990−998. Cerca con Google

Lee, S., Fernandez, E. J. & Good, T. A. (2007). Role of aggregation conditions in structure, stability, and toxicity of intermediates in the Abeta fibril formation pathway. Protein Sci. 16, 723−732. Cerca con Google

LeVine, H. (1993). Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci. 2, 404−410. Cerca con Google

Merlini, G. & Bellotti, V. (2003). Molecular mechanisms of amyloidosis. N. Engl. J. Med. 349, 583−596. Cerca con Google

Miranker, A., Radford, S. E., Karplus, M., & Dobson, C. M. (1991). Demonstration by NMR of folding domains in lysozyme. Nature, 349, 633−636. Cerca con Google

Morrissey, M. P. & Shakhnovich, E. I. (1999). Evidence for the role of PrP(C) helix 1 in the hydrophilic seeding of prion aggregates. Proc. Natl. Acad. Sci. 96, 11293−11298. Cerca con Google

Morozova-Roche, L. A, Zurdo, J., Spencer, A., Noppe, W., Receveur, V., Archer, D. B, Joniau, M. & Dobson, C. M. (2000). Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants. J. Struct. Biol. 130, 339−351. Cerca con Google

Neurath, H. (1980). Limited proteolysis, protein folding and physiological regulation. In: Jaenicke, R., ed. Protein folding. Amsterdam: Elsevier North Holland Biomedical Press. Pp. 501−525. Cerca con Google

Pepys, M. B., Hawkins, P. N., Booth, D. R., Vigushin, D. M., Tennent, G. A., Soutar, A. K., Totty, N, Nguyen, O., Blake, C. C., Terry, C. J., Feest, T. G., Zalin, A. M. & Hsuan, J. J. (1993). Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature, 362, 553−557. Cerca con Google

Pepys, M. B. (2006). Amyloidosis. Annu. Rev. Med. 57, 223−241. Cerca con Google

Polverino de Laureto, P., Scaramella, E., Frigo, M., Gefter-Wondrich, F., De Filippis, V., Zambonin, M., & Fontana, A. (1999). Limited proteolysis of bovine α-lactalbumin: Isolation and characterization of protein domains. Protein Sci. 8, 2290−2303. Cerca con Google

Polverino de Laureto, P., Frare, E., Gottardo, R., Van Dael, H., & Fontana, A. (2002). Partly folded states of members of the lysozyme/lactalbumin superfamily: A comparative study by circular dichroism spectroscopy and limited proteolysis. Protein Sci. 11, 2932−2946. Cerca con Google

Polverino de Laureto, P., Frare, E., Battaglia, F., Mossuto, M. F., Uversky, V. N. & Fontana, A. (2005). Protein dissection enhances the amyloidogenic properties of alpha-lactalbumin. FEBS J. 272, 2176−2188. Cerca con Google

Poulsen, F. M., Hoch, J. C. & Dobson, C. M. (1980). A structural study of the hydrophobic box region of lysozyme in solution using nuclear Overhauser effects. Biochemistry, 19, 2597−2607. Cerca con Google

Prescott, L. M., Harley, J. P. & Klein, D. A. (1995). Microscopia. In Microbiologia (Zanichelli, ed.), Bologna, Grafica Ragno, pp 36−37. Cerca con Google

Radford, S. E., Dobson, C. M. & Evans, P. A. (1992). The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature, 358, 302−307. Cerca con Google

Redfield, C. & Dobson, C. M. (1990). 1H NMR studies of human lysozyme: Spectral assignment and comparison with hen lysozyme. Biochemistry, 29, 7201−7214. Cerca con Google

Ritter, C., Maddelein, M. L., Siemer, A. B., Luhrs, T., Ernst, M., Meier, B. H., Saupe, S. J. & Riek, R. (2005). Correlation of structural elements and infectivity of the HET-s prion. Nature, 435, 844−848. Cerca con Google

Röcken, C., Becker, K., Fändrich, M., Schroeckh, V., Stix, B., Rath, T., Kähne, T., Dierkes, J., Roessner, A., & Albert, F. W. (2006). A Lys amyloidosis caused by compound heterozygosity in exon 2 (Thr70Asn) and exon 4 (Trp112Arg) of the lysozyme gene. Hum. Mutat. 27, 119−120. Cerca con Google

Rochet, J. C., & Lansbury, P. T. (2000). Amyloid fibrillogenesis: Themes and variations. Curr. Opin. Struct. Biol. 10, 60−68. Cerca con Google

Sacchettini, J. C., Kelly, J. W. (2002). Therapeutic strategies for human amyloid diseases. Nat. Rev. Drug. Discov. 1, 267−275. Cerca con Google

Schägger, H. & Von Jagow, G. (1987). Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 kDa to 100 kDa. Anal. Biochem. 166, 368−379. Cerca con Google

Sasahara, K., Yagi, H., Sakai, M., Naiki, H. & Goto, Y. (2008). Amyloid nucleation triggered by agitation of beta2-microglobulin under acidic and neutral pH conditions. Biochemistry, 47, 2650-2660. Cerca con Google

Selkoe, D. J. (2003). Folding proteins in fatal ways. Nature, 426, 900−904. Cerca con Google

Shugar, D. (1952). The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochim. Biophys. Acta. 8, 302−309. Cerca con Google

Strickland, E. H. (1974). Aromatic contribution to circular dichroism spectra of proteins. CRC Crit. Rev. Biochem. 5, 113−175. Cerca con Google

Tjernberg, L., Hosia, W., Bark, N., Thyberg, J. & Johansson, J. (2002). Charge attraction and propensity are necessary for amyloid fibril formation from tetrapeptides. J. Biol. Chem. 277, 43243−43246 Cerca con Google

Trexler, A. J. & Nilsson, M. R. (2007). The formation of amyloid fibrils from proteins in the lysozyme family. Curr. Protein Pept. Sci. 8, 537−557. Cerca con Google

Uversky, V. N. (2002). Natively unfolded proteins: A point where biology waits for physics. Protein Science, 11, 739−756. Cerca con Google

Valleix, S., Drunat, S., Philit, J. B., Adoue, D., Piette, J. C., Droz, D., MacGregor, B., Canet, D., Delpech, M. & Grateau, G. (2002). Hereditary renal amyloidosis caused by a new variant lysozyme W64R in a French family. Kidney Int. 61, 907−912. Cerca con Google

Yang, J. J., Buck, M., Pitkeathly, M., Kotik, M., Haynie, D. T., Dobson, C. M., & Radford, S. E. (1995). Conformational properties of four peptides spanning the sequence of hen lysozyme. J. Mol. Biol. 252, 483−491. Cerca con Google

Yazaki, M., Farrell, S. A. & Benson, M. D. (2003). A novel lysozyme mutation Phe57Ile associated with hereditary renal amyloidosis. Kidney Int. 63, 1652−1657. Cerca con Google

Wetlaufer, D. B. (1981). Folding of protein fragments. Adv. Prot. Chem. 34, 61−92. Cerca con Google

Wilson, L. M., Mok, Y. F., Binger, K. J., Griffin, M. D., Mertens, H. D., Lin F., Wade J. D., Gooley, P. R.& Howlett, G. J. ( 2007). A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis. J. Mol. Biol. 366, 1639−1651. Cerca con Google

Wright, P. E., Dyson, H. J. (1999). Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321−331. Cerca con Google

Xing, Y. & Higuchi, K. (2002). Amyloid fibril proteins. Mech. Ag. Dev. 123, 1625−1636. Cerca con Google

Zurdo, J., Guijarro, J. I. & Dobson, C. M. (2001). Preparation and characterization of purified amyloid fibrils. J. Am. Chem. Soc. 123, 8141−8142. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record