PARAMETRI GENETICI DEI CARATTERI PRODUTTIVI E DELLE CELLULE SOMATICHE IN VACCHE DI RAZZA BURLINA

Relatore: Ch.mo Prof. Martino Cassandro
Correlatori: Dr. Mauro Penasa
Dott. Denis Pretto

Laureanda: Mara Battagin

ANNO ACCADEMICO 2008-2009
Sommario

ABSTRACT 1
RIASSUNTO 3
INTRODUZIONE 5
Evoluzione del sistema agricolo europeo 7
La biodiversità 8
Definizione di specie e razza 8
Diversità biologica e agraria 9
Tappe fondamentali della biodiversità 11
Registro anagrafico delle razze bovine autoctone a limitata diffusione 12
Parentela e consanguineità 14
Mastite negli allevamenti di vacche da latte 15
Definizione, classificazione e fattori che influenzano la mastite 16
Le cellule somatiche 17
Valutazione genetica dei bovini da latte 18
Selezione genetica 18
Definizione di controllo funzionale 19
Modelli a test-day 21
Fonti di variabilità ambientale 22
Parametri genetici 22
Selezione diretta e indiretta per la resistenza alla mastite 23
Ereditabilità delle cellule somatiche 24
Correlazione genetica tra cellule somatiche e mastite 25
Correlazione genetica tra cellule somatiche e caratteri produttivi 25
Correlazione genetica tra cellule somatiche e caratteri funzionali e tecnologici del latte 26
La razza Burlina 27
Origini storiche 27
La Burlina oggi 29
Standard di razza 31
Burlina, Morlacco e altopiano del Grappa 32
OBIETTIVI 35
MATERIALE E METODI 39
Origine dei dati 41
Archivio pedigree 41
Archivio dei controlli funzionali 42
Analisi statistiche 43
Stima dei parametri genetici e dei valori riproduttivi 44
RISULTATI E DISCUSSIONE 47
CONCLUSIONI 53
BIBLIOGRAFIA 57
TABELLE E FIGURE 65
Abstract

The Burlina is a local dual-purpose cattle breed reared in North-East Italy, particularly in Treviso province which accounts for approximately 80% of the total number of cows. The objective of this thesis was to estimate genetic parameters for daily milk yield, fat and protein contents, and somatic cell score (SCS) in Burlina breed, and explore the level of genetic variability in the population for these traits of economic relevance. Monthly test-days and pedigree datasets were provided by the Breeders Association (APA) of Treviso province. After editing procedure, 13,228 records collected on 665 cows in 10 herds from 1999 to 2009 were available. An analysis of variance (ANOVA) was carried out to identify the most important sources of variation influencing production traits and SCS. The linear model included the fixed effects of herd-test day, lactation stage, and age at calving within parity, and the random effect of error. The (co)variance components were estimated using a multivariate animal model with the same effects considered in the previous model and two new random effects: the permanent environmental and the animal. The pedigree file (988 animals) included all individuals with phenotypic records and their ancestors. (Co)variance components were then used to estimate breeding values (EBV) of animals for the traits. On average, Burlina cows produced 16.5 kg/d of milk with 3.67% of fat and 3.33% of protein, and a SCS of 3.73. Heritability estimates were 0.188 for milk yield, 0.275 for fat content, 0.358 for protein content and 0.067 for SCS. Genetic correlations between SCS and production traits were negative and low: -0.115 between SCS and milk, -0.219 between SCS and fat and -0.298 between SCS and protein. Also, very low values were estimated between milk and protein (-0.089) and milk and fat (-0.001), while a positive medium-high value was found between fat and protein (0.629). Heritability estimates along with distributions of EBVs showed the existence of genetic variability for milk yield traits and SCS in the Burlina breed. The variability could be used to improve the population, but only if additive genetic relationships among animals are considered; this is necessary to monitor and control inbreeding levels of next generations.
La provincia di Treviso, con l’80% delle vacche sul territorio, rappresenta l’areale di maggior presenza della Burlina, una razza autoctona a limitata diffusione. L’obiettivo della tesi è stato quello di stimare i parametri genetici della produzione giornaliera di latte, dei contenuti di grasso e proteina, e del punteggio di cellule somatiche (SCS) in bovine di razza Burlina, con l’intento di esplorare il livello di variabilità genetica presente nella popolazione per questi caratteri di rilevanza economica. I controlli funzionali e le genealogie degli animali sono stati forniti dall’Associazione Provinciale Allevatori (APA) di Treviso. Dopo un controllo iniziale sulla qualità dei dati in ingresso e l’eliminazione delle informazioni incongruenti, l’archivio finale risultava composto da 13.228 singoli controlli provenienti da 665 vacche allevate in 10 aziende della provincia di Treviso dal 1999 al 2009. In una fase preliminare, i caratteri oggetto di studio sono stati sottoposti ad analisi della varianza (ANOVA) per individuare le fonti di variazione più importanti. Il modello lineare ha incluso gli effetti fissi dell’allevamento-giorno di controllo, dello stadio di lattazione e dell’età al parto delle bovine entro ordine di parto, e l’effetto casuale dell’errore. Successivamente si è proceduto alla stima delle componenti di (co)varianza di latte, grasso, proteina e SCS utilizzando un modello animale multivariato in cui sono stati considerati gli stessi effetti descritti in precedenza e due nuovi effetti casuali: l’ambiente permanente e l’animale (effetto genetico additivo). Il file di pedigree (988 animali) comprendeva tutti i soggetti con record fenotipico ed i loro antenati. Le componenti di (co)varianza sono state utilizzate per stimare i valori riproduttivi (EBV) degli animali per i quattro caratteri. Le vacche di razza Burlina hanno prodotto in media 16,5 kg/giorno di latte al 3,67% di grasso e 3,33% di proteina, con un punteggio di cellule somatiche pari a 3,73. L’ereditabilità è risultata pari a 0,188 per la produzione di latte, 0,275 per il contenuto di grasso, 0,358 per il contenuto di proteina e 0,067 per le SCS. Le correlazioni genetiche tra SCS e i caratteri produttivi sono risultate negative, ma tendenzialmente basse: -0,115 tra SCS e latte, -0,219 tra SCS e grasso e -0,298 tra SCS e proteina. Molto contenute si sono rivelate le correlazioni genetiche tra latte e proteina (-0,089) e latte e grasso (-0,001), mentre medio-alta e positiva è risultata quella tra grasso e proteina (0,629). I dati di ereditabilità e la distribuzione degli EBV hanno messo in luce l’esistenza di variabilità.
genetica sia per gli aspetti produttivi che per le SCS. Tale variabilità può essere sfruttata per migliorare la razza, ma solo se associata all’analisi dei rapporti di parentela tra i soggetti della popolazione, in modo da rendere possibile il monitoraggio ed il controllo del livello di consanguineità nelle generazioni future.
Introduzione
Evoluzione del sistema agricolo europeo

La Politica Agricola Comune (PAC) ebbe origine in Europa negli anni ‘50 con lo scopo di incrementare la produttività agricola comunitaria, assicurando ai consumatori prezzi equi e alla popolazione agricola un giusto tenore di vita, migliorandone il reddito individuale. La PAC offriva agli agricoltori sovvenzioni e prezzi elevati che li incentivavano a produrre sempre di più. Questo meccanismo portò ad un sistema agricolo intensivo che sfruttò al massimo le aree più produttive e trascurò quelle meno vocate in cui era presente una grande varietà di razze. Gli allevamenti iniziarono a concentrarsi nelle zone più predisposte, le loro dimensioni aumentarono e, con l’intensificazione, si standardizzarono anche gli animali allevati. Queste trasformazioni resero l’Europa autosufficiente sotto il profilo dei fabbisogni alimentari, ma non si dimostrarono una valida alternativa alla ripresa dell’economia agraria comunitaria. La PAC portò ad un esubero della produzione, a problemi di inquinamento ambientale e ad una riduzione delle risorse genetiche e della biodiversità. Nel settore zootecnico, gli interventi di miglioramento genetico e di promozione commerciale si concentrarono solo su alcune razze, tra cui la Frisona e la Bruna (Pagnacco, 2004).

Negli anni ‘80 la PAC subì modifiche rilevanti, principalmente mirate a limitare l’eccesso produttivo (es. introduzione delle quote latte nel 1984) e a porre maggiore attenzione alla tutela ambientale. La vera svolta si ebbe però con la riforma Mac Sharry (1992) che portò ad una riduzione dei prezzi agricoli per renderli più competitivi sui mercati interni e mondiali. La riforma introdusse aiuti compensativi basati sulle rese storiche per far fronte al mancato reddito degli agricoltori e per stimolare la protezione dell’ambiente (misure di accompagnamento). Queste strategie portarono ad una contrazione delle eccedenze comunitarie di derrate alimentari. L’incentivo all’utilizzo di misure agro-ambientali, di buone pratiche agricole, dell’agricoltura biologica ed il sostegno alle zone svantaggiate e marginali hanno avuto ripercussioni positive sulla diversità dei terreni agricoli e sulla tutela ambientale: inizia così il passaggio da un’agricoltura intensiva ad un’agricoltura più sostenibile. Il fattore ambientale è uno dei principali componenti dei nuovi orientamenti della PAC. Due sono gli aspetti essenziali: l’integrazione delle problematiche riguardanti l’ambiente
nella normativa che disciplina la PAC e lo sviluppo di pratiche agricole che consentano di preservare l'ambiente stesso e salvaguardare le zone rurali (Ferri, 2006).

Con Agenda 2000 e con la PAC 2000/2006 si continua nella direzione iniziata negli anni ‘80 introducendo il sostegno allo sviluppo rurale e si definisce il concetto di eco-condizionalità (principio di salvaguardia dell’ambiente che vincola il pagamento dei premi comunitari all’osservanza e al rispetto di precise norme di gestione della propria azienda). Con Agenda 2000 viene riconosciuto all’agricoltura il suo ruolo nella conservazione del paesaggio, nella protezione dell’ambiente, della qualità e sicurezza dei prodotti alimentari e del benessere animale. La funzione sociale dell’agricoltura non è più solo quella di produrre alimenti, ma anche quella di fornire servizi per il territorio.

In ambito zootecnico, l’importanza delle razze a rischio di erosione genetica viene riconosciuta dal Regolamento 817/2004, con cui la Commissione Europea si impegna a finanziare le aziende che allevano animali di razze autoctone originarie della zona dove è sito l’allevamento e minacciate di abbandono; tale impegno è legato al fatto che le razze locali, unitamente alle specie vegetali a rischio, rivestono un ruolo fondamentale nella salvaguardia dell’ambiente.

La PAC continua ad evolversi ponendo come pilastri la politica dei mercati e la politica di sviluppo rurale. Il rispetto dell’ambiente, del benessere animale e della sicurezza igienico-sanitaria degli alimenti divengono di primaria importanza. Con la PAC 2007/2013 vengono promosse e finanziate tutte le attività volte al miglioramento della qualità della vita delle persone e degli animali nelle aree rurali. In questa logica di sviluppo, gli allevatori possono svolgere il ruolo di custodi della biodiversità zootecnica, a condizione che sia garantita una ragionevole redditività nell’impiego delle risorse genetiche locali.

La Biodiversità

**Definizione di specie e razza**

Si considerano appartenenti ad una specie tutti gli organismi viventi che presentano caratteri fisiologici, etologici, morfologici e riproduttivi in comune. Per azione di fattori
naturali e/o antropici, all’interno di una specie si possono differenziare delle sottopopolazioni costituite da sottospecie, razze e ceppi. Gli individui di una sottopopolazione sono caratterizzati da una maggior somiglianza genetica tra loro e da una minor somiglianza genetica con gli individui di un’altra sottopopolazione (Bittante et al., 2005). Si può quindi dire che appartengono alla stessa razza gli organismi viventi della stessa specie che presentano caratteristiche somatiche e funzionali trasmissibili alle generazioni successive. Clutton-Brock (1981) ha delineato il concetto di razza zootecnica, attribuendole il significato di “gruppo di animali selezionati dall’uomo per possedere un aspetto uniforme, ereditabile e distinguibile da un altro gruppo di animali appartenenti alla stessa specie”. Pertanto, le razze sono il risultato di una scelta artificiale di caratteri che non sono necessariamente strategici per la sopravvivenza, ma favorevoli all’uomo per ragioni economiche, estetiche e rituali, o perché incrementano lo stato sociale dei proprietari. Nella vacca da latte, i criteri più semplici per la caratterizzazione di una razza si basano sugli aspetti morfologici come, ad esempio, il colore del mantello, le dimensioni della testa, la profondità del torace e la conformazione della mammella. Oltre agli standard morfologici, grande importanza viene assunta dai caratteri produttivi (latte, grasso e proteina).

Diversità biologica e agraria

La biodiversità comprende tutte le forme di vita, dalla singola cellula agli organismi più complessi, presenti in un dato ambiente e periodo di tempo. Il concetto di biodiversità non deve limitarsi esclusivamente alle risorse genetiche o alla conservazione delle specie in via di estinzione, ma deve essere esteso alla varietà della vita, dei suoi processi e ai cicli che aggregano gli organismi viventi in popolazioni, ecosistemi e paesaggi (COM 162, 2001). La biodiversità non è solo la somma delle specie viventi ma è anche simbolo di coevoluzione, ovvero di un’evoluzione sincrona tra più specie nello stesso ambiente, le quali si sono influenzate reciprocamente giocando un ruolo importante l’una nei confronti delle altre.

La biodiversità agraria, come componente della biodiversità globale, è rappresentata dalla varietà di colture e specie animali, dalle razze zootecniche, dagli insetti e dai microrganismi utili all’agricoltura. Essa è frutto di secoli di scelte, miglioramento e lavoro da parte dell’uomo e della selezione naturale. L’agro-biodiversità è essenziale
per soddisfare i bisogni fondamentali della popolazione umana, è gestita dagli agricoltori ed esiste grazie all’interferenza umana, alle conoscenze locali e alle tradizioni culturali che l’hanno generata.

La coevoluzione tra uomo e ambiente, iniziata nel Neolitico, ha portato a far sì che oggi quattro colture (grano, mais, riso e patate) forniscono più della metà delle calorie vegetali della dieta umana e che 40 specie animali su 50.000 conosciute siano state addomesticate, di cui solo 14 contribuiscono per più del 90% alla produzione di alimenti di origine animale (Domestic animal genetic diversity, 2009). I dati sullo stato di rischio di scomparsa forniti dalla FAO (2007) indicano una continua minaccia per la biodiversità zootecnica: nel periodo 2000/2006 l’estinzione media è stata di circa una razza al mese e, ad oggi, il 20% delle razze zootecniche è a rischio di estinzione.

Il panorama delle razze bovine europee è abbastanza vario in termini di numerosità. Secondo DAD-IS\(^1\) in Europa sono presenti 960 razze suddivise nelle diverse categorie di rischio (Tabella I).

### Tabella I. Classi di rischio di estinzione (FAO, 2007).

<table>
<thead>
<tr>
<th>Classe di rischio</th>
<th>Femmine</th>
<th>Maschi</th>
<th>Popolazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTINTA</td>
<td>0</td>
<td>0</td>
<td>Assenza di materiale genetico crioconservato.</td>
</tr>
<tr>
<td>CRITICA</td>
<td>≤ 100</td>
<td>≤ 5</td>
<td>≤120 capi totali, in decremento e ≤80% femmine pure.</td>
</tr>
<tr>
<td>CRITICA-SALVAGUARDIA</td>
<td></td>
<td></td>
<td>Numero di animali come nella categoria precedente, ma sono attivi programmi di conservazione.</td>
</tr>
<tr>
<td>PERICOLO DI ESTINZIONE</td>
<td>100 ≤ n ≤ 1.000</td>
<td>5 ≤ n ≤ 20</td>
<td>80-100 capi in aumento se almeno l’80% di femmine pure; oppure 1.000-1.200 capi in diminuzione con meno dell’80% di femmine pure.</td>
</tr>
<tr>
<td>PERICOLO-SALVAGUARDIA</td>
<td></td>
<td></td>
<td>Numero di animali come nella categoria precedente, ma sono attivi programmi di conservazione.</td>
</tr>
<tr>
<td>NON A RISCHIO</td>
<td>≥ 1.000</td>
<td>≥ 20</td>
<td>A limitata diffusione: diffusa nel territorio nazionale.</td>
</tr>
<tr>
<td>SCONosciuta</td>
<td></td>
<td></td>
<td>A larga diffusione: presente in più Nazioni.</td>
</tr>
</tbody>
</table>

Nonostante il numero elevato, il settore della bovinicoltura da latte è dominato principalmente dalla Frisona, che rappresenta oltre il 60% delle bovine in Europa ed il 90% delle bovine nordamericane. In Italia, le vacche sottoposte a controllo funzionale nel 2008 sono state 1.337.872 di cui l’82,4% costituito da vacche di razza Frisona (1.101.868 capi), il 7,7% da vacche di razza Bruna (103.099 capi), il 3,8% da vacche di

\(^1\)Domestic Animal Diversity Information System: sistema informativo globale sulle razze, creato nel 1992, gestito dalla FAO con lo scopo di fornire a chi si occupa di biodiversità un ampio database contenente le informazioni più importanti sulle razze esistenti o estinte.
razza Pezzata Rossa Italiana (51.163 capi) e la rimanente quota (3,8%) da vacche di altre razze (AIA, 2008).

La biodiversità zootecnica deve essere conservata e tutelata perché facente parte del patrimonio animale. Ogni razza attualmente presente riassume una storia millenaria di evoluzione culturale, è opera di generazioni di uomini ed è un insieme di combinazioni uniche e irriproducibili di geni che devono essere preservate per il futuro.

**Tappe fondamentali della biodiversità**

L’importanza della biodiversità è riconosciuta da diversi decenni a livello mondiale. Nel 1972 a Stoccolma, in occasione della prima Conferenza delle Nazioni Unite sull’Ambiente, si espresse la necessità di salvaguardare le risorse genetiche in ambito zootecnico. Nel 1980 a Roma si tenne la prima consultazione intergovernativa (Global Technical Consultation) sulle risorse genetiche e nel 1985 ci fu la definizione di una strategia globale per il miglioramento delle “Farm Animal Resources”.


tutela e la conservazione della biodiversità, per cui è basilare proiettarsi oltre il 2010, acquisire una visione a lungo termine e inquadrare le strategie da attuare (COM 216, 2006).


Registro anagrafico delle razze bovine autoctone a limitata diffusione

Secondo l’art. 2 dell’allegato 1 del Disciplinare, il Registro Anagrafico delle razze bovine autoctone a limitata diffusione rappresenta lo strumento per la tutela e la conservazione delle razze non sottoposte ad un piano nazionale di selezione, per le quali non è previsto un Libro Genealogico. Le razze iscritte in questo Registro, che hanno mantenuto le loro caratteristiche di rusticità e adattabilità, rappresentano in molti casi una valida opzione per gli allevatori che operano in aree marginali e abbandonate in seguito all’intensificazione del sistema zootecnico, e per i quali non è conveniente utilizzare razze specializzate, come la Frisona, che non riuscirebbero ad espletare al massimo le loro potenzialità produttive in ambienti con risorse limitate. Il
Registro Anagrafico è gestito dall’Associazione Italiana Allevatori (AIA) e si divide in due sottoregistrini:

- registro delle razze autoctone: contiene le informazioni genealogiche dei soggetti iscritti al fine della conservazione delle popolazioni, ponendo particolare attenzione al mantenimento della variabilità genetica e alla valorizzazione economica dei genotipi (Tabella II);

- registro delle razze estere a limitata diffusione in Italia: conserva le informazioni genealogiche dei soggetti iscritti al fine di una loro corretta utilizzazione in piani di accoppiamento in purezza, in incrocio o in eventuali futuri programmi nazionali di miglioramento genetico.

### Tabella II. Razze ammesse al Registro delle Razze Autoctone.

<table>
<thead>
<tr>
<th>Razza</th>
<th>Attitudine</th>
<th>Area di origine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agerolese</td>
<td>Latte e carne</td>
<td>Campania</td>
</tr>
<tr>
<td>Burlina</td>
<td>Latte e carne</td>
<td>Veneto</td>
</tr>
<tr>
<td>Cabannina</td>
<td>Latte e carne</td>
<td>Liguria</td>
</tr>
<tr>
<td>Calvana</td>
<td>Carne</td>
<td>Toscana</td>
</tr>
<tr>
<td>Cinisara</td>
<td>Latte e carne</td>
<td>Aree marginali costiere ed interne della zona nord occidentale della provincia di Palermo</td>
</tr>
<tr>
<td>Garfagnina</td>
<td>Latte e carne</td>
<td>Toscana</td>
</tr>
<tr>
<td>Modenese</td>
<td>Latte e carne</td>
<td>Pianura Padana</td>
</tr>
<tr>
<td>Modicana</td>
<td>Latte e carne</td>
<td>Provincia di Ragusa. Il tipo genetico originale è la varietà Siciliana, oggi allevata prevalentemente nelle aree interne collinari e montane della Sicilia</td>
</tr>
<tr>
<td>Mucca Pisana</td>
<td>Prevalente carne</td>
<td>Toscana</td>
</tr>
<tr>
<td>Pezzata Rossa d’Oropa</td>
<td>Latte e carne</td>
<td>Piemonte (Vercelli e Biella)</td>
</tr>
<tr>
<td>Pinzgauer</td>
<td>Latte e carne</td>
<td>Trentino - Alto Adige</td>
</tr>
<tr>
<td>Pontremolese</td>
<td>Prevalente carne</td>
<td>Toscana</td>
</tr>
<tr>
<td>Pustertaler Sprinzen</td>
<td>Latte e carne</td>
<td>Trentino - Alto Adige</td>
</tr>
<tr>
<td>Sarda</td>
<td>Carne</td>
<td>Sardegna</td>
</tr>
<tr>
<td>Sardo Bruna</td>
<td>Carne</td>
<td>Sardegna</td>
</tr>
<tr>
<td>Sardo Modicana</td>
<td>Carne</td>
<td>Sardegna</td>
</tr>
<tr>
<td>Varzese-Ottonese-Tortone</td>
<td>Latte e carne</td>
<td>Lombardia</td>
</tr>
</tbody>
</table>

Il Registro Anagrafico della razza Burlina è gestito dalla Comunità Montana del Grappa e dall’Associazione Provinciale Allevatori (APA) di Treviso, che coordina i controlli funzionali.
Parentela e consanguineità

Il numero di individui appartenenti ad una razza non è infinito e nelle popolazioni a limitata diffusione risulta fondamentale considerare i rapporti di parentela tra gli individui, in quanto la probabilità di accoppiare soggetti parenti è marcata.

La parentela additiva ($a_{XY}$) definisce la probabilità che due individui ($X$ e $Y$) abbiano effetti genetici additivi in comune, ovvero esprime la probabilità che ad un locus casuale del genoma due soggetti presentino alleli identici per origine. Un genitore trasmette ai propri figli il 50% del proprio patrimonio genetico, quindi la parentela additiva genitore-figlio è 0,5 ed è un valore assoluto. Anche i fratelli pieni hanno una parentela additiva di 0,5 ma questo (come tutti gli altri rapporti di parentela eccetto genitore-figlio) è un valore medio atteso, in quanto non è detto che due fratelli pieni abbiano ereditato gli stessi geni dai genitori (assortimento indipendente dei cromosomi alla meiosi e fenomeni di crossing-over).

Mentre la parentela è un rapporto tra due soggetti, la consanguineità (inbreeding) è propria di un individuo e indica la frazione di loci all’interno del genoma in cui sono presenti alleli identici per origine. Questa probabilità assume valori diversi da zero quando i genitori sono tra loro parenti. La consanguineità porta ad un aumento della frequenza di individui omozigoti nella popolazione e si quantifica attraverso il coefficiente di inbreeding, che corrisponde alla metà del rapporto di parentela tra i genitori. I metodi tradizionali di calcolo della consanguineità assumono tale coefficiente uguale a zero negli animali con genitori sconosciuti; questo porta ad una sottostima dell’inbreeding, in quanto in un pedigree sono sempre presenti genitori sconosciuti. Per ovviare a questo problema VanRaden (1992) ha assunto che negli animali con genitori sconosciuti tale coefficiente fosse uguale alla media dei coefficienti dei soggetti nati nello stesso anno. Uno dei limiti di questa assunzione si ha quando il “flusso genico” tra diverse popolazioni imparentate evolve differentemente, ad esempio nei diversi Paesi (Croquet et al., 2006).

L’aumento di consanguineità ed il conseguente aumento di individui omozigoti è desiderato quando si vogliono fissare dei caratteri positivi in una popolazione. È una pratica che viene comunque monitorata perché può portare effetti indesiderati. La consanguineità, infatti, riduce la variabilità genetica entro la popolazione, limitando
l’efficacia di azione degli strumenti del miglioramento genetico (se tutti gli individui di una popolazione sono geneticamente simili tra loro nessuna scelta può essere operata a fini selettivi). Una delle principali conseguenze negative è rappresentata dalla depressione da inbreeding, ossia una diminuzione delle performance medie dei soggetti consanguinei dovuta all’omozigosi di molti geni con effetti negativi sulle prestazioni degli animali. E’ un fenomeno che può essere evidenziato per caratteri produttivi e, soprattutto, riproduttivi. Gli animali consanguinei arrivano al primo parto ad un’età più avanzata, manifestano interparti più lunghi e la loro carriera produttiva è più breve (Sørensen et al., 2006). La consanguineità facilita anche la possibilità che geni recessivi indesiderati e rari si manifestino a livello fenotipico attraverso la comparsa di patologie ereditarie in grado di procurare un danno sanitario, zootecnico ed economico più o meno accentuato a seconda dei casi. Al fine di limitare questi effetti, è fondamentale monitorare l’inbreeding tramite piani di accoppiamento programmati che tengano conto dei rapporti di parentela tra i soggetti. La FAO riporta che un incremento dell’1% di consanguineità per generazione mette a rischio la possibilità di conservare una popolazione. In un recente studio, Croquet et al. (2006) hanno esaminato gli effetti negativi dovuti all’incremento dell’1% di inbreeding in bovine da latte, trovando una significativa contrazione della produzione di latte (da -9,84 a -29,6 kg/lattazione), di grasso (da -0,55 a -1,08 kg/lattazione) e di proteina (da -0,80 a -0,97 kg/lattazione) e un leggero aumento del punteggio di cellule somatiche (SCS). Hanno inoltre evidenziato importanti perdite economiche legate all’aumento di consanguineità, quantificabili in 6,13 € del profitto della carriera produttiva di una vacca. Gli autori precisano che questo dato è sottostimato in quanto non è stato considerato l’effetto dell’inbreeding su fertilità, longevità e salute degli animali.

Mastite negli allevamenti di vacche da latte

Il livello produttivo nella bovinicoltura da latte è in continua crescita e con questo crescono anche i problemi sanitari degli animali (König et al., 2008). La mastite è una delle patologie più gravi che colpiscono l’apparato mammario, con un’incidenza per vacca e per anno che varia tra il 20 ed il 40% negli Stati nordeuropei (Heringstad et al., 2000). Oltre a peggiorare lo stato di benessere degli animali, la mastite è la patologia
più costosa nell’allevamento: è associata all’aumento degli interventi veterinari e all’acquisto dei farmaci per la cura degli animali, all’aumento del lavoro in azienda, a penalizzazioni in sede di pagamento del latte (alto contenuto in cellule somatiche) e all’aumento della rimonta involontaria (Ødegård et al., 2003). Negli allevamenti di vacche da latte la mastite rappresenta il 25-30% delle cause di rimonta e i danni economici che provoca equivalgono al 10% del valore generato dalla produzione nazionale di latte (Marcato, 2002).

**Definizione, classificazione e fattori che influenzano la mastite**

La mastite è un processo infiammatorio a carico della ghiandola mammaria. Si caratterizza per la presenza di lesioni anatomopatologiche del tessuto ghiandolare che alterano lo stato sanitario dell’animale e modificano le caratteristiche fisiche, chimiche e batteriologiche del latte. Dal punto di vista eziologico le mastiti possono essere classificate in infettive, traumatiche e tossiche; dal punto di vista clinico vengono suddivise in subclinnie (SCM) e cliniche (CM) e, a seconda del decorso, in acute o croniche (Marcato, 2002).

La CM è diagnosticabile attraverso l’osservazione diretta della mammella che si presenta di volume maggiore, arrossata, dolorante e con secrezione ridotta (Marcato, 2002). Il latte assume un aspetto sieroso, con alterazioni visibili del colore e presenza di foci e frustuli di fibrina. Nel caso di SCM, l’infezione è latente e non causa alterazioni visibili della mammella e del latte. E’ più difficile da diagnosticare e, se trascurata, può evolversi in forma cronica e compromettere la produzione di latte. Gli indicatori di SCM sono l’aumento della conta cellulare (SCC), della concentrazione di proteine di derivazione ematica (fibrinogeno, albumina, antitripsina e immunoglobuline) e di enzimi cellulari (Marcato, 2002). La SCM si caratterizza per l’assenza di alte SCC ad inizio lattazione e per la presenza di alte SCC in tarda lattazione (de Haas et al., 2008).

L’insorgenza della mastite è dovuta all’interazione di tre importanti fattori: l’animale, l’ambiente e la carica microbica. Per quanto riguarda la bovina, la suscettibilità alla patologia è diversa in relazione a diversi aspetti, tra cui l’ordine di parto e lo stadio di lattazione. Le primipare sono più a rischio delle pluripare, soprattutto se la lattazione è precoce. Tuttavia la frequenza della mastite ed il livello di SCC aumentano con l’ordine
di parto (Carlén, 2008). Per quanto concerne lo stadio di lattazione, la prima fase è la più rischiosa in quanto l’animale evidenzia uno stato immunitario non ottimale.

Gli agenti patogeni sono rappresentati principalmente da streptococchi, stafilococchi e coliformi e possono essere suddivisi in:

✓ contagiosi (*Staphylococcus aureus* e *Streptococcus agalactiae*): colonizzano le mammelle e sono trasmessi prevalentemente durante la mungitura;

✓ ambientali (*Streptococcus uberis*, *Streptococcus dysgalactiae*, *Escherichia coli*, *Klebsiella* e *Proteus*): hanno il loro habitat in sede extramammaria o nell’ambiente (lettiera);

✓ opportunisti (stafilococchi coagulasi-negativi): presenti normalmente sulla cute degli animali, possono causare CM e SCM quando vengono meno le difese immunitarie della bovina.

La più comune via di invasione ed infezione da parte dei microrganismi è rappresentata dal canale del capezzolo (infezione galattogena). I serbatoi, ovvero le fonti di contagio più importanti, sono le mammelle già infette, i dotti papillari colonizzati da batteri e le lesioni infette a livello dei capezzoli (Marcato, 2002).

Le pratiche manageriali, incluse la tecnica di mungitura, le attrezzature, il tipo di stabulazione, la pulizia degli ambienti, la qualità igienica della razione e dell’acqua e le misure sanitarie preventive, sono fattori importanti che possono favorire o meno la presenza dei batteri (Carlén, 2008).

La mastite altera le caratteristiche del latte (acidità, contenuto di caseina, Ca, P) rendendolo inidoneo alla trasformazione casearia: si ha una diminuzione dell’attitudine all’affioramento del latte, dello sviluppo di batteri lattici, della consistenza del coagulo, dello spurgo del siero e della resa in formaggio, un aumento dell’umidità della cagliata e lo sviluppo di batteri anticaseari (Bittante *et al.*, 1993).

Queste caratteristiche sono molto importanti dato che il 75% del latte disponibile in Italia viene destinato alla produzione di formaggio.

**Le cellule somatiche**

Le cellule somatiche sono normalmente presenti nel latte e derivano direttamente dall’organismo animale. Si tratta di cellule epiteliali provenienti dalla desquamazione...
della mucosa che riveste internamente la mammella, e di globuli bianchi o leucociti. Il latte proveniente da una mammella sana contiene meno di 100.000 cellule/ml (Kherli and Shuster, 1994; Marcato, 2002; Carlén, 2008). Questo numero aumenta considerevolmente in situazioni patologiche, raggiungendo e superando il milione di unità/ml. Il contenuto cellulare del latte è influenzato dall’età dell’animale, dallo stadio di lattazione e dall’azione irritante della mungitura meccanica. Tuttavia, questi fattori sono considerati meno determinanti rispetto all’infezione batterica della ghiandola mammaria. Il Regolamento CE 853/2004 fissa in 400.000 cellule/ml\(^2\) il livello massimo nel latte di massa, mentre negli Stati Uniti il limite è fissato in 750.000 cellule/ml. La conta cellulare è importante nel sistema di pagamento del latte in molti Paesi europei, in quanto vengono previste penalizzazioni qualora si superino le soglie fissate.

Valutazione genetica dei bovini da latte

Selezione genetica


\(^2\)Media geometrica calcolata su un periodo di tre mesi con almeno un prelievo al mese.
Anagrafico delle Razze Autoctone (2003), le valutazioni genetiche vengono condotte dall’Ufficio Studi dell’AIA utilizzando un modello BLUP-Animal Model, che valuta i soggetti per i caratteri EVM3 latte (kg), grasso (kg e %) e proteine (kg e %). L’archivio per le valutazioni genetiche è costituito dai controlli funzionali effettuati dalle APA. I piani di accoppiamento riportano, per gli allevatori interessati, i tori da utilizzare sulle proprie vacche, al fine di avere vitelli non consanguinei o con un coefficiente di consanguineità inferiore a quello medio rilevato nella razza di pertinenza. Nel caso in cui per una stessa femmina ci siano più tori che possono originare un vitello con lo stesso coefficiente di consanguineità, il piano di accoppiamento riporta gli indici genetici dei riproduttori dando così la possibilità all’allevatore di effettuare miglioramento genetico nella propria mandria (Bollettino del Registro Anagrafico delle Razze Autoctone, 2003). L’attuazione dei piani di accoppiamento può risultare difficile negli allevamenti che utilizzano il toro aziendale per l’inseminazione delle proprie vacche.

**Definizione di controllo funzionale**


L’AIA aderisce alle modalità di effettuazione dei controlli e alle norme stabilite dall’ICAR (International Committee for Animal Recording) ossia l’Organismo deputato

---

3Equivalente Vacca Matura: correzione della durata della lattazione attraverso l’utilizzo di coefficienti moltiplicativi che permettono di standardizzare tutte le produzioni di latte come se fossero di bovine che abbiano partorito alla stessa età di 84 mesi (vacca matura) (Pagnacco, 2004).
all’omologazione dei metodi e alla standardizzazione a livello internazionale dei protocolli operativi. Tra i metodi convenzionali, in Italia si utilizzano i controlli:

- **A4**: il rilievo si effettua ogni 4 settimane, misurando la produzione di latte delle mungiture di un’intera giornata (sera e mattina del giorno successivo);
- **AJ**: viene rilevata una mungitura, ma viene recuperata dal lattometro aziendale la produzione di latte della stessa fattrice nella mungitura precedente. La produzione giornaliera viene ottenuta sommando la produzione della mungitura controllata con la produzione della mungitura controllata con quella registrata dal lattometro;
- **AT**: attualmente i più diffusi per il minor costo di effettuazione; viene misurata la produzione di latte di una sola mungitura, in modo alternato tra mattina e sera nei successivi controlli. La produzione giornaliera si ottiene moltiplicando per 2 le produzioni rilevate in una mungitura oppure applicando dei coefficienti approvati dalla Commissione Tecnica Centrale (CTC) su proposta dell’Ufficio Centrale.

Secondo quanto stabilito dal Disciplinare dei Controlli per la produzione del latte, perché una lattazione possa essere considerata “regolarmente controllata” è necessario che entro la durata convenzionale (305 giorni per i bovini allevati con modalità intensive, 200 giorni per alcuni tipi genetici allevati in condizioni difficili) siano stati effettuati almeno 6 controlli nella specie bovina ad allevamento intensivo e 4 controlli per i tipi genetici della specie bovina ad allevamento estensivo. I controlli devono essere effettuati tra il 25° e il 31° giorno successivo al controllo precedente. Sono previste eccezioni, ma comunque ciascun controllo deve essere effettuato al massimo tra il 50° e il 62° giorno successivo al controllo precedente. Durante il rilievo viene registrato, attraverso i lattometri ufficialmente approvati, il dato di produzione di tutte le bovine in lattazione. Per ogni vacca viene raccolto un campione di latte da destinare al laboratorio per la determinazione del contenuto di grasso, proteine e cellule somatiche. Durante il controllo vengono registrati anche gli eventi riprodutttivi e vitali di ciascun soggetto, cioè le fecondazioni complete di data, tipo, razza e matricola del maschio utilizzato, nonché le date di parto con indicazioni sulla sua facilità, con identificativo del padre, numero e sesso dei nati. Inoltre, per ciascuna fattrice dovrà essere registrata la data effettiva di asciutta. Vanno riportate anche eventuali
eliminazioni di animali dall’azienda, con relativa data e causa, e le entrate di nuovi animali, acquistati, nati o trasferiti, complete di data e, in caso di nascita, della razza e matricola del padre. La raccolta di queste informazioni deve essere accurata in quanto concorrono a definire le genealogie degli animali e a valutare l’efficienza riproduttiva e la longevità degli stessi.

**Modelli a test-day**

I modelli a test-day (TDM) mirano a valutare le differenze produttive tra animali attribuibili ad effetti di natura genetica, rimuovendo dai dati le differenze dovute a fattori ambientali, in particolare a quelle dei giorni in cui ha avuto luogo il controllo funzionale (Dal Zotto, 2000). Infatti, rispetto al modello che considera la produzione a 305 giorni (modello a lattazione), i TDM si basano sull’utilizzo delle informazioni provenienti dai singoli controlli. Questo dovrebbe garantire valutazioni genetiche più accurate in quanto si tiene conto delle specifiche condizioni ambientali del giorno del rilievo in azienda, condizioni che con la procedura di valutazione genetica tradizionale non è possibile considerare. Pertanto, i TDM risultano più flessibili rispetto al modello a lattazione: non viene fatta nessuna assunzione sulla durata della lattazione e vengono eliminate le procedure di proiezione a 305 giorni. Con i TDM il numero di informazioni disponibili definisce la reale accuratezza di stima del valore genetico, perché si considerano tutti i dati e non un dato cumulativo elaborato a partire dalle singoli informazioni fenotipiche. Un modello attualmente molto utilizzato è il TDM a ripetibilità, metodologia che utilizza i singoli controlli come misurazioni ripetute sullo stesso animale, assume una correlazione pari a 1 tra osservazioni successive, una varianza costante tra tutte le osservazioni e tiene conto di tutti i legami di parentela (Reents et al., 1995).

Fonti di variabilità ambientale

La variabilità dovuta all’ambiente è data dall’insieme degli effetti, permanenti o temporanei, comuni o individuali, che contribuiscono a determinare delle variazioni dei fenotipi produttivi. Al fine di predire gli indici genetici è necessario rimuovere dai dati tali effetti (Dal Zotto, 2000). Tra quelli più importanti, in grado di influenzare le produzioni delle bovine, si considerano l’allevamento, l’età al parto, l’ordine di parto e lo stadio di lattazione. Nel caso dei TDM, si tiene conto dell’effetto combinato allevamento-giorno di controllo (HTD). L’effetto dell’età al parto consente di misurare le differenze di potenzialità produttive degli animali in funzione della loro maturità. È possibile considerare l’età al parto entro ordine di lattazione al fine di confrontare soggetti che a parità di età possono avere lattazioni differenti (es. una primipara tardiva con una secondipara precoce aventi la stessa età) (Dal Zotto, 2000). L’effetto dello stadio di lattazione è legato all’andamento della curva di lattazione, la quale ha un trend tipico nel tempo e viene classicamente ripartita in diverse fasi: colostrale (prima settimana dopo il parto), crescita fino al raggiungimento del picco produttivo (in genere 40-60 giorni dopo il parto) e decrescita fino all’asciutta.

Parametri genetici

La selezione porta al miglioramento genetico degli animali. La scelta dei riproduttori si attua sfruttando la variabilità genetica-additiva al fine di modificare permanentemente le caratteristiche di una popolazione animale. Un parametro estremamente importante nella genetica quantitativa è l’ereditabilità ($h^2$), ovvero la proporzionedi varianza fenotipica ($\sigma_p^2$) spiegata dalla varianza genetica-additiva ($\sigma_a^2$):

$$h^2 = \frac{\sigma_a^2}{\sigma_p^2}$$

L’ereditabilità di un carattere varia tra 0 (il fenotipo dipende totalmente da fattori ambientali) a 1 (il fenotipo dipende totalmente da fattori genetici additivi). I valori di ereditabilità per i caratteri di interesse zootecnico possono essere classificati in bassi ($h^2 < 0,1$), medi ($0,1 < h^2 < 0,4$) e alti ($h^2 > 0,4$) (Bittante et al., 2005). In genere, i caratteri riproduttivi presentano bassa ereditabilità, quelli legati alla produzione del
latte media ereditabilità e quelli riguardanti la produzione della carne (es. accrescimento e resa alla macellazione) alta ereditabilità.

I geni che influenzano l’espressione di un carattere possono influire anche sull’espressione di un secondo carattere. La correlazione genetica ($r_g$) esprime la relazione tra i genotipi additivi di due caratteri nella popolazione ed è espressa nel modo seguente:

$$r_g = \frac{\sigma_{g1g2}}{\sigma_{g1}\sigma_{g2}}$$

dove:

$\sigma_{g1g2}$ = covarianza genetica-additiva tra il carattere 1 ed il carattere 2;

$\sigma_{g1}$ = deviazione standard genetica-additiva del carattere 1;

$\sigma_{g2}$ = deviazione standard genetica-additiva del carattere 2.

I caratteri possono essere tra loro indipendenti ($r_g = 0$), correlati positivamente ($0 < r_g < 1$) oppure correlati negativamente ($-1 < r_g < 0$).

Dal punto di vista pratico, i parametri genetici sono molto importanti per la stima dei valori riproduttivi (EBV) degli animali appartenenti ad una popolazione. A loro volta, gli EBV rappresentano lo strumento per individuare gli animali miglioratori.

Selezione diretta e indiretta per la resistenza alla mastite

La selezione diretta per la resistenza alla mastite si basa sulla registrazione delle CM o dei risultati dei test batteriologici (Carlèn et al., 2004) ed è comune nei Paesi Nord-europei (Danimarca, Finlandia, Norvegia e Svezia) dove la patologia viene routinariamente registrata nel database nazionale (Heringstad et al., 2000; Samorè et al., 2008). Registrare i dati delle mastiti è complicato; inoltre, la resistenza alla mastite ha un’ereditabilità contenuta e tendenzialmente compresa tra 0,01 e 0,10 (Schutz, 1994; Carlén, 2004; de Haas et al., 2008), rendendo difficoltoso il processo di selezione.

Pertanto, la maggior parte dei Paesi a zootecnia avanzata fanno riferimento alle cellule somatiche per la selezione indiretta contro questa patologia (Reents et al., 1995). Questi dati sono facili da registrare e presentano un’ereditabilità più alta rispetto alla mastite. Inoltre, le correlazioni genetiche con quest’ultima sono generalmente alte e
giustificano il loro utilizzo come indicatori indiretti di CM e SCM (Shook and Schutz, 1994; Mrode and Swanson, 1996). Selezionare per basse SCC decrementa l’incidenza delle mastiti senza intaccare le difese naturali dell’animale (Rupp and Boichard, 2000; Nash et al., 2002). Tuttavia la selezione per le cellule somatiche presenta anche dei limiti, dovuti ad esempio ai dati utilizzati. I controlli funzionali riflettono in maniera più accurata l’effetto dei patogeni cronici rispetto a quelli ambientali: i primi portano ad elevati e costanti livelli di SCS lungo la lattazione, mentre i secondi (es. Escherichia Coli) fanno aumentare le SCS per periodi di tempo di breve durata e quindi non sempre vengono registrati (Shook and Schutz, 1994). Un altro rischio nella selezione per le SCS è quello di favorire gli animali che hanno una bassa risposta immunitaria ai fenomeni mastitici (Shook and Schutz, 1994).

L’interrazione tra il progresso tecnologico-manageriale e la maggiore attenzione per gli aspetti sanitari sta portando all’identificazione di nuovi caratteri per valutare lo stato sanitario delle lattifere. La conducibilità elettrica (CE) è un parametro che misura l’attitudine di un materiale a lasciarsi attraversare dalla corrente elettrica. Esiste un rapporto tra CE ed eventi infiammatori. La CE del latte è dovuta alla presenza della soluzione salina come componente dello stesso. Gli ioni Na⁺, K⁺ e Cl⁻ sono normalmente presenti nel latte ed il loro rapporto varia in funzione di diversi fattori, tra i quali i fenomeni infiammatori. Quando una lattifera è colpita da mastite si verifica un aumento della CE del latte, la quale viene rilevata da sensori posizionati sull’impianto di mungitura. Norberg et al. (2006) hanno stimato un’ereditabilità variabile da 0,22 a 0,39 per la CE, decisamente più alta rispetto all’ereditabilità della mastite. Inoltre, la correlazione genetica tra i due caratteri è risultata pari a 0,75.

**Ereditabilità delle cellule somatiche**

Numerose sono le stime di ereditabilità delle SCS riscontrabili in letteratura e la maggior parte di queste riguardano un valore medio di SCS per lattazione (LSCS) ottenuto trasformando i valori delle SCC in SCS e calcolando successivamente la media degli stessi entro lattazione. L’ereditabilità stimata per LSCS varia da 0,05 a 0,27 (Monardes et al., 1983; Schutz, 1994; Rupp and Boichard, 1999; Carlén et al., 2004; de Haas et al., 2008; Samorè et al., 2008). In generale, le stime di ereditabilità delle SCS utilizzando i TDM risultano più basse rispetto a quelle ottenute con modelli a
Introduzione. Samorè (2003) riporta valori compresi tra 0,06 e 0,09 (primipare) utilizzando un TDM a ripetibilità, rispetto a valori compresi tra 0,14 e 0,21 utilizzando modelli a lattazione. In Italia, l’ereditabilità per le SCS si attesta su valori di 0,21 per la Frisona e 0,08 per la Pezzata Rossa e la Bruna.

**Correlazione genetica tra cellule somatiche e mastite**

Molti studi hanno dimostrato che la correlazione genetica tra mastite e LSCS è positiva. Carlén (2004) ha stimato un valore di 0,70, mentre Schutz (1994) riporta correlazioni variabili da 0,30 a 0,98 tra SCC e CM. Valori simili (0,36-0,99) sono riportati anche da Nash et al. (2000). La correlazione genetica positiva suggerisce che selezionare bovine con basse SCC può effettivamente ridurre l’incidenza di CM. Alte SCC sono indicative di una risposta immunitaria conseguente ad infezione intramammaria, mentre basse SCC generalmente indicano assenza di infezione (de Haas et al., 2008). Selezionare contro alti valori di SCS può ridurre l’incidenza delle CM e fornire benefici attraverso premi per l’alta qualità del latte (Schutz, 1994).

**Correlazione genetica tra cellule somatiche e caratteri produttivi**

Sono numerosi gli studi che riportano le correlazioni tra SCC o SCS e i principali caratteri produttivi, cioè la produzione di latte e il contenuto di proteina e di grasso. In bibliografia sono riportate correlazioni genetiche per LSCS e produzione di latte variabili da -0,02 a 0,48 (Shook and Schutz, 1994). Valori simili, variabili da -0,07 a 0,22, sono risultati da altre ricerche (Mrode and Swanson, 1996; Rupp and Boichard, 1999; Carlén et al., 2004; Ikonen et al., 2004). Tra gli studi esaminati, quello di Cassandro et al. (2008) ha riportato la correlazione genetica più negativa tra latte e SCS (-0,30).

Per quanto riguarda le correlazioni tra SCS e contenuto di proteina, i valori variano da -0,14 a 0,54 (Schutz, 1994; Rupp and Boichard, 1999; Carlén et al., 2004; Ikonen et al., 2004; Cassandro et al., 2008; Samorè et al., 2008).

Le correlazioni genetiche tra SCS e contenuto di grasso variano da -0,04 a 0,37 (Schutz, 1994; Rupp and Boichard, 1999; Carlén et al., 2004; Ikonen et al., 2004; Muir et al., 2007; Cassandro et al., 2008). In Tabella III si riassumono alcuni valori sopracitati.
Tabella III. Correlazioni genetiche tra cellule somatiche (SCS) e produzione di latte, proteina e grasso riscontrate in bibliografia.

<table>
<thead>
<tr>
<th>Studio</th>
<th>Latte</th>
<th>Proteina</th>
<th>Grasso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schutz (1994)</td>
<td>da -0,02 a - 0,48</td>
<td>da -0,14 a - 0,54</td>
<td>0,02</td>
</tr>
<tr>
<td>Rupp and Boichard (1999)</td>
<td>0,15</td>
<td>0,20 (proteina %)</td>
<td>-0,02 (grasso %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,27 (proteina kg)</td>
<td>0,11 (grasso kg)</td>
</tr>
<tr>
<td>Carlén et al. (2004)</td>
<td>da 0,13 a 0,22</td>
<td>da 0,13 a 0,23 (proteina kg)</td>
<td>da 0,02 a 0,17 (grasso kg)</td>
</tr>
<tr>
<td>Ikonen et al. (2004)</td>
<td>-0,07</td>
<td>0,02 (proteina %)</td>
<td>0,37 (grasso %)</td>
</tr>
<tr>
<td>Cassandro et al. (2008)</td>
<td>-0,30</td>
<td>0,04 (proteina %)</td>
<td>0,32 (grasso %)</td>
</tr>
</tbody>
</table>

Correlazione genetica tra cellule somatiche e caratteri funzionali e tecnologici del latte

Come detto in precedenza, la selezione genetica dei bovini da latte prende in considerazione non solo i caratteri produttivi, ma anche gli aspetti funzionali. Tra questi vengono inseriti la conformazione della mammella e la longevità.

Per quanto riguarda le correlazioni genetiche tra SCS e i principali caratteri che influenzano la conformazione della mammella (profondità, legamenti sospensori, capezzoli) Rupp and Boichard (1999) hanno stimato valori variabili da -0,46 a 0,26 e concludono dicendo che mammelle ben conformate sono associate a basse LSCS e ad una bassa incidenza di CM. Samorè (2003) ha stimato una correlazione genetica tra SCS e longevità pari a 0,31, ovvero alti valori di SCS sono associati ad una carriera produttiva più breve.

Studi sulle proprietà di coagulazione del latte hanno evidenziato un’associazione interessante tra tempo di coagulazione e SCS (da 0,25 a 0,29) e consistenza del coagulo e SCS (da -0,30 a -0,45) (Ikonen et al., 2004; Cassandro et al., 2008).
La razza Burlina

Origini storiche

La Burlina\(^4\) è una razza autoctona a duplice attitudine allevata nelle aree pedemontane del Veneto. Le ipotesi sulla sua origine sono molteplici. La prima assume che sia frutto di incrocio tra la Rendena e la Grigio Alpina. La seconda stabilisce che derivi dalla razza Friburghese (Svizzera). Una terza teoria, in fase di verifica, considera questa razza originaria dell’Asia e sostiene che le bovine siano state portate in parte sui monti Carpazi e in parte sui Balcani attraverso le pianure russe e i monti del Caucaso. Gli animali sarebbero poi arrivati nel Veneto con la Serenissima Repubblica di Venezia che, nel XVII secolo, intratteneva scambi con queste regioni (Veneto Agricoltura, 2007). L’ipotesi più accreditata rimane comunque quella del prof. Chiodi che associa la Burlina alle razze pezzate del Nord Europa per la somiglianza morfologica con le bovine della Frisia orientale, dell’Olanda e della Danimarca (Chiodi, 1927). Oltre alle caratteristiche somatiche, ad avvalorare la teoria di Chiodi si aggiunge l’analisi storica del periodo di diffusione della razza. Sembra che la Burlina sia stata introdotta nel territorio Veneto dai Cimbri e dai Teutoni nel 100 a.C.. Queste due popolazioni, originarie dell’attuale penisola dello Jutland, dopo essere state sconfitte dalle legioni romane presso i Campi Raudi (Vercelli) si insediarono prima nel territorio di Asiago e successivamente nel complesso montuoso del Grappa. Isolate in questo territorio dai presidi militari Romani, mantennero intatti i loro usi e costumi, la loro lingua e le loro tradizioni. Rifacendoci al concetto di coevoluzione, si può confermare quanto detto da Chiodi: la sorte subita dagli abitanti di questi luoghi è probabilmente quella occorsa ai loro animali (Chiodi, 1927).

Alla fine del 1800 il patrimonio zootecnico veneto si attestava su circa 100.000 bovini, ripartiti tra le razze Grigio Alpina, allevata per la produzione di latte, carne e per la forza lavoro, Rendena, allevata per la produzione di latte e carne, e Burlina, caratterizzata da una buona produzione di latte ma anche da una grande capacità di adattarsi a condizioni di allevamento variabili. In questi anni la distinzione tra le razze non era precisa, soprattutto nelle zone dove venivano allevate insieme.

Nel 1910 iniziò un periodo di grandi difficoltà per la Burlina; vennero avanzate le prime proposte di sostituzione delle razze “di piccola taglia” con quelle più redditizie, come la Bruna Alpina. Con la Prima Guerra Mondiale l’intera provincia di Vicenza fu gravemente danneggiata nel suo patrimonio zootecnico: i bovini delle zone distrutte erano quasi totalmente di razza Burlina e quelli rimasti servivano per sfamare la popolazione. Nel 1926 il Comitato Zootecnico Provinciale impostò un programma che prevedeva l’eliminazione dei riproduttori non ritenuti idonei per il miglioramento del patrimonio bovino dell’epoca. Molti allevatori si opposero a questa disposizione e costituirono un Consorzio per la ricostituzione della Burlina. Nel 1929 vennero stanziati premi e contributi indirizzati alla diffusione della Bruna Alpina vietando l’utilizzo di tori non approvati dalle Commissioni Zootecniche Provinciali. Nonostante i tentativi di eliminazione della razza, nel censimento del 1930 la consistenza raggiungeva i 15.000 capi distribuiti nell’alta pianura, nelle zone collinari e nelle Prealpi trevigiane e vicentine. Nel 1931, durante il Convegno di Padova per lo Sviluppo e il Miglioramento del Patrimonio Zootecnico delle Tre Venezie e, più tardi nel 1942, durante il Convegno di Merano, venne esaminata la situazione della razza e, visti gli scarsi risultati ottenuti dopo anni di lavoro ricostruttivo, selettivo e di controllo, si decise di procedere alla sua graduale sostituzione con la Bruna Alpina. Ufficialmente la Burlina era stata eliminata ma la sua presenza fu consentita dal Secondo Conflitto Mondiale: questo, come il precedente, frenò l’applicazione delle direttive ufficiali con il conseguente rallentamento di ogni attività promozionale e di controllo. Nel dopoguerra furono applicati i regolamenti che vietavano l’uso di tori non approvati dalle Commissioni Zootecniche Provinciali e vennero concessi nuovi contributi per l’acquisto ed il mantenimento di riproduttori, maschi e femmine, delle razze riconosciute. Nel Convegno Zootecnico delle Tre Venezie del 1954 non furono adottate misure particolari per la Burlina in quanto, con il miglioramento delle risorse economiche degli allevatori, sarebbe stato nel loro stesso interesse preferire razze più produttive. Negli anni seguenti era difficile trovare tori Burlini da usare in fecondazione naturale e nel 1962, durante il Convegno Zootecnico Triveneto, si parlava della Burlina, insieme alla Norica e alla Rendena, come di una razza minore allevata in una zona circoscritta e per la quale era ormai impossibile ogni espansione. Con la promulgazione della Legge n. 126/1963, applicata dal 1972, sulla disciplina della riproduzione bovina, si vietò
l'utilizzo di tori non abilitati nelle stazioni di monta e presso i nuclei di selezione; questo contribuì alla drammatica contrazione del numero di animali allevati\(^5\). Nel 1964 l'Istituto Sperimentale Zootecnico di Roma chiedeva notizie sulla razza Burlina e la risposta della provincia di Treviso fu che non esistevano quasi più animali puri. Negli anni ’80, grazie ai provvedimenti internazionali sulla conservazione della biodiversità, la Burlina, che era considerata ormai una razza reliquia, venne introdotta nel Registro delle Razze Autoctone. Il suo recupero faceva parte del “Progetto Finalizzato alla Difesa delle Risorse Genetiche delle Popolazioni Animali”\(^6\). Nel 1983 (dopo 11 anni) vennero ripresi i controlli funzionali, le valutazioni morfologiche e l’individuazione dei tori con le migliori caratteristiche di razza, da inviare ai centri di selezione per la produzione di materiale seminale. L’Ente di Sviluppo Agricolo del Veneto (ESAV) intraprese un piano di recupero con l’obiettivo di aumentare la popolazione femminile, ridurre la parentela fra gli individui e l’incrocio con altre razze (Bittante et al., 1992). In Figura I si riporta l’andamento della popolazione Burlina in provincia di Treviso dagli anni ’50 ad oggi.

**Figura I.** Andamento della popolazione Burlina in provincia di Treviso (Veneto Agricoltura, 2007; AIA, 2008).

![Andamento della popolazione Burlina in provincia di Treviso](image.png)

**La Burlina oggi**

L’evoluzione della zootecnia dagli anni ’50 ad oggi è stata caratterizzata da diversi aspetti: le razze utilizzate per la produzione di latte sono diminuite, soprattutto quelle

---

\(^5\) Una deroga alle direttive della Legge 126/63 è stata concessa dal Ministero dell’Agricoltura e delle Foreste per salvaguardare il germoplasma Burlino, dopo che questa razza è stata ammessa al Registro Anagrafico delle popolazioni bovine autoctone e gruppi etnici a limitata diffusione (1985).

\(^6\) Comitato scientifico costituito dal prof. Rognoni, Università di Milano, e dal prof. Bittante, Università di Padova; comitato tecnico formato da un funzionario Zootecnico del locale Ispettorato, da un funzionario dell’ESAV e dal presidente della società Burlina.
autoctone, e si è avuta una contrazione del numero di capi allevati e del numero di aziende.

I dati della provincia di Treviso rispecchiano la statistica nazionale per quanto concerne il predominio della Frisona Italiana, con 15.320 vacche controllate (81,9% delle bovine trevigiane), seguita dalla Bruna e dalla Pezzata Rossa Italiana. Tra le razze minori la Burlina è presente con 297 vacche (AIA, 2008) (Tabella IV). Nel 1986 la razza era presente in 31 allevamenti (Miotello, 2004), mentre oggi le aziende si sono ridotte a 13, delle quali 6 allevano oltre il 90% dei soggetti registrati dall’APA di Treviso. Gli allevamenti sono localizzati nella zona pedemontana del Grappa, cioè nei comuni dell’area dei colli Asolani. Si tratta di aziende a stabulazione fissa, con sistema di mungitura a lattodotto. La monta naturale è ancora assai praticata e ogni azienda ha almeno un toro Burlino nella mandria (Pretto, 2008). Nel periodo estivo le vacche vengono alpeggiate sulle zone impervie e poco produttive del monte Grappa. Si sfruttano in tal modo le caratteristiche di rusticità, frugalità e buona adattabilità della razza a pascoli poveri.


Tabella IV. Vacche di diverse razze controllate in provincia di Treviso (AIA, 2008).

<table>
<thead>
<tr>
<th>Razza</th>
<th>Vacche n.</th>
<th>%</th>
<th>Aziende n.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frisona</td>
<td>15.320</td>
<td>81,8</td>
<td>286</td>
</tr>
<tr>
<td>Bruna</td>
<td>1.316</td>
<td>7,0</td>
<td>79</td>
</tr>
<tr>
<td>PRI</td>
<td>1.226</td>
<td>6,5</td>
<td>87</td>
</tr>
<tr>
<td>Burlina</td>
<td>297</td>
<td>1,6</td>
<td>12</td>
</tr>
<tr>
<td>Jersey</td>
<td>30</td>
<td>0,2</td>
<td>11</td>
</tr>
<tr>
<td>Rendena</td>
<td>9</td>
<td>0,1</td>
<td>1</td>
</tr>
<tr>
<td>Meticcia</td>
<td>517</td>
<td>2,8</td>
<td>134</td>
</tr>
<tr>
<td><strong>Totale</strong></td>
<td><strong>18.715</strong></td>
<td><strong>100</strong></td>
<td><strong>610</strong></td>
</tr>
</tbody>
</table>

Tabella V. Distribuzione delle vacche di razza Burlina sul territorio nazionale (AIA, 2008).

<table>
<thead>
<tr>
<th>Provincia</th>
<th>Vacche n.</th>
<th>%</th>
<th>Aziende n.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treviso</td>
<td>297</td>
<td>79,1</td>
<td>12</td>
<td>54,6</td>
</tr>
<tr>
<td>Vicenza</td>
<td>61</td>
<td>16,3</td>
<td>6</td>
<td>27,4</td>
</tr>
<tr>
<td>Isernia</td>
<td>13</td>
<td>3,5</td>
<td>1</td>
<td>4,5</td>
</tr>
<tr>
<td>Padova</td>
<td>2</td>
<td>0,5</td>
<td>1</td>
<td>4,5</td>
</tr>
<tr>
<td>Rovigo</td>
<td>1</td>
<td>0,3</td>
<td>1</td>
<td>4,5</td>
</tr>
<tr>
<td>Napoli</td>
<td>1</td>
<td>0,3</td>
<td>1</td>
<td>4,5</td>
</tr>
<tr>
<td><strong>Totale</strong></td>
<td><strong>375</strong></td>
<td><strong>100</strong></td>
<td><strong>22</strong></td>
<td><strong>100</strong></td>
</tr>
</tbody>
</table>

I dati fenotipici riportati in Tabella VI mettono in chiara evidenza come la Burlina non possa essere paragonata alle razze cosmopolite in termini produttivi. Tuttavia, dal punto di vista riproduttivo le prestazioni sono nettamente migliori (Tabella VII). Quest’ultimo aspetto, unitamente al forte legame col territorio e al fatto che la razza è
parte del patrimonio zootecnico veneto, fa assumere alla Burlina un ruolo importante nella zootecnia locale.

**Tabella VI.** Prestazioni produttive di bovine di diverse razze sottoposte a controllo funzionale in provincia di Treviso (AIA, 2008)

<table>
<thead>
<tr>
<th>Razza</th>
<th>Lattazioni</th>
<th>Latte</th>
<th>Grasso</th>
<th>Proteina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n.</td>
<td>kg/lattazione</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>FRI</td>
<td>2,44</td>
<td>9.052</td>
<td>3,61</td>
<td>3,30</td>
</tr>
<tr>
<td>BRU</td>
<td>2,67</td>
<td>7.683</td>
<td>3,98</td>
<td>3,54</td>
</tr>
<tr>
<td>PRI</td>
<td>2,89</td>
<td>7.002</td>
<td>3,76</td>
<td>3,48</td>
</tr>
<tr>
<td>BUR</td>
<td>3,59</td>
<td>4.954</td>
<td>3,60</td>
<td>3,29</td>
</tr>
<tr>
<td>REN</td>
<td>3,45</td>
<td>5.039</td>
<td>3,49</td>
<td>3,29</td>
</tr>
</tbody>
</table>

FRI = Frisona Italiana; BRU = Bruna Italiana; PRI = Pezzata Rossa Italiana; BUR = Burlina; REN = Rendena.

**Tabella VII.** Prestazioni riproduttive di bovine di diverse razze sottoposte a controllo funzionale in provincia di Treviso (AIA, 2008)

<table>
<thead>
<tr>
<th>Razza</th>
<th>Età al primo parto</th>
<th>Mediana parto/concepimento</th>
<th>Inseminazioni/ gravidanza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mesi</td>
<td>giorni</td>
<td>n.</td>
</tr>
<tr>
<td>FRI</td>
<td>27,4</td>
<td>147</td>
<td>2,6</td>
</tr>
<tr>
<td>BRU</td>
<td>28,4</td>
<td>147</td>
<td>2,5</td>
</tr>
<tr>
<td>PRI</td>
<td>29,5</td>
<td>100</td>
<td>2,0</td>
</tr>
<tr>
<td>BUR</td>
<td>28,4</td>
<td>92</td>
<td>1,8</td>
</tr>
<tr>
<td>REN</td>
<td>34,2</td>
<td>110</td>
<td>1,9</td>
</tr>
</tbody>
</table>

FRI = Frisona Italiana; BRU = Bruna Italiana; PRI = Pezzata Rossa Italiana; BUR = Burlina; REN = Rendena.

**Standard di razza**

Come riportato nel disciplinare del Registro Anagrafico delle razze autoctone, sono definiti soggetti di razza Burlina i genotipi di taglia media, con mantello nero pezzato e con pelle sottile, elastica, facilmente staccabile dai tessuti sottostanti. La testa è leggera, allungata, il profilo rettilineo o leggermente concavo, gli occhi vivaci, le orecchie grandi, le narici lunghe, il musello e le mascelle larghe, le corna leggere, incurvate, dirette in avanti e in alto. Anteriormente l’animale si presenta armonico e ben sviluppato, il collo è leggero con giogaia sviluppata, il garrese non aperto e non acuminato, le spalle aderenti e poco muscolose, il petto largo, gli arti poco muscolosi, i piedi con unghioni solidi e ben sviluppati con zoccolo che si allarga uniformemente verso il contorno plantare. La linea dorsale è diritta, la spina dorsale non molto pronunciata e i lombi sono larghi. La groppa è tendenzialmente quadrata, leggermente inclinata, la coda ben attaccata con fiocco abbondante. Gli arti posteriori hanno

7Dalle statistiche ufficiali AIA sono omesse le provincie con meno di 50 capi. Per la Rendena sono riportati i dati della provincia di Padova, ovvero quella di maggior diffusione della razza nel Veneto.
Introduzione

appiombi regolari, cosce poco muscolose, garretti asciutti, leggeri e stinchi corti e leggeri, i piedi ben sviluppati, così come le pastoie e la corona. La mammella è globosa, con quarti uniformi, capezzoli lunghi e vene sviluppate. Comportano l’esclusione dal Registro Anagrafico la pezzatura del mantello con sfumature intermedie, le corna portate in basso e indietro e taglia e pigmentazione marcatamente diverse da quelle tipiche.

**Burlina, Morlacco e altopiano del Grappa**

Morlacco, Murlak, Murlaco o Burlacco erano i nomi con i quali storicamente si indicava un formaggio di latte vaccino prodotto nelle malghe dell’altopiano del Grappa nel periodo estivo. Notizie certe sulla produzione di questo formaggio nelle malghe del Grappa risalgono alla metà del secolo diciannovesimo. Il Morlacco è il prodotto della trasformazione del latte crudo, intero o parzialmente scremato; è un formaggio a pasta cruda, molle o semidura. In base alla durata della maturazione si distinguono due tipologie: fresco e stagionato. Il Morlacco fresco presenta crosta bianca, pasta tenera e compatta, il colore varia dal bianco all’avorio, sono presenti occhiature piccole, sparse e poco regolari. È un formaggio dal sapore salato, aromatico e leggermente acidulo. Il Morlacco stagionato ha la crosta morbida, corrugata sullo scalzo, il colore varia da paglierino ad aranciato-rosso. La pasta è tenera, il sottocrosta da molle a filante. Le caratteristiche organolettiche si accentuano con la stagionatura, la cui durata va da un minimo di 7 giorni per la tipologia fresco ad almeno 45 giorni per la variante stagionata.

Una delle strategie per permettere la conservazione e la valorizzazione di una razza locale è quella di legarla ad un prodotto e al territorio di appartenenza. In Italia, ad esempio, si può trovare il formaggio Fontina DOP prodotto dalla razza Valdostana nella regione della Valle d’Aosta. Nella zona di Parma e Reggio Emilia viene prodotto il Parmigiano Reggiano delle Vacche Rosse DOP, ottenuto dalla razza Reggiana. Anche nel territorio del Grappa si sta cercando di mettere in atto questa strategia per valorizzare la razza Burlina, il Morlacco del Grappa e la zona tipica di produzione. Da alcuni anni il Dipartimento di Scienze Animali dell’Università di Padova, l’Associazione Produttori Latte del Veneto (A.Pro.La.V.) e l’APA di Treviso stanno collaborando per la creazione di una filiera Latte-Morlacco di sola vacca Burlina. Nel progetto sono
coinvolti gli allevamenti monorazza e multirazza che differenziano il latte di Burlina. Per entrare nella filiera le aziende devono produrre latte con meno di 400,000 cellule/ml e devono sottoporre le proprie bovine ad un esame del DNA per certificare che il loro profilo genetico corrisponda a quello della Burlina. Il latte di questa razza viene acquistato dal caseificio ad un prezzo maggiorato di 0,05 €/litro rispetto a quello di altre razze ed il Morlacco di Burlina viene venduto ad 1 €/kg in più rispetto al Morlacco normale. Queste maggiorazioni servono per far fronte ai costi di produzione più alti (costi di raccolta, lavorazione e commercializzazione separata del latte e del Morlacco). Il caseificio si impegna a produrre Morlacco di Burlina utilizzando esclusivamente il latte crudo di questa razza e portando il formaggio ad una maturazione di 45-60 giorni in modo da consentire al prodotto di espletare al massimo le sue caratteristiche organolettiche.

Il Morlacco del Grappa di malga è un prodotto identificato come Presidio Slow Food. Esso riunisce i “malgari” del Monte Grappa che producono il formaggio solo con il latte munto durante l’alpeggio. Questa identificazione è un motivo in più per ritornare a praticare la monticazione degli animali e dare visibilità ad un prodotto tradizionale che merita di essere tutelato.
Obiettivi
Negli ultimi anni la razza Burlina è stata oggetto di caratterizzazione genetica attraverso approcci molecolari (Dalvit et al., 2008). Tuttavia, nella letteratura scientifica non esistono informazioni sui parametri genetici (ereditabilità e correlazioni) dei caratteri economicamente interessanti (latte, grasso, proteina e SCS) per questa popolazione.

Materiale e Metodi
Origine dei dati

Da diversi anni il Dipartimento di Scienze Animali dell’Università degli Studi di Padova, in collaborazione con l’Associazione Provinciale Allevatori (APA) di Treviso, sta portando avanti dei progetti di ricerca finalizzati alla conservazione e valorizzazione dei bovini di razza Burlina. La provincia di Treviso, con il 79,2% delle vacche presenti sul territorio, rappresenta l’areale di maggior presenza di questa popolazione autoctona a limitata diffusione.

L’APA ha proceduto all’invio, su supporto informatico, degli archivi contenenti le informazioni genealogiche dei soggetti di razza Burlina (pedigree) e i controlli funzionali della produttività del latte delle vacche. L’archivio pedigree contiene i dati anagrafici degli animali, ovvero gli identificativi del soggetto, del padre e della madre, la data di nascita ed il sesso del soggetto. L’archivio dei controlli funzionali contiene i dati produttivi degli animali, ovvero la produzione di latte (kg/giorno), i contenuti proteici e lipidici (%) e la conta delle cellule somatiche (numero/ml). Ulteriori informazioni presenti nell’archivio dei controlli funzionali sono l’identificativo della vacca, il codice AUA (azienda), la data di controllo, la data di parto e l’ordine di parto della vacca.

Archivio pedigree

In una fase preliminare si è proceduto al controllo delle informazioni contenute nel file pedigree. Sono state riscontrate alcune incongruenze:

- animali che risultavano sia come madri che come padri;
- soggetti che comparivano contemporaneamente come figli e padri nello stesso pedigree;
- padri che comparivano come femmine nel campo identificativo del sesso;
- fratelli pieni che presentavano una differenza di età di pochi giorni tra loro;
- soggetti con differenza di età inferiore ai 500 giorni (16,5 mesi) rispetto alla madre o al padre.

È stato chiesto all’APA di Treviso di effettuare una verifica dell’archivio e di controllare le anomalie riscontrate nel corso dell’analisi esplorativa. Corrette le incongruenze sopracitate, l’archivio pedigree ha assunto le seguenti caratteristiche:
Materiale e Metodi

2.185 animali con matricola nota;
2.048 animali presenti nel campo ‘SOGGETTI’ (1.540 femmine e 508 maschi). Di questi, 149 hanno data di nascita sconosciuta ed i rimanenti (1.899 soggetti) sono nati tra il 1978 ed il 2009;
151 padri diversi (con matricola nota), di cui 43 non compaiono come soggetti (sono presenti solo nel campo ‘PADRE’);
853 madri diverse (con matricola nota), di cui 94 non compaiono come soggetti (sono presenti solo nel campo ‘MADRE’);


Archivio dei controlli funzionali

L’archivio iniziale dei dati produttivi includeva 16.366 records raccolti su 767 vacche di razza Burlina in 13 aziende. Sono stati presi in considerazione i controlli funzionali provenienti da bovine fino all’8° ordine di parto, effettuati tra il 5° ed il 390° giorno di lattazione. A ciascun animale erano richiesti almeno 3 controlli registrati entro lattazione. Inoltre, si è deciso di considerare i records provenienti da aziende in cui, nel giorno del rilievo, sono state controllate almeno 3 vacche di razza Burlina, tenendo conto che maggiore è il numero di vacche rilevate nello stesso giorno (numero di contemporanee), maggiore è il confronto tra gli animali e, di conseguenza, più accurata ne risulta la stima della componente ambientale.

La qualità dei dati in ingresso rappresenta un elemento chiave per garantire la buona stima delle componenti di varianza e, successivamente, dei valori riproduttivi (EBV). Per tale motivo, prima di procedere con l’analisi statistica, è stato effettuato un controllo dei dati presenti in archivio e relativi alle caratteristiche quanti-qualitative del latte per individuare records non conformi. Si è deciso di considerare le produzioni di latte comprese tra 2 e 34 kg/giorno, con un contenuto di grasso tra il 2 ed il 6% e di proteina tra il 2 ed il 5%. La conta di cellule somatiche (SCC) del latte è stata limitata a valori uguali o inferiori a 10 milioni/ml e diversi da zero. Poiché il carattere SCC, a differenza degli altri caratteri analizzati, presenta una distribuzione asimmetrica (non
Materiale e Metodi

normale) con una coda più lunga verso destra (Figura II), si è proceduto alla sua trasformazione logaritmica. In questo modo si è ottenuta una nuova variabile (SCS) distribuita normalmente e analizzabile con modello lineare (Figura III). La trasformazione logaritmica è la seguente (Ali and Shook, 1980): $SCS = 3 + \log_{10}(SCC/100.000)$. In pratica, il carattere SCS non è altro che una misura lineare di facile interpretazione che permette di ridurre l’incidenza di errori dovuti a dati anomali. L’aumento di una unità di punteggio lineare corrisponde ad un valore doppio nel numero di cellule somatiche: ad esempio, un SCS di 3 corrisponde ad un SCC di 100.000 cellule/ml, un SCS di 2 corrisponde ad un SCC di 50.000 cellule/ml ed un SCS di 4 corrisponde ad un SCC di 200.000 cellule/ml.


Analisi Statistiche

Le analisi statistiche sono state condotte utilizzando le procedure implementate nel software SAS (2006). In particolare, le statistiche descrittive delle variabili studiate sono state ottenute con le procedure MEANS e FREQ, mentre le fonti di variazione sono state investigate utilizzando la procedura GLM (General Linear Model). Con l’obiettivo di individuare gli effetti di maggior impatto su produzione di latte (kg/giorno), tenore in grasso e proteina (%) e contenuto cellulare del latte (SCS, punti), è stata condotta un’analisi della varianza (ANOVA) utilizzando il seguente modello lineare:

$$Y_{ijkl} = \mu + HTD_i + AGE_j + DIM_k + e_{ijkl}$$

dove:

- $Y_{ijkl}$ = latte (kg/giorno), grasso (%), proteina (%) o SCS (punti);
- $\mu$ = media generale della variabile considerata;
- $HTD_i$ = effetto fisso dell’i$^{th}$ allevamento-giorno di controllo ($i=1,...,797$);
- $AGE_j$ = effetto fisso della j$^{th}$ classe di età al parto entro ordine di parto ($j=1,...,18$);
- $DIM_k$ = effetto fisso della k$^{th}$ classe di stadio di lattazione ($k=1,...,11$);
- $e_{ijkl}$ = errore casuale specifico di ogni osservazione $\sim N(0, \sigma^2_e)$. 

Materiale e Metodi
L’effetto fisso dell’età al parto entro ordine di parto è stato definito suddividendo le bovine in precoci, medie e tardive sulla base dell’età al parto come segue:

<table>
<thead>
<tr>
<th>Ordine di parto</th>
<th>Precoci</th>
<th>Medie</th>
<th>Tardive</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≤25</td>
<td>26-30</td>
<td>≥31</td>
</tr>
<tr>
<td>2</td>
<td>≤37</td>
<td>38-43</td>
<td>≥44</td>
</tr>
<tr>
<td>3</td>
<td>≤48</td>
<td>49-55</td>
<td>≥56</td>
</tr>
<tr>
<td>4</td>
<td>≤61</td>
<td>62-69</td>
<td>≥70</td>
</tr>
<tr>
<td>5</td>
<td>≤73</td>
<td>74-81</td>
<td>≥82</td>
</tr>
</tbody>
</table>

Per le bovine di sesto, settimo e ottavo ordine di parto si è considerata un’unica classe per ciascun ordine poiché, a questo punto, l’età non influenza più gli aspetti produttivi.

Per quanto concerne lo stadio di lattazione, si sono adottate classi di 30 giorni ad eccezione della prima (25 giorni) e dell’ultima (90 giorni).

### Stima dei parametri genetici e dei valori riproduttivi

Le componenti di (co)varianza di latte, grasso, proteina e SCS sono state stimate utilizzando un modello animale multivariato in cui sono stati considerati gli stessi effetti descritti nel modello precedente e due nuovi effetti casuali: l’ambiente permanente e l’animale (effetto genetico additivo). Le stime sono state ottenute utilizzando la procedura REML implementata nel programma VCE (Neumaier e Groeneveld, 1998). Il file di pedigree (988 animali) comprendeva tutti i soggetti con record fenotipico e i loro antenati. Di questi, 180 erano fondatori (“base animals”) e 808 avevano almeno 1 genitore noto (“non base animals”). Dei 180 fondatori, 92 avevano entrambi i genitori sconosciuti e 88 non comparivano nel campo “SOGGETTI”.

Le componenti di (co)varianza sono state in seguito utilizzate per la stima dei valori riproduttivi (EBV) tramite il programma PEST (Groeneveld et al., 1990). Il modello di calcolo utilizzato è un *Testday repeatability BLUP Animal Model* il quale utilizza i singoli controlli funzionali effettuati ripetutamente sugli stessi animali e considera tutti i legami di parentela sia in linea materna che paterna. Va ricordato che l’effetto ambientale permanente di cui si è accennato sopra identifica tutti quei fattori di natura non genetica (quindi non trasmissibili alla progenie) che influenzano le produzioni dell’animale nel corso di tutta la sua carriera. Ad esempio, se una vacca primipara va incontro ad una mastite nella quale perde la funzionalità di un quarto, questo deficit influenzerà tutte le produzioni future della vacca. Questo tipo di alterazione non è
strettamente di origine genetica e quindi deve essere rimossa dall’analisi per non influenzare la stima del valore riproduttivo.

**Figura II.** Distribuzione di frequenza della conta cellulare del latte (SCC).

**Figura III.** Distribuzione di frequenza del punteggio di cellule somatiche (SCS).
Risultati e Discussione
I dati utilizzati per la caratterizzazione produttiva e genetica della razza Burlina sono stati raccolti da maggio 1999 a marzo 2009. Escludendo gli anni estremi, per i quali non si avevano a disposizione le informazioni fenotipiche in tutti i 12 mesi, è possibile evidenziare un aumento, seppur moderato, della consistenza della popolazione sottoposta a controllo funzionale (Tabella 1). Mediane sono stati eseguiti 6,6 controlli per vacca entro lattazione: questo dato è comunque sovrastimato considerando che dall’archivio sono state escluse le lattazioni con meno di 3 controlli. La distribuzione dei rilievi per mese (Figura 1) evidenzia come in autunno e inverno (settembre-febbraio) si concentri il 74% dei records, mentre nei mesi estivi (giugno-agosto) questo valore scenda all’8%. L’andamento rispecchia la forte stagionalità dei partì nella razza Burlina, legata all’impiego dei pascoli di malga nei mesi estivi: le vacche vengono portate in alpeggio gravide ed in fase avanzata di lattazione o durante l’asciutta, per rientrare in stalla a settembre ed iniziare il nuovo ciclo produttivo. Il numero di vacche e di controlli decresce con l’aumentare dell’ordine di parto (Tabella 2). Questo riflette l’eliminazione delle bovine nel corso della carriera produttiva a causa di problemi sanitari, scarsa convenienza economica o altro. Il 74,8% dei controlli funzionali si concentra tra i 5 e i 210 giorni di lattazione (Tabella 3). Mediane la Burlina produce 16,5 kg di latte al giorno al 3,67% di grasso e 3,33% di proteina (Tabella 4). Questi dati sono in linea con quanto riportato da AIA (2008) per la razza (Tabella VII – Introduzione). Il contenuto cellulare è di 481.000 cellule/ml e supera la soglia (400.000 cellule/ml) stabilita dall’UE per destinare il latte crudo al consumo diretto. L’età media al parto è di 56,5 mesi (Tabella 4), decisamente superiore rispetto alle statistiche fornite da AIA (2008) per le razze Friona (47,2 mesi) e Bruna (51 mesi). Questo dato sottolinea la maggior durata in stalla della Burlina: le bovine non hanno difficoltà a rimanere gravide e anche se la produzione di latte è contenuta, gli allevatori difficilmente riformano volontariamente la vacca. È importante ribadire che per le popolazioni autoctone a limitata diffusione non si possono perseguire gli obiettivi di selezione delle razze cosmopolite. La Burlina deve rimanere una valida alternativa per gli allevatori che operano in zone marginali a rischio di abbandono e degrado. Inoltre, deve essere tutelata per il legame con il territorio, per le caratteristiche riproduttive e per l’elevata rusticità, che la rendono una razza facilmente adattabile anche alle situazioni di allevamento più impervie.
In Tabella 5 sono riportati i risultati dell’analisi della varianza per i caratteri produttivi e le SCS. Il coefficiente di determinazione ($R^2$), ovvero la proporzione di variabilità di un carattere spiegata dal modello statistico, è pari al 69% per il latte, 54% per la proteina e 34% per il grasso. Il modello spiega solo il 27% della variabilità delle SCS, evidenziando come sia difficile individuare i molteplici effetti ambientali che influenzano questo carattere. Tutte le fonti di variazione incluse nel modello sono risultate altamente significative ($P < 0,001$). Lo stadio di lattazione (DIM) è l’effetto più importante, seguito dall’età al parto della vacca entro lattazione (AGE) e dall’allevamento-giorno di controllo (HTD).

In Figura 4 si riportano le medie corrette della produzione di latte per classe di stadio di lattazione. La produzione più elevata si ha nei primi 30 giorni dopo il parto (21,6 kg/giorno), mentre decresce gradualmente nei mesi successivi fino a raggiungere i 9,9 kg/giorno. Le curve di grasso e proteina seguono un andamento inverso (Figura 5). Nei primi 30 giorni il latte ha mediamente il 3,60% di grasso e il 3,15% di proteina. La concentrazione diminuisce leggermente al picco per un effetto diluizione e aumenta progressivamente nelle fasi successive fino a raggiungere il 4,09% di grasso e il 3,80% di proteina. Per quanto concerne le SCS, l’andamento entro lattazione è crescente.

La stima delle componenti di varianza (Tabella 6) è il primo passo per la valutazione genetica degli animali e consente di determinare quanto la variabilità fenotipica è influenzata dagli aspetti genetici (varianza genetica additiva) e ambientali (varianza ambientale permanente e residua). Dai rapporti tra (co)varianze si ottengono i parametri genetici (ereditabilità e correlazioni genetiche) e la ripetibilità. Quest’ultima è un parametro utile nel caso di misurazioni ripetute del fenotipo di un animale e, indirettamente, consente di quantificare l’incidenza dei fattori ambientali temporanei sulla variabilità di un carattere. In Tabella 7 sono riportati i valori di ripetibilità stimati: in particolare, il più basso (29,2%) è stato calcolato per le SCS. Questo sta a indicare che il grado di somiglianza tra le misurazioni ripetute sullo stesso animale è bassa, ovvero che la variabilità ambientale dovuta a fattori temporanei è predominante.

Le stime di ereditabilità e delle correlazioni genetiche tra i caratteri sono presentate in Tabella 8. Proteina e grasso sono i caratteri più ereditabili (36 e 28%, rispettivamente). I valori ottenuti sono confrontabili con le stime riscontrate in bibliografia, e comprese tra il 18 ed il 46% per la proteina e il 29 ed il 53% per il grasso (Rupp and Boichard, ...)
L'ereditabilità per le SCS è del 6,7% e paragonabile ai valori riportati da Monardes et al. (1983), Schutz (1994), Rupp and Boichard (1999), Samorè (2003), Carlén et al. (2004), de Haas et al. (2008), Samorè et al. (2008). L'ereditabilità della produzione giornaliera di latte è pari al 18,8% e rispecchia i valori riportati in bibliografia, compresi tra il 13 e il 34% (Rupp and Boichard, 1999; Samorè, 2003; Carlén et al., 2004; Ikonen et al., 2004).

In generale, le correlazioni genetiche tra i caratteri produttivi e le SCS sono basse (Tabella 8). In particolare, tra le SCS e la produzione di latte è -0,115, tra SCS e grasso è -0,219 e tra SCS e proteina è -0,298. Analoghe correlazioni si riscontrano in letteratura (Schutz, 1994; Rupp et al., 1999; Carlén et al., 2004; Ikonen et al., 2004; Cassandro et al., 2008). Prossime allo zero sono pure le correlazioni tra latte e grasso (-0,001) e latte e proteina (-0,089), mentre la stima più alta si ha tra grasso e proteina (0,629).

Visti i dati di ereditabilità, la selezione diretta per ridurre le SCS risulta più difficoltosa di quella per gli aspetti produttivi. L’utilizzo delle SCS come strumento di selezione indiretta per il miglioramento dello stato sanitario della mammella appare giustificato dall’ereditabilità più alta rispetto a quella per la resistenza alla mastite, dalle alte correlazioni genetiche tra i due caratteri (Schutz, 1994; Nash et al., 2000; Carlén, 2004) e dalle basse correlazioni con i caratteri produttivi. Pertanto, la selezione indiretta dovrebbe limitare l’insorgenza di mastiti senza compromettere la produzione di latte, grasso e proteina.

Il valore riproduttivo (EBV) di un animale è dato dalla capacità del soggetto stesso di migliorare o meno la media della popolazione a cui appartiene. Nelle Figure 6, 7, 8 e 9 sono riportate le distribuzioni degli EBV per produzione di latte, SCS, proteina e grasso. Gli EBV della popolazione Burlina mostrano la variabilità presente nella razza: il range per il latte è di 8 kg/giorno (Figura 6), per le SCS è di 1,6 punti (Figura 7), per la proteina è del 0,9% (Figura 8) e per il grasso è di 1,3% (Figura 9).

La presenza di variabilità genetica nella razza è sfruttabile ai fini selettivi se associata ad un monitoraggio continuo del livello di consanguineità. Per fare ciò si potrebbe adottare una strategia basata su indici composti parentela-indici genetici. La finalità è di gestire la popolazione attraverso piani di accoppiamento che consentano di migliorare la razza mantenendo la variabilità genetica. La scelta dei riproduttori può essere ottimizzata con la seguente funzione:
Risultati e Discussione

\[ M = \nu_1 \times EBV - \nu_2 \times a_{xy} \]

dove \( M \) è il merito individuale del soggetto e \( \nu_1 \) e \( \nu_2 \) sono i pesi da attribuire, rispettivamente, agli EBV e alla parentela (\( a_{xy} \)), che permettono di dare l’enfasi desiderata al progresso genetico e al controllo della consanguineità (Pagnacco, 2004; Cassandro, 2008). L’intensità di selezione viene attenuata dall’impiego dei soggetti che garantiscono il contenimento del livello di consanguineità. Questo approccio garantisce un giusto compromesso tra redditività e conservazione della popolazione.
Il presente lavoro di tesi ha stimato i parametri genetici dei caratteri produttivi e delle cellule somatiche della razza Burlina. L’ereditabilità è pari al 18,8% per la produzione di latte, 27,5% per il contenuto di grasso, 35,8% per il contenuto di proteina e 6,7% per le SCS. Le correlazioni genetiche tra tutti i caratteri sono tendenzialmente basse, ad eccezione di quella tra grasso e proteina (0,629). I risultati sono in linea con i valori riportati in bibliografia per le razze cosmopolite. I valori riproduttivi hanno mostrato la presenza di variabilità genetica nella popolazione, sfruttabile per il miglioramento genetico dei caratteri produttivi e, soprattutto, per la selezione indiretta contro la mastite attraverso l’utilizzo delle SCS.

Nelle razze autoctone, la cui numerosità effettiva è critica, l’attività di selezione non può prescindere dalla conservazione delle stesse. La variabilità genetica in primo luogo deve essere mantenuta e, successivamente, utilizzata al fine di incrementare la redditività dell’allevamento. Lo sviluppo di indici genetici e di piani di accoppiamento dovrebbe essere associato alla valorizzazione delle caratteristiche intrinseche alla razza, quali la longevità, la fertilità, la rusticità e l’adattabilità a diverse condizioni ambientali. Questi aspetti, unitamente al fatto che sono in atto progetti mirati a creare un forte legame razza-prodotto-territorio, sono indispensabili per sostenere la popolazione Burlina.


COM 216. Arrestare la perdita di biodiversità entro il 2010 e oltre. Sostenere i servizi ecosistemici per il benessere umano (Comunicazione della Commissione al Consiglio e al Parlamento Europeo, 22 maggio 2006).


specialistica in Scienze e Tecnologie Agrarie. Dipartimento di Scienze Animali. Università degli Studi di Padova.


Regolamento (CE) che stabilisce norme specifiche in materia di igiene per gli alimenti di origine animale, 853 (Parlamento Europeo e Consiglio dell’Unione Europea Aprile 29, 2004).

Regolamento (CE) recante disposizioni di applicazione del regolamento (CE) n. 1257/1999 del Consiglio sul sostegno allo sviluppo rurale da parte del Fondo europeo agricolo di orientamento e di garanzia (FEAOG), 817 (Commissione Europea Aprile 29, 2004).


Tabelle e Figure
Tabella 1. Distribuzione delle vacche e dei controlli funzionali (n = 13.228) per anno di controllo.

<table>
<thead>
<tr>
<th>Anno</th>
<th>Vacche (n.)</th>
<th>Controlli funzionali (n.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>135</td>
<td>371</td>
</tr>
<tr>
<td>2000</td>
<td>216</td>
<td>1.146</td>
</tr>
<tr>
<td>2001</td>
<td>219</td>
<td>1.078</td>
</tr>
<tr>
<td>2002</td>
<td>237</td>
<td>1.287</td>
</tr>
<tr>
<td>2003</td>
<td>231</td>
<td>1.345</td>
</tr>
<tr>
<td>2004</td>
<td>242</td>
<td>1.396</td>
</tr>
<tr>
<td>2005</td>
<td>248</td>
<td>1.501</td>
</tr>
<tr>
<td>2006</td>
<td>235</td>
<td>1.383</td>
</tr>
<tr>
<td>2007</td>
<td>251</td>
<td>1.682</td>
</tr>
<tr>
<td>2008</td>
<td>267</td>
<td>1.685</td>
</tr>
<tr>
<td>2009</td>
<td>154</td>
<td>354</td>
</tr>
</tbody>
</table>

Tabella 2. Distribuzione delle vacche e dei controlli funzionali (n = 13.228) per ordine di parto.

<table>
<thead>
<tr>
<th>Ordine di parto</th>
<th>Vacche (n.)</th>
<th>Controlli funzionali (n.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>473</td>
<td>3.291</td>
</tr>
<tr>
<td>2</td>
<td>408</td>
<td>2.702</td>
</tr>
<tr>
<td>3</td>
<td>343</td>
<td>2.211</td>
</tr>
<tr>
<td>4</td>
<td>259</td>
<td>1.698</td>
</tr>
<tr>
<td>5</td>
<td>191</td>
<td>1.241</td>
</tr>
<tr>
<td>6</td>
<td>142</td>
<td>903</td>
</tr>
<tr>
<td>7</td>
<td>105</td>
<td>701</td>
</tr>
<tr>
<td>8</td>
<td>76</td>
<td>481</td>
</tr>
</tbody>
</table>

Tabella 3. Distribuzione dei controlli funzionali (n = 13.228) per classe di giorni di lattazione (DIM).

<table>
<thead>
<tr>
<th>Classe di DIM</th>
<th>Intervallo (giorni)</th>
<th>n.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 ≤ DIM &lt; 31</td>
<td>1.268</td>
<td>9,6</td>
</tr>
<tr>
<td>2</td>
<td>31 ≤ DIM ≤ 60</td>
<td>1.451</td>
<td>11,0</td>
</tr>
<tr>
<td>3</td>
<td>61 ≤ DIM ≤ 90</td>
<td>1.485</td>
<td>11,2</td>
</tr>
<tr>
<td>4</td>
<td>91 ≤ DIM ≤ 120</td>
<td>1.539</td>
<td>11,6</td>
</tr>
<tr>
<td>5</td>
<td>121 ≤ DIM ≤ 150</td>
<td>1.434</td>
<td>10,8</td>
</tr>
<tr>
<td>6</td>
<td>151 ≤ DIM ≤ 180</td>
<td>1.369</td>
<td>10,4</td>
</tr>
<tr>
<td>7</td>
<td>181 ≤ DIM ≤ 210</td>
<td>1.350</td>
<td>10,2</td>
</tr>
<tr>
<td>8</td>
<td>211 ≤ DIM ≤ 240</td>
<td>1.124</td>
<td>8,5</td>
</tr>
<tr>
<td>9</td>
<td>241 ≤ DIM ≤ 270</td>
<td>957</td>
<td>7,2</td>
</tr>
<tr>
<td>10</td>
<td>271 ≤ DIM ≤ 300</td>
<td>567</td>
<td>4,3</td>
</tr>
<tr>
<td>11</td>
<td>301 ≤ DIM ≤ 390</td>
<td>684</td>
<td>5,2</td>
</tr>
</tbody>
</table>
**Tabella 4.** Statistiche descrittive dei caratteri produttivi nella razza Burlina in provincia di Treviso (n = 13.228 records).

<table>
<thead>
<tr>
<th>Variabile</th>
<th>media</th>
<th>d.s.</th>
<th>minimo</th>
<th>massimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latte (kg/giorno)</td>
<td>16,5</td>
<td>7,0</td>
<td>2,0</td>
<td>34,0</td>
</tr>
<tr>
<td>Grasso (%)</td>
<td>3,67</td>
<td>0,60</td>
<td>2,00</td>
<td>6,00</td>
</tr>
<tr>
<td>Proteina (%)</td>
<td>3,33</td>
<td>0,39</td>
<td>2,13</td>
<td>5,00</td>
</tr>
<tr>
<td>SCC (n./ml x 1.000)</td>
<td>481</td>
<td>951</td>
<td>1</td>
<td>9.977</td>
</tr>
<tr>
<td>SCS (punti)</td>
<td>3,73</td>
<td>2,11</td>
<td>-3,64</td>
<td>9,64</td>
</tr>
<tr>
<td>DIM (giorni)</td>
<td>146</td>
<td>89</td>
<td>5</td>
<td>390</td>
</tr>
<tr>
<td>Età al parto (mesi)</td>
<td>56,5</td>
<td>25,6</td>
<td>20,3</td>
<td>147,5</td>
</tr>
</tbody>
</table>

SCC = Somatic Cell Count (conta delle cellule somatiche), SCS = Somatic Cell Score (punteggio di cellule somatiche), DIM = Days in Milk (giorni di lattazione).

**Tabella 5.** Analisi della varianza (ANOVA) della produzione di latte (kg/giorno), proteina (%), grasso (%) e del punteggio di cellule somatiche (SCS).

<table>
<thead>
<tr>
<th>Latte Proteina Grasso SCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R² 0,69 0,54 0,34 0,27</td>
</tr>
<tr>
<td>RMSE² 4,05 0,28 0,50 1,85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effetti</th>
<th>HTD</th>
<th>DIM</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F P</td>
<td>F P</td>
<td>F P</td>
<td>F P</td>
</tr>
<tr>
<td>796</td>
<td>19,3 ***</td>
<td>6,7 ***</td>
<td>5,2 ***</td>
</tr>
<tr>
<td>10</td>
<td>730,5 ***</td>
<td>653,2 ***</td>
<td>132,3 ***</td>
</tr>
<tr>
<td>17</td>
<td>94,0 ***</td>
<td>9,5 ***</td>
<td>8,7 ***</td>
</tr>
</tbody>
</table>

R² = coefficiente di determinazione; RMSE = Root Mean Square Error; HTD = effetto fisso di allevamento-giorno di controllo; DIM = effetto fisso della classe di stadio di lattazione; AGE = effetto fisso dell’età al parto della bovina entro ordine di parto.

*** P < 0,001.

**Tabella 6.** Componenti di varianza genetica additiva (σ²ₐ), ambientale permanente (σ²ₑ) e residua (σ²ₑ) per i caratteri produttivi e le cellule somatiche (SCS).

<table>
<thead>
<tr>
<th></th>
<th>σ²ₐ</th>
<th>σ²ₑ</th>
<th>σ²ₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latte, kg/d</td>
<td>3,476</td>
<td>6,292</td>
<td>8,681</td>
</tr>
<tr>
<td>Grasso, %</td>
<td>0,072</td>
<td>0,021</td>
<td>0,168</td>
</tr>
<tr>
<td>Proteina, %</td>
<td>0,030</td>
<td>0,009</td>
<td>0,044</td>
</tr>
<tr>
<td>SCS, punti</td>
<td>0,243</td>
<td>0,809</td>
<td>2,555</td>
</tr>
</tbody>
</table>
Tabella 7. Stima della ripetibilità (r) per i caratteri produttivi e le cellule somatiche (SCS).

<table>
<thead>
<tr>
<th></th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latte, kg/d</td>
<td>0,529</td>
</tr>
<tr>
<td>Grasso, %</td>
<td>0,356</td>
</tr>
<tr>
<td>Proteina, %</td>
<td>0,470</td>
</tr>
<tr>
<td>SCS, punti</td>
<td>0,292</td>
</tr>
</tbody>
</table>

Tabella 8. Ereditabilità ± ES (in diagonale), correlazioni genetiche ± ES (sopra la diagonale) e correlazioni fenotipiche (sotto la diagonale) per i caratteri produttivi e le cellule somatiche (SCS).

<table>
<thead>
<tr>
<th></th>
<th>Latte, kg/d</th>
<th>Grasso, %</th>
<th>Proteina, %</th>
<th>SCS, punti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latte, kg/d</td>
<td><strong>0,188 ± 0,030</strong></td>
<td>-0,001 ± 0,064</td>
<td>-0,089 ± 0,073</td>
<td>-0,115 ± 0,153</td>
</tr>
<tr>
<td>Grasso, %</td>
<td>-0,111</td>
<td><strong>0,275 ± 0,022</strong></td>
<td>0,629 ± 0,045</td>
<td>-0,219 ± 0,121</td>
</tr>
<tr>
<td>Proteina, %</td>
<td>-0,346</td>
<td>0,380</td>
<td><strong>0,358 ± 0,024</strong></td>
<td>-0,298 ± 0,125</td>
</tr>
<tr>
<td>SCS, punti</td>
<td>-0,242</td>
<td>0,027</td>
<td>0,159</td>
<td><strong>0,067 ± 0,017</strong></td>
</tr>
</tbody>
</table>

Figura 1. Distribuzione dei controlli funzionali (n = 13.228) per mese di controllo.
**Figura 2.** Medie corrette della produzione di latte (kg/giorno) per classe di stadio di lattazione.

**Figura 3.** Medie corrette del contenuto di grasso (%), proteina (%) e SCS (punti) per classe di stadio di lattazione.
**Figura 4.** Distribuzione di frequenza dei valori riproduttivi stimati (EBV) per la produzione di latte ($n = 988$ animali).

**Figura 5.** Distribuzione di frequenza dei valori riproduttivi stimati (EBV) per il punteggio di cellule somatiche (SCS) ($n = 988$ animali).
Figura 6. Distribuzione di frequenza dei valori riproduttivi stimati (EBV) per il contenuto di proteina del latte (n = 988 animali).

Figura 7. Distribuzione di frequenza dei valori riproduttivi stimati (EBV) per il contenuto di grasso nel latte (n = 988 animali).
Ringraziamenti

Ringrazio l’APA di Treviso per aver fornito i dati utilizzati nel presente studio.

Un personale e sincero ringraziamento al prof. Martino Cassandro che mi ha permesso di partecipare a questo progetto, e al dr. Mauro Penasa per la disponibilità e la pazienza dimostratami durante la stesura della tesi.

Grazie ai miei compagni di università, in modo particolare a Davide, Mauro, Chicca, Alice ed Andrea che hanno condiviso la mia carriera universitaria tra biblioteca e macchinette del caffè.

Grazie a papà per aver accettato scelte personali non sempre facili da capire. Grazie a Michela, Simone, Mauro, Morena e alle mie AMICHE per essere un punto di riferimento costante.

A mamma e Riccardo.