Utilizzazione di Digestati Anaerobici di Matrici Organiche come Fertilizzante nel Vivaismo

Relatore: Prof. Paolo Sambo
Correlatore: Dott. Giampaolo Zanin
Dott. Antonio Bassan

Laureando: Gianluca Zanta

Anno Accademico 2010-2011
A Giuliano, Morena e Martina
SOMMARIO
SOMMARIO .. 5

1. RIASSUNTO .. 7

2. ABSTRACT ... 9

3. INTRODUZIONE ... 11

3.1 IL FLOROVIVALismo .. 11

3.1.1 Lo Scenario Europeo e Mondiale .. 11

3.1.2 Piano del Settore Florovivastico 2010/2013 ... 13

3.2 I SUBSTRATI ... 14

3.2.1 Materiali per la costituzione del substrato ... 15

3.2.1.1 Materiali inorganici ... 15

3.2.1.2 Materiali organici .. 18

3.3 CARATTERISTICHE DEI SUBSTRATI .. 19

3.3.1 Granulometria (Tessitura) e Struttura .. 20

3.3.2 Densità apparente e reale .. 20

3.3.3 Porosità totale .. 21

3.3.4 Capacità per l’aria .. 21

3.3.5 Capacità idrica ... 21

3.3.5.1 Curva di ritenzione idrica ... 22

3.4 CARATTERISTICHE CHIMICHE DEI SUBSTRATI .. 23

3.4.1 Capacità di scambio cationico (CSC) ... 24

3.4.2 pH .. 24

3.4.3 Rapporto carbonio/azoto (C/N) ... 25

3.4.4 Salinità ... 26

3.4.6 Altri elementi nutritivi .. 27

3.4.7 Metalli pesanti .. 28

3.5 LA TORBA .. 29

3.5.1 Classificazione delle torbe .. 31

3.5.2. Caratteristiche fisiche, chimiche e biologiche della torba 33

3.5.3. Substrati alternativi ... 34

3.6 L’OLLA DI RISO .. 34

3.6.1 Impieghi della lolla di riso .. 36

3.6.2 Caratteristiche chimiche .. 37

3.6.3 Caratteristiche fisiche ... 38

3.6.4 Curiosità .. 39

3.7 RESIDUI DELLA DIGESTIONE ANAEROBICA ... 39

3.7.1 La Digestione Anaerobica: un processo che produce energia 39

3.7.2 Fasi digestione anaerobica ... 40

3.7.3 Impieghi e Normativa del digestato in Agricoltura ... 41

3.7.4 Il Digestato: un fertilizzante ... 42

3.8 DIGESTATO DA BORLANDA DI FRUTTA .. 52

3.8.1 Caratteristiche chimiche del digestato di borlanda di frutta 54

3.9 SCOPA DEL LAVORO ... 54

4. MATERIALI E METODI .. 57

4.1 LA CARATTERIZZAZIONE FISICA ... 59

4.1.1 La preparazione dei campioni per le analisi fisiche ... 59

4.1.2 Il porometro ... 59

4.1.3 Le analisi fisiche ... 60

4.2 LA CARATTERIZZAZIONE CHIMICA .. 62

4.2.1 La preparazione dei campioni per le analisi chimiche 63

4.2.2 Le analisi chimiche .. 63

4.3 L’ANALISI STATISTICA DEI DATI .. 69
5. RISULTATI ... 71
 5.1 LE CARATTERISTICHE FISICHE ... 71
 5.2 LE CARATTERISTICHE CHIMICHE ... 74
6. DISCUSSIONE E CONCLUSIONI ... 81
7. BIBLIOGRAFIA .. 85
8. TABELLE E FIGURE ... 89
1. RIASSUNTO

L’aumento della richiesta di torba per le coltivazioni ortoflorovivaistiche, la contemporanea indisponibilità dell’aumento di produzione della stessa, dovuta a leggi sempre più restrittive, all’apertura di nuove torbiere e alla aumentata coscienza ecologica per uno sviluppo eco-compatabile, ha generato la necessità di trovare altri materiali che potessero sostituire, totalmente o almeno in parte questo prodotto. Interessante potrebbe essere la sostituzione con prodotti rinnovabili e a costi inferiori, possibilmente rendendo economicamente vantaggioso l’utilizzo di materiali considerati “costo” per lo smaltimento. La ricerca di prodotti dalle caratteristiche sopra citate e chimico-fisiche simili alla torba, ha stimolato l’attenzione degli studiosi sulla lolla di riso ed i digestati anaerobici.

La lolla è uno dei materiali di scarto della lavorazione del riso formata dalle brattee che vengono tolte al risone per rendere commestibile il riso. Visto il grande consumo mondiale di detto prodotto si presume che i prodotti di scarto siano presenti sul mercato in maniera costante e a basso costo.

L’esauribilità del petrolio ed i costi di smaltimento degli scarti delle produzioni agricolo-industriali hanno costretto l’uomo del XXI secolo ad utilizzare fino in fondo le risorse messegli a disposizione da madre natura, sfruttando ciò che fino a poco tempo fa era scarto. Utilizzando la digestione anaerobica, ha nobilitato gli scarti a fonte energetica, producendo un sottoprodotto il ”digestato” anaerobico che potrebbe essere utilizzato come ammendante agricolo.

Lo scopo della tesi è quello di caratterizzare fisicamente e chimicamente substrati contenenti percentuali diverse di torba e lolla di riso (tal quale o macinata), e digestati anaerobici di borlanda di frutta, in modo da poter fare delle considerazioni sul possibile uso florovivaistico di detti miscugli.

I risultati ottenuti hanno dimostrato come substrati con percentuali del 67 e 100% di lolla tal quale non siano adatti alla coltivazione in quanto presentano caratteristiche fisiche troppo lontane da quelle ottimali. Qualora la lolla sia macinata, la porosità per l’aria e la ritenzione idrica dei substrati paiono soddisfacenti anche ad elevate percentuali di lolla. Tra i trattamenti allo studio, l’aggiunta di digestati ha aumentato, in linea di massima, la concentrazione della maggior parte dei nutrienti e questo potrebbe
costituire un vantaggio nella costituzione di substrati di coltura di specie esigenti. Le forti interazioni osservate tra le caratteristiche chimiche rendono difficile la valutazione puntuale dei substrati.
2. ABSTRACT

Use of anaerobic digestion residues as fertilizer for pot cultivations

The increase of peat demand for horticultural crops, the reduction of peat availability, due to more and more restrictive regulations about the peatland exploitation and the increasing ecological awareness about the sustainable ecological development, has produced the necessity to find other materials that could replace, totally or partially this product as root substrates. It could be interesting to substitute peat with cheaper renewable products, using rejecting items considered as a cost for the company. Several scientists have already started to characterize, chemically-physically, the rice hulls and anaerobic digestion residues as peat substitute. Rice hulls is a by-product in rice processing composed by bracts that are removed from paddy during rice processing. The extensive world-wide use of rice presupposes that this rejected products are available on the market constantly and at a low cost. Petroleum exhaustibility and the costs of agricultural-industrial wastes obliged XXI century man to better use natural resources exploiting also what was, till than, considered a rejected product. Anaerobic digestion process has changed rejected products into source of energy, producing a by-product: anaerobic digestion residues which could be used as agricultural amendant. The object of the thesis is the chemical-physical characterization of mixtures of different combinations of peat, rice hulls and anaerobic digestion residues derived from fruit pomace to consider the possibility to use them as substrates in horticultural cultivations. The results demonstrated that the substrates with percentage of 67 and 100% of rice hulls are not right for cultivation because they present physical features too far from those considered adequate. If the rice hulls are ground, air filled pore space and water holding capacity of substrates are acceptable even if with high rice hulls percentage. The addition of anaerobic digestion residues increased the content of nutrients and this could be an advantage in substrates production for cultivations. The several observed interactions among the chemical characteristics make difficult to chemically evaluate these substrates.
3. INTRODUZIONE

3.1 IL FLOROVIVAISMO

I profondi cambiamenti avvenuti nell’ultimo decennio a livello mondiale: la globalizzazione dei mercati, il progresso tecnologico e la crisi economica, che coinvolgono tuttora i mercati interni ed internazionali, hanno condizionato anche il settore florovivaistico.

Il comparto florovivaistico è molto importante sotto l’aspetto economico e sociale sia per il numero di occupati che per le attività indotte.

Nonostante le situazioni critiche che si sono create per l’entrata sui mercati mondiali di nuovi paesi competitori, questo settore continua ad avere una crescita e a manifestare un notevole dinamismo al suo interno nonostante una considerevole diversità per quanto riguarda il territorio, le specie coltivate e le tipologie produttive (Mipaf, 2010).

3.1.1 Lo Scenario Europeo e Mondiale

Il florovivaismo europeo riveste una notevole importanza economica e sociale. Tra i Paesi produttori, l’Italia con 18 mila ha è al 1° posto seguita da Olanda, Regno Unito, Germania, Spagna e Francia. Le superfici protette raggiungono il 70% in Olanda, il 60% in Spagna, il 50% in Italia, il 46% in Francia e il 15% in Gran Bretagna (Gimelli, 2010).

Agli inizi degli anni 90 il mercato mondiale ha visto l’entrata di nuovi concorrenti, Paesi in via di sviluppo, come Kenya, Zambia e Uganda, che esportano sui mercati dei Paesi industrializzati. Oltre a questi possiamo annoverare tra i maggiori esportatori Israele, Ecuador, Colombia e India, un occhio di riguardo va alla Cina con un 4,1% della produzione mondiale.

Nel mondo l’estensione delle superfici è stimata in circa 650 mila ha di cui 300 mila ha a reciso (oltre il 50% in Asia, il 20% in Europa e il 18% in America). La produzione lorda vendibile mondiale è di circa 43 miliardi di euro, 70 considerando anche i prodotti vivaistici (Gimelli, 2010).

Il maggior importatore europeo è l’Olanda che funge da cerniera negli scambi. La più alta quantità di fiori recisi, circa il 70%, proviene da soli quattro Paesi: Kenya,
Colombia, Israele ed Ecuador. Nel Mondo sono circa 80 i Paesi che producono e commercializzano prodotti florovivaistici.

Negli USA, la coltivazione di fiori e piante copre una superficie di oltre 15 mila ha, con una media aziendale di 2,3 ha di cui 1/3 in serra.

Le aziende italiane, invece, sono caratterizzate da una limitata superficie, inferiore all’ettaro per le floricole e di circa 2 ha per quelle vivaistiche. Nelle regioni Toscana e Liguria prevale il segmento del verde ornamentale, composto da fronde verdi e fiorite. Il settore delle piante in vaso e specie da vivaio per l’arredo degli spazi verdi è in espansione, diversamente da quello dei fiori recisi. Questo settore ha risentito meno dell’allargamento degli scambi su scala internazionale, ma l’aumento dell’offerta ha comunque ridotto il potere contrattuale delle aziende. La UE è il principale mercato al mondo per il consumo dei fiori recisi (53%). Il resto è diviso tra USA e Giappone (Gimelli, 2010).

Ci troviamo di fronte a un’offerta sempre più delocalizzata, regolata dal sistema delle aste olandesi e localizzata per buona parte in Paesi in via di sviluppo che garantiscono condizioni climatiche e territoriali vantaggiose con costo del lavoro molto basso. Nel Nord Europa, i tassi d’incremento dei consumi negli ultimi anni si sono ridotti con l’eccezione del Regno Unito, caratterizzato da un forte incremento dei consumi veicolati attraverso la GDO. In Europa, i consumi aumentano in Paesi come Polonia e Russia pur partendo da livelli assoluti molto bassi. Si può notare che il consumo dei fiori è correlato alla capacità di spesa dei cittadini. Questo può significare che le possibilità di incremento del mercato florovivaistico sono legate all’aumento del PIL pro capite, quindi aumentando le capacità economiche del singolo è realistico pensare che il mercato si espanderà in parallelo al miglioramento delle condizioni di vita e che molti Paesi, oltre che produttori, cominceranno a diventare consumatori (Gimelli, 2010).

Siamo in grado di soddisfare questo nuovo mercato crescente, salvaguardando e conservando le risorse ambientali pur creando sviluppo economico? È chiaro che l’epoca che stiamo vivendo rappresenta un momento critico in cui l’umanità deve scegliere il proprio futuro portando avanti una società globale sostenibile, basata sullo sviluppo economico compatibile con la salvaguardia e la conservazione delle risorse ambientali. La sostenibilità prevede di preservare le risorse non rinnovabili per una equità generazionale.

L’agricoltura del 21° secolo ha due priorità: l’incremento della produzione e la salvaguardia dell’ambiente.
3.1.2 Piano del Settore Florovivaistico 2010/2013

Secondo il Piano del Settore Florovivaistico 2010/2013 redatto dal Ministero delle Politiche Agricole Alimentari e Forestali si sono definiti le azioni per il miglioramento tecnologico e la qualificazione del settore:

1. attivare sinergie e progettualità in un’ottica condivisa di distretti florovivaistici tra più Enti locali, privati cittadini, operatori della filiera ed Amministrazioni pubbliche, stimolando anche l’utilizzo del prodotto florovivaistico a fini turistici, ambientali e domestici;

2. incentivare l’adozione da parte degli Enti locali di “linee guida” per la progettazione, realizzazione e manutenzione del verde pubblico e privato nonché di nuove opere a verde anche alla luce di eventuali normative quadro nazionali da predisporre;

3. rendere efficiente la programmazione colturale favorendo così la penetrazione sui mercati;

4. estendere i crediti di carbonio alle aziende florovivaistiche ma anche alle Amministrazioni locali virtuose nell’ampliare l’utilizzo consapevole ed adeguato delle aree a verde nell’arredo urbano nei parchi, nei giardini e nelle aree di coltivazione

5. innovare il prodotto ed il processo, mirando alla riduzione dei costi e al miglioramento della qualità;

6. elevare quanto più possibile gli standard di tutela degli operatori del settore;

7. linee di ricerca prioritarie:

 a) individuare processi produttivi ecosostenibili (difesa integrata, lotta biologica e ricorso a principi attivi fitosanitari di nuova generazione) al fine di mettere a disposizione delle aziende florovivaistiche protocolli di assetto organizzativo e di conduzione aziendale per ridurre al minimo l'impatto ambientale dell'attività agricola;

 b) studiare nuovi substrati alternativi ai tradizionali (torba) con un medio-basso impatto sui costi di produzione;

 c) verificare gli effetti positivi a livello ambientale e sulla salute umana delle coltivazioni florovivaistiche e dell’utilizzo del materiale florovivaistico nell’arredo urbano;

 d) mettere a punto innovativi protocolli di propagazione, moltiplicazione e coltivazione delle specie floricole; individuare nuove specie da aree a clima mediterraneo o provenienti dal patrimonio genetico autoctono o naturalizzato;
e) salvaguardare il germoplasma naturale ed autoctono che rappresenta un’importantissima fonte di geni utili e di diversità per il miglioramento delle specie ornamentali e per il rinnovamento e l’ampliamento del patrimonio vegetale;
f) studio dei bilanci energetici per tipologia di serre e per aree geografiche di produzione;
g) valutare e confrontare l’efficienza tecnico economica nell’impiego delle risorse energetiche alternative (biomasse, oli combustibili, metano, pannelli solari e fotovoltaici) per aree produttive nazionali, energia eolica e geotermica, impianti di co-generazione e tri-generazione (Mipaf, 2010).

3.2 I SUBSTRATI

I substrati di coltivazione possono essere definiti come materiali diversi dal suolo, dove vengono coltivati vegetali. L’esigenza di sostituire il terreno nasce da motivi di ordine tecnico e organizzativo:
- ridurre le limitazioni chimiche, fisiche e biologiche del suolo, correggendo al contempo tali parametri ai fabbisogni specifici delle specie allevate;
- far fronte a ritmi di crescita accelerati;
- garantire uniformità (fenologica e quantitativa) delle produzioni;
- agevolare la movimentazione delle piante e le elevate densità per m2.

(Perelli, 2009)

Un buon substrato deve:
- essere consistente e sufficientemente plastico per consentire un buon ancoraggio alle radici e la stabilità del complesso contenitore-pianta;
- essere poroso e soffice per permettere una buona circolazione dell’aria e impedire i ristagni di acqua;
- essere ricco di elementi nutritivi facilmente assimilabili dalle radici;
- mantenere a lungo inalterate le caratteristiche fisiche e, quindi, resistere a compattamento e alla riduzione di volume, conservando buone capacità drenanti;
- possedere un pH appropriato per la specie coltivata;
- non presentare sostanze fitotossiche o patogeni animali e vegetali;
- essere omogeneo e uniforme;
- avere un costo limitato ed essere di facile reperibilità (Perelli, 2009).
3.2.1 Materiali per la costituzione del substrato

I materiali che si possono utilizzare per preparare un substrato sono molto diversi per la loro natura. La base di molti substrati resta in alcuni casi il terreno. Gli altri materiali utilizzati per la costituzione di un substrato sono suddivisi in inorganici, plastici e organici (Pimpini et al., 2001).

Terreno

Le proprietà fisico-chimiche di un terreno dipendono maggiormente dalla grandezza delle particelle minerali che lo costituiscono: distinguiamo, quindi, la sabbia (tra 0,05 e 2 mm), il limo (tra 0,002 e 0,05 mm) e l’argilla (inferiore a 0,002 mm). Il terreno, naturalmente, non deve contenere semi di erbe infestanti, insetti o patogeni: deve essere, quindi, pastorizzato (Pimpini et al., 2001).

Materiali inorganici

Vengono, di norma, aggiunti al substrato per incrementare la macroporosità, modificare la capacità di ritenzione idrica e migliorare il drenaggio e l’aerazione. La classificazione dei substrati inorganici è riportata sinteticamente in figura 1.

![Materiali Inorganici](image)

Fig. 1. Classificazione dei materiali inorganici (Pimpini et al., 2001)

Figlia e ghiaia

Di solito sono mescolate alla torba per abbassare la ritenzione idrica e migliorare la capacità per l’aria. La sabbia più adatta a tale scopo è quella con particelle comprese tra
1 e 2 mm. La sabbia che si utilizza nella costituzione di un substrato non deve contenere argille, limo, sostanza organica e carbonati in quanto questi influenzerebbero il pH dando luogo a squilibri nutrizionali (diminuirebbe la disponibilità di microelementi). (Pimpini et al., 2001). Caratteristiche della sabbia sono la moderata quantità di nutrienti, la scarsa ritenzione idrica e l’alto potere drenante.

Pomice
Silicato di alluminio di origine vulcanica che contiene potassio, sodio, tracce di calcio, magnesio e ferro. Le sue caratteristiche sono la piccola quantità di nutrienti allo stato naturale, ma capacità di assorbire calcio, magnesio, potassio e fosforo dalle soluzioni nutritive e di cederli poi alla pianta; la buona porosità e l’estrema leggerezza (Pimpini et al., 2001).

Tufi vulcanici
Esistono di diverse granulometrie e le loro caratteristiche dipendono dalle dimensioni delle particelle. Dimensioni ottimali sono rappresentate da particelle di diametro compreso tra 2 e 6 mm (Pimpini et al., 2001).

Zeoliti
Silicati di alluminio che provengono da rocce vulcaniche. Nella loro struttura sono presenti piccoli pori. Le caratteristiche che le contraddistinguono sono l’elevata CSC, la capacità di trattenere ioni K^+ e NH_4^+ che rilasciano poi molto lentamente (Pimpini et al., 2001).

Vermiculite
Silicato di alluminio, ferro e magnesio, ha una struttura a strati. Viene utilizzata dopo la «spogliatura», un trattamento che consiste nel riscaldare a 745 °C per un minuto delle particelle di vermiculite. In questo modo l’acqua, intrappolata fra gli strati, viene trasformata in vapore con conseguente aumento di pressione ed espansione degli strati fino a 15-20 volte il loro volume. La struttura che si viene a creare è a nido d’ape. Anche la vermiculite si trova in una vasta gamma di granulometrie, da particelle piccolissime fino a particelle di 6 mm di diametro.
Le vermiculite ha una bassa densità, una elevata CSC (100-150 meq/100 g). Possiede un contenuto di elementi nutritivi: 5-8% potassio, 10-12% magnesio, e possiede capacità di trattenere azoto in forma non disponibile per le piante.
A seconda del pH si distingue in debolmente acida (pH tra 6 e 6,8) e neutra (pH 7), contenente carbonato di magnesio (Pimpini et al., 2001).

Perlite
Viene ottenuta comprimendo e riscaldando a 1.000 °C un silicato di alluminio di origine vulcanica. È costituita da un materiale espanso, molto leggero, di colore bianco. Questo materiale permette un buon drenaggio, ha una scarsa ritenzione idrica (in proporzione alle dimensioni e alle distribuzioni dei pori), media densità, è sterile e chimicamente inerte, ha CSC trascurabile, pH vicino alla neutralità (circa 7,5), non contiene alcun nutriente per le piante (Pimpini et al., 2001).

Argilla espansa (Leca)
Viene ottenuta riscaldando la polvere di argilla ad alte temperature (690 °C). Si formano, così, degli aggregati stabili. Aggiunta ai substrati determina aumento della porosità, favorisce aerazione e drenaggio. L’argilla espansa ha CSC molto bassa, pH variabile (tra 4,5 e 9), bassa densità, media porosità (Pimpini et al., 2001).

Lana di roccia
Viene ottenuta fondendo insieme a circa 1.500 °C silicati di alluminio, calcio, magnesio e carbon coke e poi facendo raffreddare la miscela; in questo modo si ottiene una struttura fibrata con una buona porosità e inerzia. Aggiunta al substrato ne migliora la struttura, la capacità per l’aria, il drenaggio e fornisce una buona base di ancoraggio alle radici (Pimpini et al., 2001).

Scaglie di polistirene espanso
Vengono utilizzate per migliorare il drenaggio e le caratteristiche fisiche dei terreni troppo pesanti, ridurre la ritenzione idrica e aumentare l’aerazione. Chimicamente sono neutre e non riescono a trattenere elementi nutritivi. Hanno bassa densità e sono di colore bianco, elevata porosità, ma non assorbono acqua. Hanno bassa CSC e pH ininfluente.
Materiali organici

Fig. 2. Classificazione dei materiali inorganici (Pimpini et al., 2001)

Tra i materiali organici (Fig. 2), il substrato più diffusamente e da più tempo utilizzato è la torba che verrà trattata in seguito come per la lolla di riso.

Posidonia
Angiosperma diffusa sui fondali marini viene utilizzata come substrato di coltivazione nell’ortoflorovivaismo o come pacciamante per ostacolare la crescita di erbe infestanti. Può essere inoltre utilizzata anche come succedaneo, totale o parziale, dei substrati nelle coltivazioni senza suolo. Per arrivare a questo risultato sono necessari: la caratterizzazione chimico fisica, la riduzione del contenuto salino, il miglioramento delle proprietà intrinseche del materiale (Pimpini et al., 2001)

Fibra di cocco
Deriva dal mesocarpo fibroso della noce di cocco. Possiede: una forte ritenuta idrica e una notevole capacità di assorbimento nitrico; elevata porosità totale (95%), pH subacido, EC media (0,64 mS/cm), alta CSC; rapporto C/N elevato (220), indice di lenta mineralizzazione e stabilità nel tempo (attenzione: aumentare le concimazioni azotate). (Pimpini et al., 2001)
Letame
È un miscuglio fermentato di lettiera e deiezioni animali. La sua composizione varia in funzione del tipo di allevamento e dei prodotti vegetali utilizzati per la lettiera. Quello bovino è il migliore. Il letame è caratterizzato da un elevata CSC, da un sufficiente contenuto di microelementi e basso contenuto di azoto, fosforo e potassio.
Il letame deve essere pastorizzato col vapore o sterilizzato con mezzi chimici: questo per eliminare patogeni e semi di infestanti. (Pimpini *et al.*, 2001)

Compost
Deriva dal compostaggio della frazione organica dei rifiuti urbani che vengono convertiti in un materiale utilizzabile in agricoltura. Per il compostaggio possono essere utilizzati anche i fanghi provenienti da allevamenti suinici e avicoli, da industrie dolciarie, casearie, da concerie e dall’industria farmaceutica. Il compost può presentare alcuni inconvenienti dovuti all’incostanza delle caratteristiche chimico-fisiche dovuta all’eterogeneità del materiale di partenza, al lungo periodo di preparazione (circa 6 mesi), alla presenza di sostanze fitotossiche quali metalli pesanti e microelementi in eccesso: i metalli più presenti sono nichel, zinco e cromo e alla difficoltà nel reperimento, nel trasporto e nello stoccaggio del materiale. (Pimpini *et al.*, 2001)

Aghi di pino
Devono essere frantumati in pezzetti di lunghezza che va da 1 a 2,5 cm. Vengono impiegati allo stato fresco, in particolare per azalea e rododendro. Determinano un’eccellente aerazione e danno luogo a substrati leggeri. (Pimpini *et al.*, 2001)

3.3 CARATTERISTICHE FISICHE DEI SUBSTRATI
L’ambiente fisico che circonda le radici delle piante coltivate in contenitore può essere caratterizzato da alcuni parametri quali granulometria, densità apparente, porosità totale, capacità per l’aria e capacità idrica e da due relazioni: la curva di ritenzione idrica che esprime il rapporto esistente fra il contenuto di umidità e lo stato tensionale dell’acqua, e la curva di conducibilità idraulica che esprime la capacità del mezzo di trasmettere l’acqua da un punto a un altro in base alle variazioni del contenuto di umidità e al gradiente di potenziale presente (Perelli, 2009).
3.3.1 Granulometria (Tessitura) e Struttura

Chiamata anche curva di distribuzione granulometrica, serve a caratterizzare la composizione di un materiale rispetto alle dimensioni delle particelle costituenti. Indica la costituzione della parte solida del substrato (o terreno) espressa come percentuale in peso delle particelle elementari che lo compongono, classificate per categorie convenzionali di diverso diametro (Giardini, 1996).

La struttura indica il modo in cui, le singole particelle o aggregati delle stesse del mezzo di coltura, sono disposti spazialmente (Pimpini et al., 2001).

La tessitura e la struttura del terreno influenzano direttamente sia la fertilità che la tecnica agronomica. Sotto l’aspetto fisico, si deve rilevare che dal tipo di struttura dipendono i rapporti tra fase solida, liquida e gassosa del terreno. Tali rapporti influenzano l’umidità, la tenacità, la temperatura e soprattutto l’aereazione che regola i processi di ossidazione e riduzione, del mezzo di coltivazione (terreno, substrato) (Giardini, 1996).

La tessitura e la struttura dei substrati devono garantire all’apparato radicale delle piante coltivate:
- un buon ancoraggio: si è visto infatti che alcuni substrati (polistirolo in granuli e torba di sfagno non compressa), a causa della loro incoerenza e del loro basso peso volumico apparente (PVA), non si prestano ad essere impiegati da soli nelle colture in vaso. Il PVA ottimale per le colture in contenitore oscilla tra 100 e 500 kg/m3.
- una accentuata porosità: un buon substrato dovrebbe avere una porosità totale intorno al 75%, con percentuali variabili tra macro e micropori a seconda della specie coltivata e alle condizioni ambientali. (Fase liquida 40-60% - Fase Gassosa 15-35%)
- una buona stabilità nel tempo: in quanto la variazione di volume, dovuto alla perdita di acqua, del substrato può causare la rottura delle radici (Perelli, 2009).

3.3.2 Densità apparente e reale

Detta anche massa volumica apparente, è il peso secco dell’unità di volume occupato dal substrato espresso in g/cm3 (peso per unità di volume). Dipende dalla densità delle componenti del substrato, dalla loro distribuzione spaziale, dalla forma e dalle dimensioni delle particelle, dalla loro attitudine allo schiacciamento e dalle modalità di riempimento del contenitore (Crippa, 2009).

Questa misura è in collegamento con la porosità totale: al crescere della porosità la densità apparente diminuisce (sono inversamente proporzionali). La densità reale o
massa volumica reale è il rapporto tra il peso del materiale essiccato e il volume occupato dallo stesso, idealmente compresso così da non esistere spazi vuoti. Non ha nessuna valenza pratica, ma è utile nel calcolo della porosità totale (Crippa, 2009).

3.3.3 Porosità totale
Rappresenta il volume totale del substrato non occupato da particelle minerali o organiche: è data dal rapporto tra il volume dei pori e il volume del substrato considerato. La porosità varia in funzione delle dimensioni delle particelle e, inoltre, diminuisce con lo sviluppo dell’apparato radicale: dopo quattro mesi di crescita si riduce di oltre la metà, sempre in funzione comunque della pianta coltivata. La porosità totale è data dalla somma di due classi di pori: micropori e macropori. Con il termine di micropori si intendono i pori di diametro inferiore ai 30-50 µm; i macropori sono quelli con diametro maggiore di 50 µm. Tale suddivisione è utile nei confronti delle proprietà idrauliche dei materiali in quanto solo la microporosità può trattenere stabilmente l’acqua dopo il drenaggio libero, a causa dei fenomeni di capillarietà (Perelli, 2009).

3.3.4 Capacità per l’aria
La presenza di aria in un substrato di coltura è molto importante in quanto da essa dipendono alcune attività metaboliche e la crescita della pianta. Lo spazio tra le particelle di un substrato serve a due scopi:
- circolazione dell’ossigeno che le radici possono assorbire (sia quello che diffonde attraverso le porosità libere, sia quello disciolto nell’acqua);
- eliminazione dell’anidride carbonica prodotta durante la respirazione (Perelli, 2009).

3.3.5 Capacità idrica
Indica la quantità di acqua presente nel mezzo dopo che è stato saturato e drenato. Naturalmente questo fattore è strettamente legato alla porosità: infatti, un substrato di crescita con un’elevata capacità idrica ha una bassa percentuale di aerazione, mentre un substrato con contenuto di acqua ridotto è molto aerato, pur necessitando di frequenti irrigazioni. È stato evidenziato che l’acqua facilmente disponibile per le piante è compresa tra 0 e 50 pF (dove pF è il logaritmo della tensione idrica del suolo) (Pandini, 2004).
3.3.6 Curva di ritenzione idrica

Rappresenta la relazione esistente tra il contenuto di acqua trattenuto da un mezzo poroso e la tensione a cui l’acqua è trattenuta. Considerando i substrati per colture in contenitore, il campo di variazione della tensione per cui si vuole individuare la curva è compreso tra 0 e 25 kPa, più normalmente tra 0 e 10 kPa. Il valore inferiore è quello dello stato di saturazione del mezzo e il contenuto di acqua relativo è vicino al valore della porosità totale. I valori del contenuto idrico a saturazione sono molto alti per i substrati: possono arrivare fino al 80-85% del volume apparente occupato dallo stesso substrato. Tali valori decrescono molto rapidamente aumentando la tensione. La curva di ritenzione idrica dipende da diversi fattori tra i quali la distribuzione delle dimensioni dei pori del mezzo, dalla natura stessa del mezzo (conformazione volumetrica e superficiale delle particelle), dalla distribuzione granulometrica dello stesso e dal suo stato di addensamento (Pimpini et al., 2001).

La curva di ritenzione idrica (Fig. 3) descrive l’andamento del potenziale idrico al variare dell’umidità in un determinato substrato. È importante perché:
- permette di conoscere il grado di disponibilità dell’acqua presente nel substrato;
- non è standard ma può cambiare fortemente da un tipo di substrato all’altro.

Le tensioni con cui l'acqua è trattenuta si misurano in kPa (chilo Pascal) o in pF (logaritmo con base 10 della colonna di acqua in cm) (Crippa, 2009).

Fig. 3. Curva di ritenzione idrica (Perelli, 2009)
Per caratterizzare un substrato e importante conoscere:
- la capacità per l'acqua o ritenzione idrica cioè il volume di acqua presente alla tensione pF: 1 (1 kPa);
- il volume di acqua a pF: 1,7 (5 kPa), cioè la percentuale del volume di acqua presente a quella determinata tensione;
- il volume di acqua a pF: 2 (10 kPa), cioè l'acqua non utilizzabile, frazione di acqua che a tale livello di tensione è difficilmente sfruttabile dalle piante (Crippa, 2009).

Una volta conosciuti questi punti caratteristici, è possibile calcolare i parametri di:
- acqua facilmente disponibile, cioè quel volume di acqua facilmente assorbibile dalle radici, acqua rilasciata quando la tensione passa da pF: 1 a pF: 1,7;
- acqua di riserva, è la capacità del substrato di attenuare le variazioni di tensione, contendo il rischio di stress idrico, è la percentuale del volume di acqua che il substrato rilascia quando la tensione passa da pF: 1,7 a pF: 2;
- acqua disponibile o utilizzabile, è il volume d'acqua che le piante hanno a disposizione per le proprie esigenze, ottenuto sommando i due volumi precedenti;
- capacità per l'aria, cioè percentuale di volume d'aria presente a pF: 1, importante per valutare i rischi di asfissia radicale (Crippa, 2009).

Un valore di tensione pari a zero indica lo stato di saturazione del substrato, cioè il volume d'acqua che occupa quasi per intero la porosità totale.

3.4 CARATTERISTICHE CHIMICHE DEI SUBSTRATI

Le principali caratteristiche chimiche di un substrato di crescita sono:
- capacità di scambio cationico;
- pH;
- presenza di sali solubili;
- rapporto carbonio/azoto;
- presenza di sali solubili;
- presenza di sostanza organica e carbonio organico.
3.4.1 Capacità di scambio cationico (CSC)
La capacità di scambio cationico è la quantità di cationi scambiabili che un terreno o un substrato, dotato di proprietà di adsorbimento, può trattenere per scambio ionic. Lo scambio ionico rappresenta uno dei principali meccanismi con cui il terreno trattiene e mette a disposizione delle piante e dei microrganismi elementi quali il calcio, il magnesio, il potassio, l'azoto ammoniacale, perciò la CSC è un indice della potenziale fertilità chimica del terreno (Giardini, 1996).
Rappresenta, quindi, la capacità di un substrato di trattenere i nutrienti; è espressa in meq/100 g del peso secco. I suoi valori sono importanti per analizzare la capacità di assorbimento e di rilascio degli elementi minerali da parte del substrato. I fertilizzanti che sono utilizzati possono avere cariche positive (nel caso di NH$_4^+$, K+, Fe++, Ca++, Mg++, Mn++, Zn++, Cu+) o cariche negative (per NO$_3^-$, SO$_4^{2-}$, Cl–). Il substrato, attraverso le sue cariche, trattiene gli elementi minerali per poi cederli successivamente alle piante. Naturalmente i materiali usati hanno diversi valori di CSC: valori alti si riscontrano per argilla, torba, vermiculite, materia organica in generale, mentre valori bassi caratterizzano sabbia, perlite e polistirolo. Sono considerati buoni, valori della CSC compresi tra 6 e 15 meq/100 g; per valori al di sotto dei 15 meq/100 g i substrati non sono in grado di trattenere sufficienti quantità di elementi nutritivi (Pimpini et al., 2001).

3.4.2 pH
Il pH rappresenta la misura dell’acidità e dell’alcalinità nel suolo o, più propriamente, della reazione del suolo. Sulla base di valori convenzionalmente attribuiti, si individuano le differenti classi di pH del suolo (Tab. 1).
Il pH del suolo è una proprietà fondamentale in grado di influenzare molti processi fisici, chimici e biologici. Il pH influenza la solubilità degli elementi nutritivi e l’attività dei microrganismi responsabili della decomposizione della sostanza organica e della maggior parte delle trasformazioni chimiche che avvengono nel suolo. Il pH regola, pertanto, la disponibilità di molti nutrienti per le piante. L’intervallo di pH tra 6 e 7 è generalmente favorevole per la crescita delle piante, poiché la maggior parte degli elementi nutritivi è prontamente disponibile in tale intervallo. Tuttavia, alcune piante necessitano di un pH al di sopra o al di sotto di tali valori. I suoli che hanno un pH inferiore a 5,5 generalmente hanno una bassa disponibilità di calcio, magnesio e fosforo; presentano, invece, un’alta solubilità dell’alluminio, del ferro e del boro, mentre risulta
bassa per il molibdeno. Per valori di pH intorno ad 8,0 il calcio ed il magnesio sono abbondanti; anche il molibdeno è disponibile, se presente nella frazione minerale del suolo. Per contro, alti valori di pH possono determinare una inadeguata disponibilità di ferro, manganese, rame, zinco e, specialmente, di fosforo e boro (Giardini, 1996).

Tab. 1. Classi di pH del Suolo (Giardini, 1996)

<table>
<thead>
<tr>
<th>Classi</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peracidici</td>
<td>< 4.5</td>
</tr>
<tr>
<td>Acidici</td>
<td>4.6-5.0</td>
</tr>
<tr>
<td>Moderatamente acidi</td>
<td>5.1-6.0</td>
</tr>
<tr>
<td>Subacidici</td>
<td>6.1-6.5</td>
</tr>
<tr>
<td>Neutri</td>
<td>6.6-7.3</td>
</tr>
<tr>
<td>Subalcalini</td>
<td>7.4-7.8</td>
</tr>
<tr>
<td>Moderatamente alcalini</td>
<td>7.9-8.4</td>
</tr>
<tr>
<td>Alcalini</td>
<td>8.5-9.0</td>
</tr>
<tr>
<td>Peralcalini</td>
<td>> 9.0</td>
</tr>
</tbody>
</table>

3.4.3 Rapporto carbonio/azoto (C/N)

Fornisce un utile indicazione della tendenza alla mineralizzazione dei residui vegetali e delle macromolecole umiche operata dai microrganismi del terreno. Per la costanza del contenuto di carbonio nei tessuti vegetali e animali, il valore del rapporto C/N risulta inversamente proporzionale alla percentuale di azoto. Tenuto conto che l’attività microbica viene esaltata dalla disponibilità di azoto, saranno maggiormente suscettibili di completa decomposizione i materiali organici per i quali minore è il valore di C/N. I residui con rapporto C/N inferiore a 20 contengono quantità di azoto organico sufficienti a soddisfare le necessità delle entità biotiche in conseguenza di attiva di mineralizzazione e conseguente liberazione di nutrienti, contribuire alla nutrizione delle piante. I materiali organici caratterizzati da valore di C/N maggiore di 30 non fornendo quantità sufficiente di azoto costringono i microorganismi ad utilizzare per la produzione di biomassa tutte le forme azotate nitrico e ammoniacale disponibili inducendo temporanee difficoltà nutrizionali per le piante. In presenza di un rapporto C/N elevato (ad esempio in paglia e segatura), il tasso di decomposizione è lento: è necessario in questo caso intervenire con fertilizzanti per rimediare alla carenza di N. Viceversa se il rapporto C/N è basso significa che la decomposizione avviene velocemente. Il rapporto C/N fornisce quindi un dato sulla disponibilità e sulla
concentrazione degli elementi nutritivi per le piante. Occorre considerare questo dato nel momento in cui bisogna intervenire con la fertilizzazione (Giardini, 1996).

3.4.4 Salinità

L’apparato radicale delle piante assorbe l’acqua e i nutrienti che gli sono necessari per osmosi dalla soluzione circolante. Tale fenomeno fisico si verifica tra due soluzioni a diversa concentrazione salina separate da una membrana semi permeabile simile a quella che avvolge i peli radicali. In tale situazione dalla soluzione meno concentrata, il liquido attraverserà questa membrana fino a portare le due soluzioni alla stessa concentrazione. Le due soluzioni avranno pertanto raggiunto la stessa pressione osmotica quindi la stessa salinità. Perciò tanto più sarà elevata la salinità della soluzione circolante del terreno, tanto più difficoltoso risulterà il passaggio di questa all’interno della pianta. Nel caso di pressione osmotica eccessivamente alta si può giungere alla morte della pianta per disidratazione. È importante quindi la conoscenza della salinità di un terreno per valutarne le potenzialità agricole e per considerare gli interventi più opportuni per un possibile miglioramento. Oltre alla quantità di sali presenti nel terreno è molto importante sapere anche la qualità dei sali, in particolare il sodio, perché l’influenza negativa di tale elemento sulla vita della pianta è drastica. Il sodio è tossico per la pianta, interferisce con l’assorbimento di altri ioni, innalza i valori di pH e provoca deflocculazione deteriorando la struttura del terreno. Scarsa presenza di sali solubili è segno di una insufficiente capacità da parte del terreno di fornire elementi nutritivi mentre un contenuto troppo elevato può recare problemi alla sopravvivenza delle piante. L’abbondate presenza di sali disciolti nell’acqua del terreno provoca un aumento della pressione osmotica della soluzione che oltre certi limiti impedisce alle piante di assorbire l’acqua e i nutrienti. La salinità viene determinata attraverso la determinazione dell’elettroconducibilità elettrica, indice strettamente correlato con la pressione osmotica (Pimpini et al., 2001).

3.4.5 Azoto

L’azoto è un elemento importantissimo, infatti è un costituente fondamentale delle proteine, degli acidi nucleici e degli enzimi. Nella composizione dei fertilizzanti può essere impiegato nelle sue tre forme: nitrica, ammoniacale e ureica. La forma più assorbita dalle piante è quella nitrica in quanto è prontamente assimilabile dalle radici,
molto mobile all’interno della pianta e può essere immagazzinata dalla stessa ad elevate concentrazioni senza indurre tossicità. Quella ammoniacale può essere assorbita dalla pianta solo in piccole quantità mentre le dosi più consistenti vengono utilizzate previa ossidazione a nitrato da parte dei batteri del suolo. Le piante, senza incorrere in problemi di tossicità, possono accumulare solo bassi livelli di NH$_4^+$, quantitativi superiori alle dieci parti per milione inibiscono l’assorbimento del calcio e del rame, inducono maggiore accrescimento del germoglio rispetto alle radici e colorazione verde scuro delle foglie. Quantitativi più elevati provocano fenomeni di tossicità che si rivelano sulle foglie più vecchie con clorosi lungo i margini che tendono ad incurvarsi verso l’alto. Eccesso di azoto provoca: abbondante rigoglio vegetativo, allungamento del ciclo colturale, colorazione verde intenso delle foglie, scarsa allegazione dei fiori, scarsa lignificazione e consistente accumulo di nitrati. La carenza di azoto si manifesta con: ingiallimento delle foglie più vecchie, stentato accrescimento e anticipo della senescenza. (Pimpini et al, 2001)

3.4.6 Altri elementi nutritivi

Il potassio riveste fondamentale importanza per la distensione cellulare, la sintesi proteica, l’attivazione degli enzimi, la fotosintesi e agisce anche come trasportatore di altri elementi attraverso la membrana cellulare. Assume poi un ruolo importante nella regolazione dell’apertura stomatica. Come il nitратo è molto mobile all’interno della pianta infatti i primi segni di carenza si manifestano sottoforma di macchie giallastre che poi necrotizzano sui margini delle foglie più vecchie.

Il fosforo nel mezzo di coltura favorisce lo sviluppo delle radici, il rapido accrescimento dei germogli e la quantità dei fiori. Questo elemento viene assorbito con molta facilità e può essere accumulato senza danni per la pianta. Il suo ruolo fondamentale è legato alla formazione di composti ad elevata energia (ATP) necessari per il metabolismo dei vegetali. Da tenere in considerazione è il fatto che il fosforo sia facilmente liscivibile nelle colture fuori suolo. Infatti l’assorbimento di questo elemento risulta essere molto depresso dalle basse temperature del suolo (-13°C) o da elevati valori di pH (maggiori di 6,5). La sua carenza si manifesta con colorazione verde viola delle foglie più vecchie cui può seguire clorosi e necrosi. Il suo assorbimento è inoltre molto elevato nelle prime fasi di crescita dei semenzali orticoli.
Il calcio è coinvolto nella formazione della parete cellulare, nella permeabilità della membrana e nella divisione e distensione delle cellule. Il suo movimento nella pianta avviene attraverso lo xilema e quindi è influenzato dalla bassa temperatura a livello radicale, dalla salinità della soluzione e dall’eccessiva umidità relativa dell’aria. Poiché il calcio è poco mobile all’interno della pianta le carenze si manifestano nelle parti di più recente formazione con modalità diverse come per esempio l’imbrunimento marginale delle foglie di lattuga.

Il magnesio riveste un’importanza particolare perché entra nella costituzione delle molecole di clorofilla. Il suo assorbimento è dovuto al complesso di scambio, bisogna, come per il potassio, tenere conto della capacità di scambio cationico del terreno. Interessante è la valutazione del rapporto Mg/K: il rapporto ottimale è da 2 a 5. Se il rapporto è minore di 2 deve essere apportato magnesio, se è maggiore di 5 non bisogna apportare magnesio perché si rischia una carenza di potassio.

Lo zolfo viene assorbito sottoforma di solfato in quantitativi cospicui. I sintomi della sua carenza sono simili a quelli dell’azoto ad eccezione del fatto che quest’ultima inizia a manifestarsi dalle foglie più vecchie mentre quella dello zolfo dalle più giovani.

Il ferro è un elemento importantissimo per le piante. Esso interviene in processi fondamentali: come la fotosintesi, la respirazione, la sintesi proteica. Una carenza di ferro può essere determinata, oltre che da una bassa dotazione del terreno, da un eccesso di calcare attivo, da un pH alcalino, da un eccesso di cationi bivalenti (Ca++, Mg++, Zn++, Cu++) e da un eccesso di fosforo.

Lo zinco è un elemento che svolge un ruolo essenziale nella germinazione e nella formazione dell’amido.

Il rame svolge importanti funzioni nella sintesi proteica e nella sintesi di alcuni pigmenti, l’eccesso di fosforo può indurne una carenza.

Il manganese entra a far parte di molti coenzimi ed è coinvolto nell’allungamento delle cellule radicali e nella loro resistenza ai patogeni. I sintomi di carenza sono simili a quelli del ferro ad eccezione della comparsa di aree leggermente incavate nelle zone internervali. (Pimpini et al, 2001)

3.4.7 Metalli pesanti

I metalli pesanti possono essere presenti nel substrato in concentrazioni variabili. Un eccessivo carico di metalli pesanti nei substrati o nei suoli può provocare numerose
problematiche come: la tossicità, l’accumulo nelle specie vegetali con conseguente inquinamento della catena alimentare, delle falde e dei corsi d’acqua. Per questi motivi il contenuto di metalli pesanti per la preparazione di substrati, negli ultimi anni, è stato regolamentato da delle disposizioni di legge che indicano i tenori massimi di metalli pesanti che non possono essere superati (Tab. 2). (Sequi et al., 2006)

Tab. 2. Tenori massimi consentiti in metalli pesanti in mg/kg di SS (Sequi et al., 2006)

<table>
<thead>
<tr>
<th>Metalli</th>
<th>Substrati di coltivazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piombo totale</td>
<td>100</td>
</tr>
<tr>
<td>Cadmio totale</td>
<td>1,5</td>
</tr>
<tr>
<td>Nickel totale</td>
<td>100</td>
</tr>
<tr>
<td>Zinco totale</td>
<td>500</td>
</tr>
<tr>
<td>Rame totale</td>
<td>230</td>
</tr>
<tr>
<td>Mercurio totale</td>
<td>1,5</td>
</tr>
<tr>
<td>Cromo esavalente</td>
<td>0,5</td>
</tr>
</tbody>
</table>

3.5 LA TORBA

Le torbiere come zone umide sono presenti in tutto il mondo. La maggior parte è localizzata nel nostro emisfero e in particolar modo nelle repubbliche baltiche e nei paesi della ex Unione Sovietica dove la Siberia costituisce il territorio più importante per le particolari condizioni climatiche e ambientali.

Nell’Unione Europea le maggiori superfici occupate da torbiere si trovano nel Nord Europa mentre nei paesi del Sud Europa le torbiere assumono un importanza relativa e marginale sia per la quantità che per la qualità del prodotto per la bassa presenza di zone umide.

La torba viene utilizzata in agricoltura come ammendante e come substrato di coltivazione, però per il suo elevato potere calorifico (la torba è il primo stadio nella formazione del carbone: torba, lignite, litantrace e antracite) viene utilizzata come combustibile per il riscaldamento soprattutto nell’Europa settentrionale e nelle regioni ex sovietiche. La Finlandia è la maggior consumatrice di torba a fini energetici. Le Nazioni che utilizzano maggiormente la torba in agricoltura sono il Canada e la Germania.
L’aumentata sensibilità ecologica, per la conservazione degli ambienti naturali unita alla caratteristica di esauribilità delle torbiere ha indotto la Comunità Europea a impegnare gli stati membri perché adottassero le misure necessarie per conservare gli ambienti di maggiore interesse naturalistico.

Anche gli Stati Uniti e il Canada negli ultimi anni hanno posto particolare attenzione nella gestione delle zone umide in particolare alle torbiere e all’estrazione di torba.

Gli interventi sono tesi alla conservazione e alla gestione sostenibile delle torbiere (Tab. 3), con la reintroduzione di specie vegetali e animali e l’adozione di tecniche idonee di estrazione e di ricoltivazione del sito per favorire il reinsediarsi delle condizioni originali.

Non mancano, comunque, depositi piuttosto recenti in cui la torbificazione può essere ancora in corso (Pandini, 2004).

Tab. 3. Principali Nazioni produttrici di torba ad uso agricolo (I.P.S. 2008)

<table>
<thead>
<tr>
<th>Nazioni</th>
<th>Area totale torbiere (Km²)</th>
<th>Torbiere usate in agricoltura (Km²)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bielorussia</td>
<td>23.967</td>
<td>9.681</td>
<td>40</td>
</tr>
<tr>
<td>Estonia</td>
<td>10.091</td>
<td>1.300</td>
<td>13</td>
</tr>
<tr>
<td>Finlandia</td>
<td>94.000</td>
<td>2.000</td>
<td>2</td>
</tr>
<tr>
<td>Germania</td>
<td>14.200</td>
<td>12.000</td>
<td>85</td>
</tr>
<tr>
<td>Gran Bretagna</td>
<td>17.594</td>
<td>720</td>
<td>4</td>
</tr>
<tr>
<td>Islanda</td>
<td>10.000</td>
<td>1.300</td>
<td>13</td>
</tr>
<tr>
<td>Irlanda</td>
<td>11.757</td>
<td>896</td>
<td>8</td>
</tr>
<tr>
<td>Lettonia</td>
<td>6.691</td>
<td>1000</td>
<td>15</td>
</tr>
<tr>
<td>Lituania</td>
<td>4.826</td>
<td>1.900</td>
<td>39</td>
</tr>
<tr>
<td>Olanda</td>
<td>20.350</td>
<td>2.000</td>
<td>10</td>
</tr>
<tr>
<td>Norvegia</td>
<td>23.700</td>
<td>1.905</td>
<td>8</td>
</tr>
<tr>
<td>Polonia</td>
<td>10.877</td>
<td>7.620</td>
<td>70</td>
</tr>
<tr>
<td>Russia</td>
<td>568.000</td>
<td>70.400</td>
<td>12</td>
</tr>
<tr>
<td>Svezia</td>
<td>66.680</td>
<td>3.000</td>
<td>5</td>
</tr>
<tr>
<td>Ucraina</td>
<td>10.081</td>
<td>5.000</td>
<td>50</td>
</tr>
<tr>
<td>NORD AMERICA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>1.114.000</td>
<td>170.000</td>
<td>15</td>
</tr>
<tr>
<td>U.S.A.</td>
<td>611.000</td>
<td>61.000</td>
<td>10</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>200.278</td>
<td>42.000</td>
<td>20</td>
</tr>
<tr>
<td>Malesia</td>
<td>611.000</td>
<td>8.285</td>
<td>32</td>
</tr>
<tr>
<td>Cina</td>
<td>10.440</td>
<td>2.610</td>
<td>25</td>
</tr>
</tbody>
</table>
3.5.1 Classificazione delle torbe

Non esiste una metodica di classificazione delle torbe internazionalmente riconosciuta, ma i sistemi per classificare le torbe si basano quindi su diversi criteri quali (Perelli, 2009):

1. condizioni alle quali è avvenuta la decomposizione del materiale organico, secondo la classificazione Farnham:
 - torbe alte,
 - torbe basse;
2. dimensioni delle particelle:
 - fine (< 0,84 mm),
 - media (tra 0,84 e 2,38 mm)
 - grossa (> 2,38 mm).
3. composizione botanica:
 - torba di sfagno,
 - torba di carice,
 - torba originata da altre specie vegetali;
4. grado di decomposizione che fa riferimento alla scala di Von Post e Bragg:
 - poco decomposta (H1-H3),
 - mediamente decomposta (H4-H6),
 - molto decomposta (H7-H10)
5. stato nutritivo:
 - torbe oligotrofiche, povere di nutrienti, come le torbe di sfagno,
 - mesotrofiche, mediamente dotate di nutrienti, come le torbe di Phragmites,
 - eutrofiche, ricche di nutrienti, come le torbe di carice.

Torbe Alte

I più importanti paesi produttori sono: Germania, Finlandia, Svezia, Norvegia, Irlanda, Inghilterra, Paesi del Baltico e Canada.

Le torbe Alte si originano in ambienti freddi e molto piovosi. L’acqua piovana priva di sali viene trattenuta in superficie da muschi (Sphagnum) e residui vegetali (Eriophorum, Vaccinium, Erica) creando un ambiente saturo e asfittico pur non sommergendo completamente i vegetali.

Nella torbiera alta si distinguono due strati il primo più profondo e molto decomposto (torba bruna), l’altro più superficiale poco decomposto e di colore chiaro (torba bionda).
Entrambe sono caratterizzate da una buona stabilità strutturale, disponibilità di elementi nutritivi molto bassa e pH decisamente basso.

Le torbe brune, con pori molto piccoli presentano maggiore capacità idrica e minore porosità libera per l’aria, sono dotate di più elevata CSC e potere tampone. Si è riscontrata una stretta correlazione tra PVA della massa secca e CSC, le torbe con livello di umificazione molto basso presentano PVA pari a 45 gr/l e CSC di 100 meq/100 g corrispondenti a 45 meq/l. Con l’aumentare dei valori di PVA da 75 a 105 gr/l le CSC salgono a 120 meq/100 g o 90 meq/l e 124 meq/100 g o 130 meq/l rispettivamente. Le caratteristiche fisiche, invece, variano in relazione alla granulometria che consente di assorbire acqua da 4-8 fino a 10-15 volte il proprio peso. Le torbe alte presentano caratteristiche ideali per soddisfare i requisiti richiesti ad un buon substrato. Possono essere utilizzate industrialmente perché presentano proprietà costanti ed uniformi, dopo opportune correzioni di pH con carbonato di calcio. (Perelli, 2009)

Torbe Basse

Le torbiere basse sono presenti nelle zone temperate (Italia, Francia), queste torbe si formano in presenza di ristagni d’acqua come conseguenza di una falda freatica superficiale o affiorante. La quota di ossigeno e la presenza di sali e calcare delle acque consente una più rapida decomposizione e umificazione delle piante rispetto a quella che viene nelle torbiere alte. La torba prodotta è di colore molto scuro dal bruno a nero (torba nera) con maggior contenuto di sostanze nutritive in particolare azoto e calcio, pH più elevato, maggiore densità apparente e porosità libera assai più ridotta. Presenta fragilità allo stato secco e plasticità allo stato umido che conferisce elevata suscettibilità alla compressione e alla deformazione. Il rapporto C/N è compreso tra 15 e 30. Le torbe nere sono poco pregiate e non possono essere impiegate da sole per la formazione del substrato ma possono essere miscelate con altri materiali.

A causa della grande variabilità qualitativa delle acque e dei vegetali che contribuiscono alla formazione della torbiera raramente si trovano torbe omogenee. Il complesso di tali fattori provoca una consistente variabilità nelle diverse tipologie di prodotto al quale non è possibile attribuire un valore univoco in EC che, da quanto appare in bibliografia può variare da 0.10 a 0.30 mS/cm (Perelli, 2009).
3.5.2. Caratteristiche fisiche, chimiche e biologiche della torba

Nelle tabelle che seguono vengono riassunte le caratteristiche fisiche (Tab. 4 Aendekerk, 2000) e chimiche (Tab. 5) generali delle torbe.

Tab. 4. Caratteristiche fisiche della torba (Aendekerk, 2000)

<table>
<thead>
<tr>
<th>Parametri</th>
<th>Medie</th>
<th>Intervalli</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVA (kg/m³)</td>
<td>113</td>
<td>47-290</td>
</tr>
<tr>
<td>Porosità totale</td>
<td>93</td>
<td>81-97</td>
</tr>
<tr>
<td>Macroporosità a -1 kPa</td>
<td>14</td>
<td>0-45</td>
</tr>
<tr>
<td>Microporosità a -1 kPa</td>
<td>79</td>
<td>50-96</td>
</tr>
<tr>
<td>Restringimento</td>
<td>31</td>
<td>12-50</td>
</tr>
</tbody>
</table>

Tab. 5. Caratteristiche chimiche della torba (Perelli, 2009)

<table>
<thead>
<tr>
<th>Caratteristiche</th>
<th>Torba alte di sfagno</th>
<th>Torba bionda</th>
<th>Torba bruna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sostanza organica % s.s.</td>
<td>94-99</td>
<td>94-99</td>
<td>55-75</td>
</tr>
<tr>
<td>Ceneri % s.s.</td>
<td>1-6</td>
<td>1-6</td>
<td>23-30</td>
</tr>
<tr>
<td>CSC meq/100g</td>
<td>100-150</td>
<td>120-170</td>
<td>80-150</td>
</tr>
<tr>
<td>Azoto totale % s.s.</td>
<td>0,5-2,5</td>
<td>0,5-2,5</td>
<td>1,5-3,5</td>
</tr>
<tr>
<td>Rapporto C/N</td>
<td>30-80</td>
<td>20-75</td>
<td>10-35</td>
</tr>
<tr>
<td>Calcio % s.s.</td>
<td><0,4</td>
<td><0,2</td>
<td>>2</td>
</tr>
<tr>
<td>pH</td>
<td>3,0-4,0</td>
<td>3,0-5,0</td>
<td>5,5-7,3</td>
</tr>
</tbody>
</table>

Le principali caratteristiche chimiche, variano come quelle fisiche, a seconda del grado di umificazione. In genere le torbe non hanno molti elementi nutritivi solubili, tuttavia in alcuni casi si possono registrare livelli abbastanza alti di Mg attribuibili alla vicinanza della torbiera ad aree costiere. Il contenuto di azoto è invece molto variabile: a seconda delle zone di estrazione oscilla tra 0,5% e 3,0% della sostanza secca. Come è noto, infine, con il passare del tempo la variazione dell’acidità delle torbe verso valori più bassi si deve essenzialmente all’incremento degli acidi umici (Perelli, 2009).

In molti ritengono la torba un materiale sterile riguardo all’attività biologica. Tuttavia paludi e torbiere sono sistemi dinamici e si possono trovare molti microrganismi sulle torbe in modo particolare quando, prima della raccolta, ha luogo l’allontanamento dell’acqua e comincia l’ossidazione. Un particolare aspetto dell’attività microbica sulle
torbe riguarda il fenomeno di auto-bruciatura. Talvolta i produttori infatti assistono al problema dei depositi nei magazzini in cui si verifica un drammatico innalzamento della temperatura che, se non viene monitorato, brucia il centro del cumulo. Si sono compiuti vari sforzi per cercare di spiegare questo fenomeno ma non ci sono ancora spiegazioni convincenti e non vi sono metodi soddisfacenti per prevedere la probabilità che la torba si bruci. La torba danneggiata è fortunatamente facile da riconoscere per l’odore. Fisicamente se la torba non è carbonizzata diventa granulare al tatto ed estremamente difficile da reidratare. Chimicamente il materiale può avere eccessiva conducibilità elettrica e pericolosi alti livelli di ammonio. Una volta bruciata la torba è suscettibile ad un secondo attacco fungino che avvia la formazione di ife fungine appena sotto la superfcie del mucchio di torba. Questa torba, come appare ovvio, non può essere usata per scopi professionali (Sannazzaro, 2008).

3.5.3. Substrati alternativi

Negli ultimi anni sempre di più nelle aziende florovivaistiche si guarda con interesse, e vengono presi in considerazione, substrati alternativi a quelli tradizionali, sia per motivi economici sia per la tutela dell’ambiente. La torba risulta essere di gran lunga il substrato di crescita maggiormente utilizzato nell’ambito del vivaismo, ma recentemente la sua estrazione ed utilizzazione è stata soggetta a critiche e limitazioni. La conseguenza diretta di queste limitazioni può essere individuata essenzialmente nell’aumento dei costi della torba e nella riduzione della qualità del materiale importato. Un’opportunità è rappresentata sicuramente dallo studio e dalla valutazione di nuovi materiali come lolla di riso e digestati che opportunamente gestiti e trattati possano essere utilizzati in sostituzione, parziale o totale, della torba senza indurre peggioramenti qualitativi sul prodotto finale. (Sambo e Santamaria, 2009)

3.6 LOLLA DI RISO

Il riso (Oryza sativa L.) è una pianta annuale, appartenente alla famiglia delle graminacee macroterme, originaria della Cina e della Thailandia e coltivata in Asia Centrale, Egitto, Italia, Stati Uniti. Presenta un’infiorescenza a pannocchia con spughette uniflore, inserite lungo l’asse e all’apice dei rami di vario ordine nei quali si articola il rachide. Ogni spughetta è costituita da un solo fiore fertile, ermafrodito, con due grandi
glumelle e due glume piccole lesiniformi sterili. Le due glumelle (lemma e palea) formano una cavità nella quale si sviluppano gli organi essenziali del fiore: un pistillo e sei stami, nonché due lodicole che aiutano il fiore ad aprirsi nel momento della fioritura. La glumella inferiore (lemma) è la più grande e talvolta presenta l’apice munito di arista più o meno lunga, sempre rigida e pelosa.

Il prodotto della trebbiatura è ancora rivestito dalle glumelle e dalle glume (risone) e non è ancora commestibile, per renderlo fruibile, sono necessari alcuni interventi meccanici, tra i quali la sbramatura che eliminando le parti più esterne della cariosside rende commestibile l’endosperma amidaceo.

Con il processo di lavorazione del risone si ottiene come prodotto principale il riso e altri sottoprodotti: la lolla, la pula, gli strati aleuronici (farinaccio) e l’embrione (gemma).

I residui ottenuti possono essere farinosi (pula e farinaccio) e vengono utilizzati per la preparazione di mangimi per animali e all’estrazione della fitina. Le cariossidi rotte possono essere utilizzate nell’industria della birra e dei mangimi ed essere impiegate per preparare semolino, farine, amidi, colle e cipria per la cosmesi. Le cariossidi immature sono utilizzate nell’industria della birra. Dalle gemme (embrioni) si estraggono sali minerali e vitamine di alto pregio. Ultimo ma non meno importante residuo di lavorazione del riso è la lolla. La lolla rappresenta il 20% in peso del risone, si presenta di colore marrone-beige ed è formata dalle glume e glumette che ricoprono la cariosside. È leggera e voluminosa, la sua densità oscilla tra i 132 e i 140 kg/m³, ed è praticamente imputrescibile e inattaccabile dagli insetti. Le ceneri, costituite quasi interamente da ossido di silicio, si aggirano intorno al 17% (Bonciarelli, 2002).

Nel 2009 la produzione mondiale di riso si è aggirata intorno alle 465 milioni di tonnellate. Nell’Unione Europea la produzione si è aggirata su 3.181.722 tonnellate di risone coltivato su circa 458.615 ettari. Mentre in Italia la produzione è stata di 1.672.151 tonnellate di risone (1.003.290 tonnellate di riso lavorato), coltivata su 238.458 ettari che corrisponde al 47,6% dell’intera produzione dei paesi dell’Unione Europea. L’Italia è il primo produttore europeo e un terzo della produzione è destinato al consumo interno e il resto è destinato all’esportazione in Europa e nel mondo, dove il riso italiano è sempre più apprezzato (Ente Nazionale Risi, 2010).

Considerato che per ogni ettaro coltivato si ottengono, in base alla varietà, 6 tonnellate di riso grezzo e che da 100 kg di quest’ultimo si ottengono circa 60 kg di riso raffinato e
15-20 kg di lolla (circa il 20% del peso totale), si può quindi notare l’elevata disponibilità quantitativa di lolla sia in Europa che in Italia (Baldoni, 2000). Attualmente il risone viene quotato alla borsa di Milano con un prezzo indicativo, a seconda della varietà, tra 445.00 – 630.00 €/t mentre la lolla secondo la borsa di Vercelli viene quotata tra 22.00 e 27.00 €/t (Informatore Agrario, 2010).

3.6.1 Impieghi della lolla di riso
La lolla di riso è un materiale che può essere destinato a diverse utilizzazioni:

- lettiera zootecnica in allevamenti avicoli,
- ammendante agricolo o come ingrediente per substrati in floricoltura e orticoltura,
- ammendante vegetale semplice nell'industria chimica per compostaggio,
- fluidificante nell'industria estrattiva da oleaginose e mangimistica,
- combustibile nell'industria energetica,
- le ceneri vengono utilizzate nelle fonderie, industrie di detersivi e nell’industria chimica come materia prima per la produzione di filtri,
- interessa per l’estrazione di furfuraro utilizzato dalle industrie di vernici e resine
- isolante termico biologico nell’industria dei laterizi o utilizzato per la produzione di materiale ceramico,
- produzione di vasi biodegradabili i quali consentono: riduzione dell'uso di petrolio e delle emissioni di gas serra, il miglioramento della salute della pianta e la possibilità di mettere a dimora le piante nel terreno senza dover poi smaltire il vaso in quanto è biodegradabile (Ente risi, 2010).

Per aumentare il contenuto di nutrienti del riso e per far sì che mantenga meglio la cottura si utilizza il processo parboiled che consiste nel trattare il riso con vapore ad alta temperatura e sotto pressione. Quando questa lavorazione avviene prima della sbaramatura, si ottiene della lolla completamente sterilizzata, priva di embrioni vitali di riso e di semi germinabili di malerbe, che la rende molto appetibile come substrato nelle aziende florovivaistiche, per ovviare problemi difficilmente risolubili con le malerbe. In queste aziende è sempre maggiore l’interesse per l’utilizzo di substrati alternativi in sostituzione a quelli tradizionali, costosi e non rispettosi dell’ambiente come nel caso delle torbe (Perelli, 2009).
3.6.2 Caratteristiche chimiche

Negli ultimi anni, sono state fatte numerose ricerche per la valutazione e caratterizzazione di lolla di riso da utilizzare come substrato.

I risultati finora ottenuti sono buoni ma abbisognano di ulteriori approfondimenti perché il prodotto è caratterizzato da notevole variabilità e presenta caratteristiche diverse a seconda della tipologia del riso e dei trattamenti a cui viene sottoposto. Il prodotto che normalmente si trova in commercio ha un elevato rapporto C/N per cui la decomposizione non avviene molto velocemente e perciò viene garantita la stabilità delle caratteristiche fisico chimiche nel tempo.

I risultati ricavati da esperienze condotte presso il Dipartimento di Agronomia Ambientale e Produzioni Vegetali dell’Università di Padova hanno messo in evidenza che la lolla di riso fresca non parboiled è caratterizzata da CSC poco superiore a 40 meq/100 g, sia del prodotto intero che in quello delle frazioni ricavate dopo la macinatura (Tab. 6).

Tab. 6. Caratteristiche chimiche e fisiche della torba (Perelli, 2009)

<table>
<thead>
<tr>
<th>Caratteristiche</th>
<th>Lolla intera</th>
<th>Lolla macinata a...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 mm</td>
<td>4 mm</td>
</tr>
<tr>
<td>Sostanza organica, % s.s.</td>
<td>84,4</td>
<td>84,4</td>
</tr>
<tr>
<td>Ceneri, % s.s.</td>
<td>15,6</td>
<td>15,6</td>
</tr>
<tr>
<td>Carbonio, % s.s.</td>
<td>49,2</td>
<td>49,2</td>
</tr>
<tr>
<td>Azoto totale, % s.s.</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>Rapporto C/N</td>
<td>123,3</td>
<td>123,3</td>
</tr>
<tr>
<td>Capacità scambio cationico meq/100 g</td>
<td>44,2</td>
<td>44,2</td>
</tr>
<tr>
<td>pH in acqua</td>
<td>6,0</td>
<td>6,0</td>
</tr>
<tr>
<td>Conducibilità elettrica, mS/cm</td>
<td>0,190</td>
<td>0,420</td>
</tr>
<tr>
<td>Peso volumico apparente, kg/m³</td>
<td>0,15</td>
<td>0,28</td>
</tr>
<tr>
<td>Porosità totale, % in volume</td>
<td>90,7</td>
<td>82,3</td>
</tr>
<tr>
<td>Porosità libera, % in volume</td>
<td>86,2</td>
<td>47,0</td>
</tr>
<tr>
<td>Capacità ritenzione idrica, % volume</td>
<td>4,5</td>
<td>35,4</td>
</tr>
</tbody>
</table>

Tale valore garantisce il trattenimento degli elementi nutritivi contenendone le perdite per dilavamento, ma nello stesso tempo può creare difficoltà nella gestione della nutrizione della pianta, poiché questa potrebbe trovarsi in competizione con il substrato di coltura. Come per la CSC, anche nei confronti della percentuale di sostanza organica (SO), ceneri, azoto e carbonio totale, non si sono verificate differenze tra i valori della lolla intera e le sue frazioni di diversa granulometria. Il pH, oscillando tra il valore più elevato (6,1) nelle frazioni di 2 e 4 mm a quello più basso (5,9) in quella di 1 mm, ha
dimostrato che la lolla si mantiene in condizioni di sub-acidità che meglio si adattano per la maggior parte delle specie coltivate. Questa moderata acidità non richiede alcun intervento correttivo, cosa invece sempre necessaria non solo nel caso più eclatante delle torbe bionde (Perelli, 2009).

3.6.3 Caratteristiche fisiche

Nei confronti degli aspetti fisici i valori in tabella 6 evidenziano una conducibilità elettrica (EC) crescente passando dalla lolla intera a quella con granulometria sempre più piccola in seguito alla macinazione. A questo proposito sembra che l’aumento dei valori dell’EC sia dovuto soprattutto al rilascio di K e P in quantitativi tali da rasentare la metà del fabbisogno nel caso di piante di pomodoro in vivaio. I valori del peso volumico apparente (PVA) si sono espressi in modo analogo a quanto riportato per l’EC, ma la cosa non stupisce poiché, variando il calibro delle particelle, varia anche la loro posizione nello spazio e nel caso di quelle di dimensioni inferiori si verificherà una ovvia notevole contrazione della porosità totale. In questo caso particolare attenzione dovrà essere rivolta alla scelta delle particelle di dimensioni tali da evitare eccessivo compattamento, quando troppo piccole, o ridotta coesione nel contrario. La prima condizione può portare asfissia e/o ostacolo per regolare la crescita delle radici, nella seconda insufficiente ritenzione idrica. Sotto questo profilo le granulometrie più interessanti sono state quelle di 2 e 4 mm che hanno consentito anche, nel caso della lolla parboiled, le migliori risposte sotto il profilo della velocità di idratazione e di capacità di ritenzione idrica. Tale favorevole espressione può essere verosimilmente dovuta al trattamento termico che, eliminando la cera presente nel materiale fresco, ne riduce drasticamente le caratteristiche idrofobiche. Si può pertanto affermare che la lolla, opportunamente macinata, può rappresentare un substrato con caratteristiche tali da poter sostituire la torba. Al momento attuale però si consiglia di impiegarlo miscelato con torba in quantitativi variabili dal 20 al 40% in volume, a causa della sua scarsa coesione che provoca inconvenienti seri soprattutto nel settore vivaistico. Si auspicano studi dettagliati finalizzati all’impiego di leganti di varia natura dai quali è verosimile ottenere risposte concrete alla soluzione di tale problema (Perelli, 2009).
3.6.4 Curiosità

L’Airi (Associazione industrie riserie italiane) ha annunciato che il supplemento ordinario alla G.U. del 18 maggio 2006 ha pubblicato l’atteso decreto del Ministro dell’Ambiente che pone fine al problema della gestione della lolla di riso. A questo punto si può dire che la lolla di riso è un prodotto a tutti gli effetti e deve essere gestito come gli altri prodotti derivanti dalla lavorazione del risone, non assoggettati agli oneri derivanti dalla normativa ambientale relativa ai rifiuti. Il D.M. 5 febbraio 1998, relativo all’individuazione dei rifiuti non pericolosi sottoposti a procedure semplificate di recupero, ha classificato la lolla di riso tra i rifiuti non pericolosi, attribuendole il codice CER020304 («scarti inutilizzabili per il consumo o la trasformazione») e prevedendo come attività di recupero la produzione di lettiere per allevamenti zootecnici.

L’Airi aveva sostenuto che, perché una sostanza dovesse essere gestita come rifiuto, dovesse esserci la concomitanza di due eventi: che la sostanza fosse classificata rifiuto e che il detentore se ne disfacesse. La lolla non è una sostanza di cui le industrie risiere si disfano, ma un prodotto regolarmente commercializzato ed i cui prezzi sono rilevati dalle principali borse merci e, conseguentemente, non avrebbe dovuto essere considerato rifiuto; l’interpretazione che si è diffusa maggiormente tuttavia è stata che la sola classificazione di una sostanza l’assoggettava alla gestione come rifiuto, e ciò ha causato problemi commerciali e reso inutilemente più onerosa la gestione della lolla (Il Risicoltore, 2006).

3.7 RESIDUI DELLA DIGESTIONE ANAEROBICA

3.7.1 La Digestione Anaerobica: un processo che produce energia

La digestione anaerobica è la trasformazione di sostanza organica (carbonio) in combustibile gassoso (biogas) attraverso una biotecnologia (Adani et al., 2008). La produzione di biogas avviene in ambienti a temperatura controllata ad opera di microrganismi attivi che attuano profonde modificazioni chimico – fisiche e biologiche alle matrici organiche di partenza: insilato di mais, farina di mais, farina di riso, liquame suino e bovino, pollina, deiezioni di coniglio, fanghi di depurazione, frazione organica dei rifiuti, rifiuto a base vegetale, scarti di frutta, scarti di carne, scarti di macellazione e
lattiero caseari, trebbie e fanghi di produzione della birra, melasso, glicerina, scarti della lavorazione dell’olio d’oliva.

La digestione anaerobica è un processo alternativo al compostaggio che avviene in presenza di ossigeno. I batteri che vengono utilizzati in questo processo possono lavorare a temperature comprese tra 20-45 °C con un intervallo tra 37-41 (batteri mesofili) sia a temperature comprese tra 50 e 52 °C (batteri termofili). I tempi di processo di digestione sono più o meno lunghi a seconda del tipo di batteri utilizzati, nel caso dell’utilizzo di batteri termofili l’aumento della temperatura diminuisce i tempi del processo aumentando però i costi.

I digestori possono essere divisi in due tipi: i continui costruiti con dispositivi idraulici o meccanici, con i quali è possibile mescolare il materiale, aggiungere materiale organico di partenza ed estrarre i sottoprodotti in continuo in maniera che all’interno del digestore vi siano le condizioni ideali di lavorazione (pH, rapporto tra materiale fresco e sottoprodotti) e digestori a ciclo chiuso dove una volta caricato il digestore non è più possibile intervenire se non a processo concluso (Rota, 2010).

3.7.2 Fasi digestione anaerobica

La digestione anaerobica è suddivisibile in quattro stadi:

1. **Idrolisi**, dove le molecole organiche subiscono scissione in composti più semplici quali monosaccaridi, amminoacidi e acidi grassi.

2. **Acidogenesi**, dove avviene l’ulteriore scissione in molecole ancora più semplici come gli acidi grassi volatili (ad esempio acido acetico, propionico, butirrico e valerico), con produzione di ammoniaca, anidride carbonica e acido solfidrico quali sottoproducti.

3. **Acetogenesi**, dove le molecole semplici prodotte nel precedente stadio sono ulteriormente digerite producendo biossido di carbonio, idrogeno e principalmente acido acetico.

4. **Metanogenesi**, con produzione di metano, biossido di carbonio e acqua.

La digestione anaerobica può essere effettuata sia a umido che a secco. La digestione a secco si riferisce a miscele di materiale con contenuto minimo in solidi del 30%, mentre la digestione a umido si riferisce a miscele con un minimo del 15% di contenuto in solidi.
Il processo di digestione anaerobica porta alla formazione di tre sottoprodotti: il biogas, il digestato acidogenico e il digestato metanogenico che possono trovare diversi impieghi (Piccinini, 2004).

3.7.2 I sottoprodotti della digestione anaerobica

Il biogas è una miscela gassosa composta prevalentemente da metano e anidride carbonica, ma contenente anche una piccola quantità di idrogeno e occasionalmente tracce di acido solfidrico. Il biogas può essere bruciato per produrre energia elettrica solitamente con motore a scoppio o microturbina. Il gas è spesso utilizzato nel processo di cogenerazione, per la produzione di energia elettrica e sfruttando il calore per riscaldare gli stessi digestori o effettuare il teleriscaldamento. L'energia elettrica prodotta dalla digestione anaerobica viene considerata una forma di energia verde. Dato che il gas non viene rilasciato direttamente nell'atmosfera e l'anidride carbonica deriva da fonte organica caratterizzata da breve ciclo del carbonio, il biogas con la sua combustione non contribuisce all'aumento delle concentrazioni atmosferiche di CO₂ e grazie a ciò viene considerato una fonte energetica a basso impatto ambientale. La produzione di biogas non avviene in modo costante, durante il processo della digestione anaerobica; il livello massimo viene raggiunto durante la fase centrale del processo. Nei digestori a ciclo chiuso la produzione iniziale di biogas è bassa perché i batteri non si sono ancora riprodotti abbastanza. Verso le fasi finali, restano solamente i materiali difficilmente digeribili, con una conseguente diminuzione della quantità di biogas prodotto. La costanza di produzione di gas avviene nei digestori a ciclo continuo perché come precedentemente descritto c’è la possibilità di agire in qualsiasi momento del processo (mescolare il materiale, aggiungere materiale organico di partenza ed estrarre i sottoprodotti in continuo).

Il digestato acidogenico è un materiale organico stabile composto prevalentemente da lignina e cellulosa, ma anche da una varietà di componenti minerali e da una matrice di cellule batteriche morte; possono essere presenti anche alcune materie plastiche. Questo digestato somiglia al compost domestico e può essere utilizzato quale suo succedaneo o per produrre materiale da costruzione derivato da fibre di legno.

Il digestato metanogenico è il terzo sottoprodotto della digestione anaerobica e, in relazione alla qualità del materiale sottoposto a digestione, può rappresentare un fertilizzante eccellente e ricco di nutrienti.
Gli impianti di digestione sfruttano convenientemente processi ausiliari per il trattamento e la gestione di tutti i sottoprodotti. Dal biogas viene eliminata l’umidità e talvolta il gas viene anche pretrattato, prima della sua conservazione e utilizzo. La miscela liquida fangosa viene risolta nelle componenti solida e liquida utilizzando comunemente la filtrazione (FIRB, 2010).

La digestione anaerobica permette quindi di risolvere alcune problematiche delle biomasse residue, come:
- la classificazione rispetto alla normativa (rifiuti o sottoprodotti);
- la necessità di trattamenti;
- il modesto valore intrinseco;
- il forte impatto ambientale (chimico, biologico,olfattivo).

3.7.3 Impieghi e Normativa del digestato in Agricoltura

La composizione del digestato (Tab. 7) e il suo inquadramento normativo variano in funzione:
- della tipologia di biomasse in entrata;
- della classificazione (agricola o meno) dell’attività di valorizzazione energetica delle stesse;
- delle modalità di trattamento in uscita dall’impianto di digestione.

Tab. 7. Composizione del digestato

<table>
<thead>
<tr>
<th>Composizione del Digestato</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solidi totali (s.s.) (g/kg)</td>
<td>30-90</td>
</tr>
<tr>
<td>Solidi volatili (s.v.) (% su s.s.)</td>
<td>50-70</td>
</tr>
<tr>
<td>pH</td>
<td>7.5-8.2</td>
</tr>
<tr>
<td>Azoto totale Kjeldahl (NTK) (g/kg)</td>
<td>3-6</td>
</tr>
<tr>
<td>Azoto ammoniacale (N-NH₃) (% NTK)</td>
<td>50-80</td>
</tr>
<tr>
<td>C/N</td>
<td>3-8</td>
</tr>
<tr>
<td>Fosforo (P₂O₅) (g/kg)</td>
<td>0.8-1.5</td>
</tr>
<tr>
<td>Potassio (K₂O) (g/kg)</td>
<td>4.7</td>
</tr>
</tbody>
</table>

(*) Espressa sul refluo tale quale in uscita dal processo di digestione anaerobica (diverse fonti).

Il digestato può essere frazionato in due componenti solido e liquido. Gli elementi nutritivi nella parte liquida sono presenti nella stessa quantità delle biomasse in entrata ma in forma più facilmente assimilabile rispetto alle matrici di origine ed avrà quindi le caratteristiche di un concime a pronto effetto con un potere nutrizionale non inferiore alle stesse, mentre la parte solida, ricca di sostanza organica non digerita, assumerà
proprietà ammendanti cioè in grado di apportare miglioramenti alla struttura del terreno (Piccinini et al., 2009).

Dal punto di vista ambientale, l’azoto viene convertito sino anche a più del 70% in azoto ammoniacale (Mantovi et al., 2009) rendendosi maggiormente disponibile per le colture, purché la distribuzione avvenga in epoca a ridosso di quella di utilizzo da parte delle piante. La possibilità di utilizzare in campo il digestato (tal quale o, meglio, nelle sue frazioni separate) dipende, come accennato, dal suo inquadramento normativo che non detta delle regole univoche, ma nella normativa si incontrano diversi provvedimenti nei quali l’argomento non è trattato in maniera completa e dedicata creando incertezza e interpretazioni divergenti tra gli operatori del settore agro-energetico e gli Enti Locali preposti alla concessione delle necessarie autorizzazioni. In attesa di una normativa chiara che chiarisca le regole, le modalità a cui possiamo fare riferimento per poter utilizzare in campo il digestato, senza sconfinare nel campo dei rifiuti e quindi senza dover classificare il suo uso agronomico come operazione di recupero rifiuti (“spandimento sul suolo a beneficio dell’agricoltura”, codice R10 dell’allegato C alla parte IV del dlgs. 152/2006) soggetta a specifica autorizzazione, sono:

- l’assenza di biomasse in ingresso al digestore classificabili come rifiuti,
- l’inquadramento dell’attività di trasformazione energetica delle biomasse come attività agricola “connessa” (ai sensi dell’articolo 2135, comma 3 del codice civile e di quanto stabilito dalle Finanziarie 2006 e 2007),
- l’assenza di trattamenti e trasformazioni merceologiche o qualitative del digestato (o delle sue frazioni separate solida/liquida) prima dell’utilizzo in campo.

La contemporanea presenza di queste condizioni in base alla normativa applicabile, comunitaria e nazionale (escludendo le singole discipline regionali che possono prevedere, come vedremo, approcci di maggiore o minore apertura), permette di evitare che il digestato sia considerato rifiuto e consente la sua classificazione come sottoprodotto derivante da attività agricola (la digestione anaerobica) ed utilizzato in attività agricola (a beneficio di terreni e colture) (Capponi, 2010).

Se il digestato è prodotto da matrici organiche quali reflui zootecnici, da soli o in miscela con altre biomasse non provenienti da rifiuti, lo spandimento in campo, tal quale o nelle sue frazioni separate solida-palabile/liquida-non palabile, può essere assimilato ad effluenti animali e assoggettato al Dm 7/4/2006 (Direttiva Nitrati):
- max 170 kg/(ha x anno) di azoto zootecnico in Zona Vulnerabile ai Nitrati da fonte agricola (ZVN), inteso come quantitativo medio aziendale;
- max 340 kg/(ha x anno) di azoto zootecnico in Zona Ordinaria (ZO), inteso come quantitativo medio aziendale (Capponi, 2010).

Se il digestato è prodotto a partire da scarti agricoli o agroindustriali, da colture dedicate, si apre lo scenario più controverso, il suo utilizzo diventa problematico per i diversi orientamenti regionali nella regolamentazione dell’uso agronomico del digestato “non zootecnico”.

La Regione Emilia-Romagna (Tab. 8) ha provveduto a fare chiarezza attraverso la Deliberazione della Giunta Regionale 28 luglio 2008 n. 1255 che classifica come “fertilizzante organico” il digestato derivante da cinque categorie di matrici vegetali e animali di larga diffusione ed affronta in maniera articolata il tema dell’uso agronomico del digestato in relazione a quattro diverse tipologie di refluo in uscita dall’impianto.

Nel caso di digestato che origina da sole colture, il Programma di Azione per i Nitrati (PAN) Emiliano-Romagnolo pone in ZVN un vincolo non particolarmente restrittivo, variabile da coltura a coltura, che consente di soddisfare le richieste azotate anche solo a partire dal digestato, senza la necessità di ricorrere al concime minerale (Capponi, 2010).

Una analoga apertura nei confronti del digestato non zootecnico è presente anche nella normativa della Regione Lombardia che però, priva di un provvedimento dedicato (le previsioni circa questa tematica sono inserite all’interno del Pan regionale), risulta poco esaustiva nella trattazione di alcuni aspetti di non secondaria importanza (tipologia di matrici vegetali ammesse; gestione del digestato “misto”).

Nel caso del Piemonte, l’Allegato I alla Deliberazione della Giunta Regionale 23 febbraio 2009 n. 64–10874 ammette l’assimilabilità all’effluente zootecnico, ai fini del suo utilizzo agronomico, solo del digestato proveniente da tre tipologie di matrici, aggiungendo che la quota di effluente zootecnico deve essere sempre pari almeno al 50% in peso della miscela in ingresso al digestore anaerobico. Ciò configura una evidente volontà della Regione Piemonte di contenere lo sviluppo di impianti di digestione anaerobica alimentati esclusivamente con materiale vegetale. Inoltre, in caso di utilizzo agronomico del digestato, la DGR 64-10874 richiede obbligatoriamente sia in zone vulnerabili ai nitrati, sia in zone ordinarie, di computare i dosaggi sempre con un
Piano di Utilizzazione Agronomica (PUA) che rispetti i criteri di bilanciamento della fertilizzazione azotata riportati nel PAN (Regolamento Regionale 10/R/2007).

Tab. 8. Riferimenti per l’utilizzo agronomico del digestato in alcune regioni del Nord

<table>
<thead>
<tr>
<th></th>
<th>PIEMONTE</th>
<th>LOMBARDIA</th>
<th>EMILIA-ROMAGNA</th>
<th>VENETO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provvedimenti normativi dedicati all’ingresso alla fase di digestione</td>
<td>Deliberazione della Giunta regionale 23 febbraio 2009 n. 64-10874</td>
<td>All’interno del PAN (art.14 All.1 per ZVN; art.14 All.2 per ZO)</td>
<td>Deliberazione della Giunta Regionale 28 luglio 2008, n. 1255</td>
<td>All’interno della Deliberazione della Giunta Regionale 7 agosto 2007, n. 2439 (Allegato A)</td>
</tr>
<tr>
<td>Matrici organiche ammesse in ingresso alla fase di digestione</td>
<td>• effluendi zootecnici; • residui delle coltivazioni o residui vegetali prodotti dalle imprese agricole che trasformano o valorizzano la produzione agricola; • prodotti agricoli.</td>
<td>• effluendi di allevamento; • residui della coltivazione e delle aziende agricole che trasformano le proprie produzioni vegetali; • residui delle produzioni vegetali effettuate dall’agroindustria; • sottoproducti di origine animale residui dell’agroindustria o delle aziende agricole; • prodotti agricoli dedicati.</td>
<td>• effluendi di allevamento (zootecnico puro); • da effluendi + sette o “componente vegetale”; • misto (?).</td>
<td>• liquami e materiali ad essi assimilabili; • letami e materiali ad essi assimilabili; • eventuali biomasse vegetali derivate da produzioni aziendali o reperite nel mercato, a condizione che siano non classificabili come rifiuti.</td>
</tr>
<tr>
<td>Digestato in uscita ammesso all’uso agronomico</td>
<td>• zootecnico puro; • zootecnico misto (almeno 50% in peso relativo zootecnico).</td>
<td>• zootecnico puro; • da effluendi + sette o “componente vegetale”; • misto (?).</td>
<td>• da effluendi + sette o “componente vegetale”; • sottoproducti di origine animale (zootecnico puro); • da effluendi + sette o sottoproducti di origine animale (zootecnico misto).</td>
<td>• zootecnico puro; • zootecnico misto con biomasse vegetali.</td>
</tr>
<tr>
<td>Obbligo di comunicare di spandimento in caso di utilizzo di digestato</td>
<td>Sempre, in caso di utilizzo di digestato</td>
<td>In funzione della Classe Dimensionale * dell’azienda, e non in base all’uso di digestato</td>
<td>Sempre, sia in ZVN sia in ZO, tranne che per digestato da colture vegetali.</td>
<td>In funzione della Classe Dimensionale * dell’azienda, e non in base all’uso di digestato</td>
</tr>
<tr>
<td>Obbligo di Piano di Utilizzazione Agronomica (PIA)</td>
<td>Sempre, in caso di utilizzo di digestato</td>
<td>In funzione della Classe Dimensionale * dell’azienda, e non in base all’uso di digestato</td>
<td>Solo in ZVN per digestato zootecnico puro e misto (1).</td>
<td>In funzione della Classe Dimensionale * dell’azienda, e non in base all’uso di digestato</td>
</tr>
</tbody>
</table>

*ZVN, Zona Vulnerabile; ZO, Zona Ordinaria.

In Veneto, nell’Allegato A alla Delibera della Giunta Regionale n. 2439 del 07/08/2007, le biomasse vegetali sono previste solo in “eventuale addizione” a liquami e/o letami; tuttavia senza porre soglie minime o massime di presenza per nessuna delle tre tipologie di matrici ammesse in ingresso al digestore. Ne consegue che anche la normativa della Regione Veneto, come quella del Piemonte, non contempla la possibilità di utilizzo agronomico in “attività agricola” per il digestato di origine esclusivamente vegetale e che le tipologie di digestato ammissibili come fertilizzanti all’uso agronomico possano essere soltanto due: zootecnico puro e zootecnico misto con biomasse vegetali (Capponi, 2010).
3.7.4 Il Digestato: un fertilizzante

Il digestato, sottoprodotto del processo di digestione anaerobica è un materiale stabilizzato con buone caratteristiche fertilizzanti, con un “pronto effetto” dovuto alla mineralizzazione dell’azoto organico a ammoniacale. Le prove condotte hanno permesso di mettere alla luce pregi e difetti del digestato: tra i primi l’efficacia concimante e quindi la possibilità di sostituire i concimi di sintesi e le minori emissioni odorigene; tra i secondi i possibili incrementi di ammoniaca in atmosfera e le perdite dei nitrati se le distribuzioni non vengono effettuate in coincidenza con il ciclo di assorbimento delle colture (Barbanti, 2010).

Effetti agronomici

A conferma di quanto affermato al punto precedente, è il risultato di una serie di prove sperimentali e dimostrative da poco ultimata in Emilia Romagna e in varie esperienze all’estero che hanno visto il confronto tra il digestato e l’azoto minerale su diverse colture energetiche.

I risultati (Bortolazzo et al., 2009a e 2009b;) dimostrano una complessiva corrispondenza di effetti tra digestato e concimi minerali a parità di azoto efficiente. Quest’ultimo si ottiene moltiplicando l’azoto totale per un coefficiente variabile fra il 30 e il 65%, in funzione di una serie di fattori: i coefficienti di efficienza abbinati a ogni combinazione tra prodotto, epoca e modalità di distribuzione, coltura (Barbanti, 2010).

Su triticale. Avendo in tal modo definito le dosi con il software indicato, in una prova dimostrativa su triticale nel 2008 sono state ottenute produzioni di biomassa tendenzialmente superiori al concime minerale, con distribuzione in pre-semina; del tutto analoghe, invece, con distribuzione in copertura (Bortolazzo et al., 2009a).

L’utilizzazione apparente dell’azoto distribuito, calcolata per differenza rispetto un testimone non concimato, è stata assolutamente simile per il digestato distribuito nelle due epoche, ma inferiore di circa il 25% a quella del minerale, il che giustifica l’adozione di coefficienti compensativi per il dosaggio del refluo, all’interno del software citato (Barbanti, 2010).

Su mais. Nella stessa annata sono state effettuate due prove parcellari: la prima con digestato da liquame suino e le relative frazioni solida-liquida, a confronto con il liquame e con la concimazione minerale; la seconda con digestato vegetale a diverse dosi, sempre a confronto con l’azoto minerale. L’effetto della concimazione è stato modesto in entrambe le località: nella prima il testimone non concimato ha ottenuto
produzioni ottimali e l’utilizzazione apparente dell’azoto non ha mai superato il 10%. Nella seconda prova, invece, è stato osservato un certo effetto produttivo dell’azoto, con una lieve prevalenza del concime chimico sul digestato. Infatti il concime ha raggiunto il 35% circa di utilizzazione apparente dell’azoto, mentre il digestato è rimasto sotto al 10% (Barbanti, 2010).

Su sorgo da biomassa. L’unica prova dimostrativa su sorgo da biomassa con apporto di digestato (Bortolazzo et al., 2009b) è stata seminata tardivamente, in successione a triticale raccolto allo stato ceroso. In tali condizioni la produzione di biomassa è stata modesta (circa 5-6 t/ha di s.s.); nonostante ciò il digestato ha fornito produzioni circa il 10% superiori a quelle del concime chimico, il che sembra indicare un effetto biostimolante da parte del refluo organico (Barbanti, 2010).

Su graminacee prative in Olanda. Anche nel caso delle esperienze effettuate all’esterno l’utilizzazione apparente dell’azoto è stata utilizzata come parametro di valutazione dell’efficienza nutritiva. In una prova poliennale su graminacee prative in Olanda (Schröder et al., 2007) oltre all’utilizzazione apparente è stato calcolato anche il valore di sostituzione del fertilizzante azotato (Nitrogen fertilizer replacement value- Nfrv), che esprime l’efficienza relativa dell’azoto organico rispetto al chimico. Il refluo di biodigestione ha offerto una prestazione del tutto analoga a quella del liquame, con i vantaggi conseguenti alla produzione di energia, all’eliminazione di odori, ecc. (Barbanti, 2010).

Su cereali e patata in Germania. In una seconda esperienza poliennale, in una rotazione con cereali (mais, grano, segale e spelta) e patata in Germani (Möller et al., 2008), sono stati ottenuti i valori di biomassa e di utilizzazione apparente dell’azoto, anche in questo caso la biodigestione del liquame bovino ha prodotto un refluo che, a parità di apporto nutritivo, ha determinato analoga produzione e utilizzazione apparente rispetto al liquame di origine. La codigestione del liquame con i residui colturali (paglie, strame) non ha migliorato le potenzialità del refluo, mentre il letame bovino è risultato un po’ meno produttivo dei tre reflui ma, soprattutto, meno efficiente in termini di rilascio azotato, coerentemente con la sua natura di ammendante (Barbanti, 2010).

Su loietto inglese. L’ultima esperienza riguarda una prova in serra su loietto inglese allevato in vasi (De Boer, 2008), in cui un liquame suino e il refluo della sua biodigestione sono stati confrontati con il nitrato ammonico e con un testimone non concimato. Le più severe condizioni di crescita indotte dal ridotto volume del terreno, dall’ambiente controllato (serra) e dalla breve stagione di crescita (105 giorni) hanno
verosimilmente indotto uno stress nutritivo sulle piante più forte. La circostanza si è riflessa sull’utilizzazione apparente e sul valore di sostituzione del fertilizzante azotato che hanno fatto segnare valori superiori alle due esperienze precedentemente citate. In particolare, l’utilizzazione apparente del digestato, pur in assenza di un’interpretazione statistica dei dati, ha superato quella del liquame di origine ed è stata quasi pari a quella del concime minerale (Nfrv = 96%). Il fatto di aver utilizzato liquame suino, intrinsecamente più ricco di N-NH₄ e quindi a più pronto effetto del liquame bovino, può aver contribuito al risultato ottenuto (Barbanti, 2010).

Effetti ambientali

Il lato ambientale dell’utilizzo del digestato è stato ugualmente oggetto di studi. L’attenzione si è focalizzata sulle emissioni in atmosfera di ammoniaca (NH₃), sostanza corresponsabile dei fenomeni diacidificazione edeutrofizzazione, e sul rilascio di protossido d’azoto (N₂O) e metano (CH₄): si tratta di due potenti gas a effetto serra aventi un Potenziale di riscaldamento globale (Gwp) a 100 anni pari rispettivamente a 296 e 23 volte quello della CO₂ (direttiva Ce 28/09). Come già ricordato, il digestato ha una forte percentuale di azoto sotto forma ammoniacale (N-NH₄), che può più facilmente volatilizzare sotto forma di NH₃. Le emissioni di N₂O e di CH₄ dal terreno sono, invece, più frequenti in condizioni di saturazione idrica o comunque di elevata umidità del terreno. Con queste premesse la somministrazione del digestato ha, in linea di massima, aumentato le perdite per volatilizzazione di ammoniaca rispetto ai liquami pre-digestione, mentre ha contenuto l’emissione di N₂O dal terreno. Poche sono, invece, le notizie riguardanti le perdite di metano in atmosfera, che sembrano comunque più legate alla fase di stoccaggio che di utilizzo agronomico (Moitzi et al., 2007). Scendendo più in dettaglio, un primo lavoro già una decina d’anni fa (Petersen, 1999) aveva dimostrato che le emissioni di N₂O diminuivano distribuendo sul terreno il digestato anziché il liquame. Le perdite sotto questa forma erano moderate, non arrivando a rappresentare l’1% dell’azoto totale distribuito, ma ugualmente gravi rispetto alla natura del problema. Una ricerca più recente (Möller e Stinner, 2009) ha confermato una riduzione dei flussi di N₂O del 38%, grazie alla codigestione di residui colturali e ricacci di vegetazione, rispetto al sovescio diretto di queste biomasse. Nello stesso lavoro un digestato da liquame bovino ha fatto segnare perdite per volatilizzazione dell’ammoniaca leggermente più alte del liquame, non superiori, comunque, al 15% dell’azoto apportato con distribuzione superficiale. L’effetto della
digestione dei residui colturali in alternativa al loro interramento si è tradotto anche in una riduzione del contenuto di azoto nitrico del terreno tra l’autunno e la primavera; ne deriva un più ridotto rischio di lisciviazione che rappresenta un non trascurabile beneficio aggiuntivo.

Una recente prova testimonia che, con un tempestivo interramento superficiale, la volatilizzazione dell’ammoniaca può essere contenuta a pochi punti percentuali anche in condizioni critiche come giornate calde e ventilate. Viceversa, perdite di ammoniaca da digestato sensibilmente più elevate rispetto a un concime ammoniacale (52% dell’azoto distribuito contro il 12%) sono state osservate nelle particolari condizioni di risaia per una serie di cause tra cui un più elevato pH alla superficie dell’acqua indotto dall’apporto del digestato (Barbanti, 2010).

Vantaggi dello spandimento del digestato

L’esigenza di smaltire il refluo di trasformazione dei biodigestori per sottoprodotto scarti di varia natura porta a incentivare l’utilizzo agronomico del digestato. Questo sottoprodotto ha un potere nutrizionale non inferiore alle matrici di origine e si presta ad azioni migliorative come la separazione solido liquido e l’eventuale compostaggio della prima frazione.

Il digestato tal quale è povero di sostanza organica e contiene elementi nutritivi in forma facilmente assimilabile, anche se diluiti a livello di pochi g/kg. Richiede pertanto, un dosaggio dell’ordine di qualche decina di tonnellate a ettaro per poter esplicare un’apprezzabile azione nutritiva, al pari dei liquami zootecnici (Barbanti, 2010).

Gestione agronomica

Così come nei reflui zootecnici, anche nei digestati l’azoto è presente in forma ammoniacale ma anche, in minor quantità, in forma organica. Ricordiamo che anche nei liquami suini l’ammonio è la forma prevalente (75% circa), mentre in quelli bovini è la forma organica quella maggiormente presente (60%) (Bechini et al., 2009).

Per valutare il destino agronomico e ambientale delle due forme di azoto (organico e ammoniacale) possiamo fare queste considerazioni. Se la temperatura è adeguata e la disponibilità di ossigeno sufficiente, l’azoto ammoniacale dei reflui incorporati nel terreno è rapidamente trasformato in nitrato dai batteri nitrificanti. La quota ammoniacale risulta quindi disponibile per le piante sia
direttamente, quando queste possono utilizzare l’ammonio, sia indirettamente, quando utilizzano preferibilmente il nitrato. Quest’ultimo, a causa della sua elevata mobilità, può essere facilmente perso per lisciviazione, in particolare se l’applicazione al suolo del refluo avviene in momenti lontani dai picchi di utilizzo colturale, come nel caso degli spandimenti autunnali oppure molto anticipati rispetto alle semine. L’azoto organico, invece, prima di poter essere utilizzato dalle colture, richiede di essere trasformato in forma inorganica (ammoniacale prima e nitrica poi) attraverso la mineralizzazione della sostanza organica. Di conseguenza l’azoto organico è reso disponibile alle colture successivamente rispetto alla forma ammoniacale. Inoltre, la decomposizione della sostanza organica dei reflui (in particolare di quelli stoccati in condizioni anaerobiche, come i liquami) può comportare una parziale e temporanea immobilizzazione dell’azoto inorganico (nitrico o ammoniacale), riducendone quindi la disponibilità per le piante. Tale immobilizzazione consiste nell’organizzazione di azoto minerale prelevato dalla soluzione circolante del terreno, che la popolazione microbica realizza quando la sua crescita è alimentata da sostanza organica relativamente povera di azoto. L’azoto organizzato potrà successivamente ritornare in forma minerale a seguito della morte della biomassa microbica e della mineralizzazione delle sue spoglie. Una parte dell’azoto in forma organica è resistente alla degradazione microbica e la sua trasformazione in ammonio e in nitrato procede molto lentamente e può addirittura avvenire molto tempo dopo la distribuzione del refluo al suolo. In funzione della temporistica di distribuzione del refluo adottata, della data di semina della coltura e della sua durata, nonché della successione colturale, la cessione di azoto nitrico può avvenire anche in momenti in cui non vi è forte assorbimento colturale o addirittura non vi è coltura in campo, con possibili rischi di dispersione dei nitriti nelle acque o loro denitrificazione. Dal punto di vista agronomico il risultato di queste complesse dinamiche è così sintetizzabile:

- l’effetto fertilizzante dell’azoto nella prima stagione vegetativa dopo la distribuzione in campo dei reflui dipende sostanzialmente dal contenuto in ammonio degli stessi;
- l’ammonio non è completamente disponibile se si verificano perdite dopo la distribuzione del refluo (volatilizzazione di ammoniaca, lisciviazione o denitrificazione di nitrato, immobilizzazione di azoto inorganico nella biomassa microbica);
- la componente organica si mineralizza molto più lentamente nel tempo e diventa importante quantitativamente solo se si sommano gli effetti di distribuzioni ripetute sullo stesso terreno (Bechini et al., 2009).

Il valore fertilizzante

I lavori disponibili a oggi sono relativamente pochi, segno di un’ancora scarsa conoscenza sull’argomento. La maggior parte dei lavori consultati sono relativi alla digestione di liquami suini senza aggiunta di altre biomasse. I lavori di confronto delle concimazioni sono stati fatti su terreni diversi ed è stata confrontata la risposta produttiva delle colture: mais, frumento, prati alle concimazioni effettuate con liquame digerito e liquame non digerito.

I digestati utilizzati hanno di solito presentato un rapporto N-NH$_4$/N-totale superiore (del 10-20% circa) rispetto a quello dei corrispondenti liquami non digeriti. Quando disponibile, il rapporto C/N dei digestati è stato inferiore (in misura del 40-75%) rispetto a quello dei corrispondenti liquami non digeriti. Il pH dei digestati (di solito maggiore di 8) è stato superiore di 0,3-0,9 unità rispetto ai liquami non digeriti (Bechini et al., 2009).

Nelle prove di campo i liquami digeriti non hanno fornito una risposta produttiva significativamente diversa rispetto ai liquami non digeriti tranne che in due casi:

1. in Germania, in un esperimento condotto sul frumento tenero in semina primaverile con applicazione dei liquami per l’80% in pre-aratura e il 20% in copertura: il digestato ha potuto estrinsecare meglio il suo valore fertilizzante rispetto al liquame non digerito.
2. in Canada, un esperimento condotto su un prato con una prova di applicazione in copertura è stata verificata una maggiore produttività colturale del digestato in confronto al liquame non digerito (Bechini et al., 2009).

In una prova in serra condotta in Olanda senza l’effetto delle precipitazioni, con un digestato ottenuto da codigestione di liquame suino con rifiuti dell’industria agroalimentare, utilizzando un terreno sabbioso, alla temperatura di circa 20 °C e utilizzando come pianta test il loietto (*Lolium perenne* L.), del quale in 105 giorni sono stati effettuati tre tagli, si sono messi a confronto tre fertilizzanti (digestato, liquame non digerito e fertilizzante minerale).
Il liquame digerito e il fertilizzante minerale hanno fatto registrare efficienze agronomiche dell’azoto sostanzialmente uguali al fertilizzante minerale e mediamente superiori al liquame non digerito del 27% (Bechini et al., 2009).
L’elevato contenuto in ammonio frequentemente rincontrato nei digestati li rende in parte simili ai fertilizzanti inorganici, suggerendone l’impiego con le stesse modalità (tempi di distribuzione compresi). Nel contempo bisogna ricordarsi che la presenza di azoto in forma organica ne complica la dinamica nel terreno, in quanto, se da un lato, nel breve termine, questa può essere causa di immobilizzazione e quindi ridurre la disponibilità dell’azoto ammoniacale del digestato, nel lungo termine, a seguito di applicazione ripetute, essa presumibilmente si accumulerà nel terreno e potrà costituire una riserva di azoto anche consistente. Perché non vi sia dispersione di ammoniaca nell’aria è consigliabile l’interramento del digestato.
Vista la variabilità della concentrazione dei nutrienti nel digestato dovuta ai prodotti di partenza utilizzati, al sistema di estrazione si consiglia un analisi dei reflui prima della distribuzione in campo (Bechini et al., 2009).

3.8 DIGESTATO DA BORLANDA DI FRUTTA

Fino ad ora la trattazione si è soffermata sull’utilizzo di digestati di matrice organica zootecnica (reflu zootecnici), questo perché gli studi su tali materiali si sono sviluppati maggiormente rispetto ad altri, per le esigenze specifiche del settore.
Negli ultimi anni però si è cercato di utilizzare altri tipi biomasse di partenza, totalmente di origine vegetale, ottenendo digestati relativamente diversi dai precedenti.
La biomassa, traduzione del termine inglese biomass, è l’abbreviazione di ‘massa biologica e indica qualsiasi sostanza organica, sia vivente sia morta, derivata direttamente o indirettamente dalla fotosintesi, il processo fisiologico che consente agli organismi dotati di clorofilla di captare l’energia radiante, di trasformarla in energia chimica e di stoccarka sotto forma di molecole più o meno complesse.
Dalle attività agricole, forestali e agroindustriali derivano una serie di scarti, di diverse tipologie, che sono potenzialmente utilizzabili per la produzione di energia:
- le potature degli alberi da frutto;
- le paglie dei cereali, gli steli, le foglie e i residui in genere di varie coltivazioni;
- i residui di prima e seconda lavorazione del legno;
- le vinacce, le sanse, i noccioli e gusci di frutta, ecc.

Il processo di distillazione dell’etanolo è ottenuto a partire dalle seguenti materie prime opportunamente fermentate: frutta, vini, fecce di vino, melasso. I sottoprodotti della distillazione (fecce esauste, borlanda di frutta) possono essere utilizzati come biomassa di partenza per la produzione di biogas. La distillazione è una tecnica di separazione che sfrutta la differenza dei punti di ebollizione delle diverse sostanze presenti in una miscela. È usata sia per separare miscele complesse che per purificare sostanze. Negli impianti moderni l’energia termica necessaria per la distillazione viene fornita sotto forma di vapore. L’alto costo dei combustibili, il costo di smaltimento dei sottoprodotti di distillazione, la coscienza sempre maggiore di sostenibilità ambientale e le più approfondite conoscenze tecnico-funzionali dei bio-digestori hanno reso economicamente vantaggioso utilizzare biomasse considerate costi come i sottoprodotti della distillazione. Come esempio cito l’esperienza di una distilleria situata in Romagna, regione lungimirante in fatto legislativo (argomento trattato in precedenza), dove vengono utilizzati gli scarti di distillazione come biomassa di partenza per la produzione di biogas. Il biogas prodotto viene utilizzato per fornire l’energia termica necessaria alla distillazione ed alla produzione di acido tartarico e per la produzione di vapore destinato ad alimentare due turbine che producono gran parte dell’energia elettrica necessaria a coprire il fabbisogno delle utenze di fabbrica (Mazzari, 2003).

Come sottoprodotto della produzione anaerobica del gas troviamo il digestato di borlanda di frutta che si vorrebbe valorizzare dal punto di vista agronomico dimostrando che può essere utilizzato come fertilizzante nelle colture ortoflovivaistiche.

Una prima esperienza in tale senso è stata condotta presso il Dipartimento di agronomia ambientale e produzioni vegetali dell’Università di Padova, che propone l’utilizzo di tale residuo come concime organico azotato nella coltivazione della lattuga. Da questa esperienza si è potuto notare che il digestato anaerobico di borlanda di frutta: contribuisce in modo positivo all’accrescimento e allo sviluppo della coltura di lattuga quando è accoppiato con la concimazione minerale, perché la graduale messa a disposizione degli elementi nutritivi risulta essere troppo lenta rispetto alle richieste nutrizionali della pianta. Inoltre permette un minor accumulo di azoto nella sostanza secca (1,6 - 2% di N/SS) rispetto ad una concimazione minerale che permette un maggior accumulo di azoto nella sostanza secca (2,3% media).

Con questo lavoro si è dimostrato che è possibile la concimazione con il digestato anaerobico di borlanda di frutta nella produzione della lattuga. Tale prodotto può essere
utilizzato e può portare risultati simili alla concimazione minerale azotata sia dal punto di vista produttivo che dal punto di vista morfofisiologico a patto che il tempo intercorso tra la fertilizzazione e il trapianto sia stato sufficiente per la completa mineralizzazione dell’azoto organico senza peggiorare la qualità sotto forma di elevati accumuli di nitrato e metalli pesanti (Sambo, 2010).

3.8.1 Caratteristiche chimiche del digestato di borlanda di frutta
Il digestato di borlanda di frutta presenta valori (Tab. 9) di pH leggermente al di sopra della neutralità, ma non a livelli tali da destare preoccupazioni. Il basso valore del rapporto C/N indica anche una rapida decomponibilità del materiale e quindi un veloce rilascio dei nutrienti che sono presenti in quantitativi abbastanza elevati, considerando la tipologia del materiale utilizzato (Sambo, 2010).

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7,68</td>
</tr>
<tr>
<td>EC (µS/cm)</td>
<td>1,462</td>
</tr>
<tr>
<td>SS (%)</td>
<td>30,21</td>
</tr>
<tr>
<td>Umidità (%)</td>
<td>69,79</td>
</tr>
<tr>
<td>SO (%)</td>
<td>40,94</td>
</tr>
<tr>
<td>Cener (%)</td>
<td>50,06</td>
</tr>
<tr>
<td>CO</td>
<td>28,97</td>
</tr>
<tr>
<td>N totale (%)</td>
<td>3,90</td>
</tr>
<tr>
<td>P (%)</td>
<td>0,58</td>
</tr>
<tr>
<td>K (%)</td>
<td>0,30</td>
</tr>
<tr>
<td>C/N</td>
<td>7,44</td>
</tr>
</tbody>
</table>

3.9 SCOPO DEL LAVORO
La crescita dei consumi energetici, la riduzione delle riserve delle fonti non rinnovabili, l’aumento del prezzo dell’energia e le normative in materia ecologica, a livello mondiale, hanno aumentato l’interesse per le fonti rinnovabili e a basso impatto ambientale per tutti i settori produttivi. Nel settore dell’orto-florovivaismo negli ultimi anni diverse concause come la diminuzione delle riserve mondiali, la coscienza ecologica di salvaguardia del territorio, leggi sempre più restrittive per l’apertura di nuovi siti di estrazione hanno portato all’aumento dei costi di tale indispensabile prodotto, per ovviare a questa problematica negli ultimi anni la ricerca si è orientata alla
sostituzione della torba, totalmente o in parte, con altri prodotti meno costosi e rinnovabili. In particolare, la lotta è stata posta su prodotti di scarto per cercare di trasformare, i costi dovuti allo smaltimento di tali prodotti, in ricavi nell’utilizzo degli stessi. Un prodotto preso in considerazione è stata la lolla di riso utilizzata per creare miscugli adatti alle esigenze tecnico-economiche del coltivatore.

Inoltre, la ricerca e lo sviluppo di fonti energetiche alternative, con la valorizzazione di biomassa ottenuta da scarti di lavorazione da industrie agroalimentari, ha portato alla produzione di sottoprodotti potenzialmente impiegabili come ammendanti e concimi in agricoltura. Uno dei sottoprodotti ottenuti dalla digestione anaerobica dei residui esausti di distillazione della frutta è il digestato anaerobico di borlanda di frutta.

Lo scopo del lavoro è stato quello di studiare sotto il profilo chimico e fisico la validità dell’uso della lolla di riso, pura e miscelata e la potenziale efficacia di digestati anaerobici di residui vegetali come fertilizzante in substrati per colture ortoflorovivaistiche.
4. MATERIALI E METODI

I substrati, utilizzati per le analisi chimico-fisiche, sono miscugi costituiti, in quantità variabile, da:
- torba bionda,
- lolla di riso,
- digestato anaerobico di borlanda di frutta

I substrati utilizzati sono 16, data la loro composizione variabile vengono identificati come riportato in tabella 9.

Tab. 10. Denominazione dei substrati a confronto e loro composizione (% in volume).

<table>
<thead>
<tr>
<th>Denominazione</th>
<th>Torba</th>
<th>Lolla di riso</th>
<th>Digestato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppo 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-m</td>
<td>100</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>33-m</td>
<td>67</td>
<td>33 macinata</td>
<td>0</td>
</tr>
<tr>
<td>67-m</td>
<td>33</td>
<td>67 macinata</td>
<td>0</td>
</tr>
<tr>
<td>100-m</td>
<td>0</td>
<td>100 macinata</td>
<td>0</td>
</tr>
<tr>
<td>Gruppo 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+m</td>
<td>80</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>33+m</td>
<td>53.6</td>
<td>26.4 macinata</td>
<td>20</td>
</tr>
<tr>
<td>67+m</td>
<td>26.4</td>
<td>53.6 macinata</td>
<td>20</td>
</tr>
<tr>
<td>100+m</td>
<td>0</td>
<td>80 macinata</td>
<td>20</td>
</tr>
<tr>
<td>Gruppo 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-tq</td>
<td>100</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>33-tq</td>
<td>67</td>
<td>33 intera</td>
<td>0</td>
</tr>
<tr>
<td>67-tq</td>
<td>33</td>
<td>67 intera</td>
<td>0</td>
</tr>
<tr>
<td>100-tq</td>
<td>0</td>
<td>100 intera</td>
<td>0</td>
</tr>
<tr>
<td>Gruppo 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+tq</td>
<td>80</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>33+tq</td>
<td>53.6</td>
<td>26.4 intera</td>
<td>20</td>
</tr>
<tr>
<td>67+tq</td>
<td>26.4</td>
<td>53.6 intera</td>
<td>20</td>
</tr>
<tr>
<td>100+tq</td>
<td>0</td>
<td>80 intera</td>
<td>20</td>
</tr>
</tbody>
</table>
Come si può notare dalla tabella 9, i 16 substrati derivano dalla combinazione fattoriale di:
- 4 concentrazioni relative di lolla e torba (0, 33, 67 e 100% in volume di lolla con il compendio a 100 costituito da torba) (da qui in avanti si indicherà questo fattore semplicemente come percentuale di lolla nel substrato),
- utilizzo della lolla macinata o lolla non macinata (tal quale),
- presenza o meno del digestato anaerobico di borlanda di frutta in ragione del 20 % in volume).
La torba impiegata nella costituzione dei substrati era una torba bionda di sphagno del baltico.

<table>
<thead>
<tr>
<th>Particolare</th>
<th>Percentuale</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 mm</td>
<td>49.1%</td>
</tr>
<tr>
<td>da 1 a 2 mm</td>
<td>43.6%</td>
</tr>
<tr>
<td>da 2 a 3 mm</td>
<td>7.04%</td>
</tr>
<tr>
<td>> 3 mm</td>
<td>0.26%</td>
</tr>
</tbody>
</table>

Oltre ai substrati sopra descritti, sono stati presi in considerazione anche altri 2 substrati comunemente utilizzati nella coltivazione di rosa e geranio.
- Test Rosa (50% miscela di torba bionda a pezzatura di 2-3 cm; 40% fibra di cocco; 10% argilla);
- Test Geranio, Substrato professionale costituito da una miscela torbosa (torbe chiare di frazione media di tipo sphagnum + torbe nere di humus) arricchita con polvere di calcari, concimi e argilla. Presenta una quantità di sostanza organica pari a 92-96%, un ph acido (5,5 - 6,0) e una permeabilità elettrica pari a 1,1 -1,6 mS/cm.
4.1 LA CARATTERIZZAZIONE FISICA

La caratterizzazione fisico-idraulica dei substrati è stata condotta attraverso l’analisi dei seguenti parametri:

- Porosità totale;
- Capacità per l’aria;
- Capacità di ritenzione idrica;
- Acqua facilmente disponibile;
- Acqua di riserva;
- Acqua non disponibile.

I metodi analitici ad oggi utilizzati per la determinazione delle caratteristiche fisico-idrauliche dei substrati si basano sullo stesso principio fisico, quello per cui in un sistema trifasico rappresentato dal substrato (fase solida, liquida e gassosa) si determina un equilibrio tra le forze agenti sulla massa idrica. I metodi si differenziano solo per gli strumenti utilizzati, i risultati ottenuti sono pertanto simili (Pozzi e Valagussa, 2009). Lo strumento da noi utilizzato è stato il porometro (NCUS).

Tutte le analisi sono state condotte in triplo.

4.1.1 La preparazione dei campioni per le analisi fisiche

La preparazione dei vari campioni per le analisi fisiche ha seguito le indicazioni fornite dalla metodica NCUS pubblicata dal Horticultural Substrates Laboratory, Department of Horticultural Science North Carolina State University (USA).

4.1.2 Il porometro

Il Porometro NCSU è stato progettato per fornire un test rapido, coerente e affidabile sulla capacità idrica dei substrati. È stato sviluppato in collaborazione con i produttori di substrati ad uso professionale e la National Bark & Soil Producers Association. I dati sviluppati da questo apparecchio sono stati approvati per la registrazione di terricci, nello stato della Georgia (USA).

Il porometro NCSU è costituito da due parti essenziali:
- la parte principale è una piastra base in alluminio (diametro 10 cm), presenta un disco interno ed esterno muniti di 8 fori ognuno. I due dischi si incastrano come una sola unità, che può essere ruotata in modo che i fori siano allineati, cioè aperti
per permettere il drenaggio attraverso la piastra base, oppure disallineati, cioè chiusi per evitare infiltrazioni di acqua attraverso le piastre.

- la seconda parte è un cilindro di alluminio (diametro e altezza uguali 7,6 cm) che viene incastretto sulla piastra base e successivamente riempito con un campione di substrato.

![Fig. 4. Il porometro](image)

4.1.3 Le analisi fisiche

Abbiamo seguito la procedura riportata nel manuale del porometro, però sono state apportate alcune modifiche.

Preparazione del campione: al substrato viene aggiunta acqua distillata per portarlo a circa il 50% di umidità, per avere una migliore coesione tra le particelle che lo compongono.

Procedura: Questo materiale andrà inserito nel porometro. Il cilindro di alluminio viene inserito nella piastra base con i fori chiusi e sulla sommità del primo cilindro viene fissato un secondo cilindro di eguale dimensioni.

All’interno di questo contenitore viene inserito il materiale da analizzare fino ad un’altezza pari al 75% dell’intero cilindro, facendo molta attenzione a che il materiale si compatti scuotendo il cilindro e facendolo cadere per tre volte da un’altezza di 6-7 cm. Una volta riempito, il porometro, con i fori aperti, viene posto in una bacinella dove viene aggiunta dell’acqua distillata in modo graduale 25%, 50%, 75% e 100% in altezza del primo cilindro, aspettando 8-10 minuti tra l’aggiunta di acqua e la successiva.
Dopo 15 minuti dall’ultima aggiunta di acqua vengono chiusi i fori e il porometro viene posto su una griglia di drenaggio dove i fori vengono riaperti ed avviene un primo drenaggio del campione.

Una volta eliminato il cilindro superiore facendo attenzione ad asportare il suo contenuto, si ripone il porometro all’interno della bacinella per una completa saturazione che avviene come nella fase precedente variando solo i tempi di attesa tra per l’aggiunta dell’acqua che passa da 8-10 minuti a 10-15 minuti. Passati 15 minuti dall’ultima aggiunta di acqua i fori vengono chiusi e viene fatta la pesata del porometro con il campione saturo di acqua.

Successivamente il campione viene fatto drenare per un ora, poi estratto dal porometro, posto in una vaschetta in alluminio precedentemente pesata e identificata, viene pesato. La vaschetta contenente il campione viene posta in stufa a 105° C per 24 ore e poi ripesata.

Calcoli: Rilevati i dati dell’analisi fisica, vengono elaborati al fine di ottenere la percentuale di acqua che ha totalmente saturato il substrato, la percentuale di acqua alla capacità idrica massima del substrato e la percentuale del volume occupato dal substrato. I dati rilevati sono:

- Tara del porometro
- Peso del porometro saturo di acqua
- Tara della vaschetta
- Peso del campione con acqua trattenuta (CIM)
- Peso lordo (Vaschetta + campione secco)

Dobbiamo ricordare che:

- il peso del campione saturo di acqua (Campione + acqua trattenuta)= Peso Por. Saturo- Tara del Por
- peso cim= peso del porometro saturo - Peso porometro Sgocciolato
- peso del campione secco= peso lordo- peso vaschetta

Ora possiamo calcolare:

- la porosità = Peso campione saturo- peso netto
- l’acqua alla capacità idrica massima= peso CIM-peso netto (campion secco)
- l’acqua alla capacità di campo= Peso cim- peso netto (campion secco)
Per ottenere ora la percentuale di acqua che ha totalmente saturato il substrato, la percentuale di acqua alla capacità idrica massima e la percentuale del volume occupato dal substrato vengono calcolati nel seguente modo:

- \(\% \text{ ac sat} = \frac{\text{Acqua campione saturo}}{347.5 \times 100} \)
- \(\% \text{ ac cim} = \frac{\text{Acqua capacità idrica massima}}{347.5 \times 100} \)
- \(\% \text{ secc} = \frac{\text{peso del campione secco}}{347.5 \times 100} \)

4.2 La caratterizzazione chimica

La caratterizzazione chimica dei substrati è stata condotta attraverso l’analisi dei seguenti parametri:

- Sostanza secca e sostanza organica;
- pH;
- Salinità (EC);
- Capacità di scambio cationico (CSC);
- Azoto totale (N Kjeldhal);
- Nitrati presenti nei substrati;
- Nitrati presenti nell’estratto acquoso;
- P, K, Ca, Mg, Mn, sull’estratto acquoso.

Ogni analisi è stata fatta in tre ripetizioni per campione.

La valutazione delle caratteristiche qualitative dei substrati colturali è in genere eseguita con metodologie che possono essere differenti da nazione a nazione, che prevedono l’adozione sia di metodi ufficiali che, talora di metodologie sviluppate in proprio. Tale eterogeneità di valutazione provoca spesso problemi nella ripetibilità e comparazione delle prove oltre che discrepanze nei valori analitici che hanno generato contrasti tra fornitori e clienti provocando serie conseguenze economiche. Tale problema è stato recentemente preso in considerazione a livello comunitario, ove all’interno del Comitato Europeo per la Standardizzazione (CEN, Comité Européen de Normalisation) si è instaurata una Commissione Tecnica (TTC 223) con lo scopo di definire e sviluppare metodi di riferimento per la determinazione delle proprietà chimico-fisiche di materie prime e dei prodotti finiti utilizzati quali substrati di coltivazione. Quest’ultima, una volta evidenziata la situazione caotica sopra evidenziata, ha formalizzato e ratificato dei documenti, che recepiti a livello locale (in Italia l’UNI, ente di unificazione italiano) già
oggi permettono di uniformare le procedure, esprimere i risultati su una base comune, valutare la qualità dei prodotti in modo univoco (Barroncelli, 2004). In questo lavoro dunque si sono utilizzate queste metodiche ad eccezione della capacità di scambio cationico per la quale non esiste ancora un metodo per la determinazione riconosciuto per i substrati e dell’azoto nitrico, che comunque è utilizzato a livello internazionale.

4.2.1 La preparazione dei campioni per le analisi chimiche

La preparazione dei vari substrati per le analisi chimiche ha seguito le indicazioni fornite dalla metodica EN 13040 (65.080 nella classificazione ICS) pubblicata dal CEN nel 1999.

Tutti i campioni analizzati sono stati suddivisi in 2 porzioni per consentire le differenti preparazioni a seconda delle analisi a cui dovevano essere sottoposti. Ciascuna analisi è stata condotta in triplo.

4.2.2 Le analisi chimiche

Determinazione della sostanza secca e della umidità

Per questa analisi è stata seguita la metodica EN 13040 pubblicata nel 2000.

Attrezzatura: forno essiccatore a 103 °C, vaschette in alluminio, bilancia analitica con 3 decimali.

Procedura: sono state pesate le vaschette su cui sono stati stesi 50 g di campione. Si è posto tutto in una stufa a 103 °C per 24 ore e dopo il raffreddamento lo si è pesato. La sostanza secca individuata con la seconda pesata del campione secco, è stata quindi trasformata in valore percentuale.

Il contenuto di umidità è stata determinata come differenza tra la prima pesata del campione tal quale e la seconda del campione secco, questo valore è stato poi espresso in percentuale.

Determinazione della sostanza organica

Per questa analisi è stata seguita la metodica EN 13039 pubblicata nel 1999.

Attrezzatura: forno essiccatore a 103 °C, muffola a 550°C, ciotoline in porcellana, bilancia analitica con 4 decimali.
Procedura: sono state pesate le ciotoline su cui sono stati stesi circa 5 g di campione secco frantumato precedentemente nel mortaio (secondo la metodica EN 13040). Si è posto il tutto in una stufa a 103 °C per 4 ore e dopo il raffreddamento lo si è pesato. I campioni sono quindi stati messi in muffola a 550 °C per 6 ore. Una volta raffreddati i campioni sono stati pesati. Il contenuto di sostanza organica, è stato espresso come una percentuale data dalla seguente equazione:

\[W_{om} = \frac{(m_1 - m_2)}{(m_1 - m_0)} \times 100 \]

dove:
- \(W_{om} \) è il contenuto di sostanza organica in % di peso;
- \(m_0 \) è il peso della ciotolina;
- \(m_1 \) è il peso della ciotolina e del campione dopo il forno;
- \(m_2 \) è il peso della ciotolina e del campione dopo la muffola.

Determinazione del pH
Per questa analisi si è seguito la metodica EN 13037 pubblicata nel 1999.

Attrezzatura: pH-metro a compensazione di temperatura, agitatore, beker in plastica o vetro.

Reagenti: \(\text{H}_2\text{O} \) deionizzata (con pH > 5,6 ed EC < 0,2 mS/cm a 25 °C), soluzioni tampone a pH 4,01 e 7,01

Procedura: Dopo aver pesato l’equivalente di 60 ml di substrato umido (vedi metodica EN 13040) con un margine di errore di 1 g, i campioni sono stati trasferiti in beker. Sono stati aggiunti 300 ml di acqua deionizzata, e una volta tappati sono stati posti in agitazione per 1 ora. Si è tarato il pH-metro immergendo l’elettrodo nelle soluzioni tampone a pH 4,01 e 7,01 secondo le indicazioni del costruttore e misurato il pH immergendo l’elettrodo nella sospensione.

Determinazione della conducibilità elettrica (EC)
Per questa analisi è stata seguita la metodica EN 13038 pubblicata nel 1999.
Attrezzatura: conduttivimetro a compensazione di temperatura, agitatore, beker in plastica o vetro.

Reagenti: H₂O deionizzata (con pH > 5,6 ed EC < 0,2 mS/cm a 25 °C), soluzioni a conducibilità nota 1413 µS/cm.

Procedura: Dopo aver pesato l’equivalente di 60 ml di substrat umido (vedi metodica EN 13040) con un margine di errore di 1 g, i campioni sono stati trasferiti in beker. Sono stati aggiunti 300 ml di acqua deionizzata, e tappati sono stati posti in agitazione per 1 ora.

Una volta calibrato il conduttivimetro immergendo l’elettrodo nella soluzione a conducibilità nota secondo le indicazioni del costruttore si è misurata la conducibilità elettrica immerso l’elettrodo nella sospensione.

Determinate dell' capacità di scambio cationico (CSC)

Per questa analisi è stato adottato il Metodo Ufficiale n° XIII.2 (ISO 11260) del supplemento ordinario G.U. n°248 del 21/10/1999 a cui sono state fatte alcune modifiche in quanto la metodica non si è adattata ai campioni con maggiore percentuale di torba ed ha inizialmente dato luogo a risultati parziali non rispondenti alla verità.

Secondo il protocollo i campioni devono essere saturati con una soluzione di bario cloruro a pH 8,2 con ripetuti trattamenti, a cui in seguito si aggiunge una soluzione nota di magnesio solfato che porta alla formazione di bario solfato insolubile e quindi allo scambio Ba/Mg. L’eccesso di magnesio viene determinato tramite una titolazione complessometrica da cui deriva tramite opportuni calcoli la CSC.

Apparecchiatura: agitatore rotante (40 giri/ minuto) od oscillante (120-140 cicli/ minuto), tubi da 50 ml con tappo, filtri in fibra di vetro con diametro di 47 mm e 25 mm (Whatman), strumentazione per filtrazione sottovuoto.

Reagenti preparati:
- soluzione di bario cloruro a pH 8,2 (BaCl₂ * 2 H₂O);
- soluzione di magnesio solfato (MgSO₄ * 7 H₂O);
- soluzione di sale bisodico dell’acido etilendiamminotetracetico (EDTA);
- soluzione tampone a pH 10;
- indicatore di nero eriocromo T (C₂₀H₁₂N₃NaO₇S);

Si sono dapprima pesati i tubi con i relativi tappi. Quindi dopo aver trasferito 2 g del campione secco (vedi metodica EN 13040) in un tubo da 50 ml con tappo, si è rilevato il
peso del tubo + il campione (A). Si sono aggiunti 25 ml della soluzione di bario cloruro e quindi agitato le tesi per 1 ora.
Successivamente i campioni sono stati filtrati a vuoto con filtri in fibra di vetro ø 47 mm precedentemente pesati. Terminata tale operazione questi ultimi sono stati inseriti nel tubo.
Si è poi ripetuto il trattamento per altre 2 volte.
Successivamente i campioni sono stati lavati e agitati con 30 ml di H₂O per 30 minuti a cui è seguita un’altra filtrazione secondo le modalità sopra indicate.
A questo punto è stato rilevato nuovamente il peso del tubo + il campione (B).
Con una buretta di precisione sono stati prelevati 25 ml della soluzione di magnesio solfato e trasferiti nel tubo che è stato quindi agitato dapprima manualmente fino alla completa dispersione del campione e successivamente con l’agitatore oscillante per 30 minuti.
Si è praticata quindi una filtrazione a vuoto con filtri in fibra di vetro ø 25 mm (non pesati) volta a recuperare la soluzione limpida.
Dopo aver prelevato e trasferito in un matraccio conico 10 ml della soluzione limpida, sono stati aggiunti 100 ml di H₂O, 10 ml della soluzione tampone a pH 10 ed una punta di spatola di indicatore.
E’ stata preparata inoltre la prova in bianco, trasferendo in matraccio conico 100 ml di H₂O, 10 ml della soluzione di magnesio solfato e una punta di spatola di indicatore.
I campioni e la prova in bianco, infine, stati titolati con la soluzione di EDTA fino al viraggio nella colorazione azzurra.
Per il calcolo del valore di CSC è stata utilizzata l’espressione:

\[
CSC = \frac{(VB - VA) \times 0.25 \times (25 + B - A)}{m} \times 2
\]

dove:
- CSC = capacità di scambio cationico, espressa in milliequivalenti per centro grammi di suolo (meq/100 g);
- VA = volume della soluzione di EDTA utilizzato per la titolazione della soluzione del campione, espresso in millilitri (ml);
- VB = volume della soluzione di EDTA utilizzato per la titolazione della soluzione della prova in bianco, espresso in millilitri (ml);
- A = peso del tubo da 50 ml con tappo + il campione + peso dei filtri in fibra di vetro ø 47 mm, espresso in grammi (g);
- B = peso del tubo da 50 ml con tappo + il campione dopo saturazione con soluzione di bario cloruro, filtrazioni a vuoto e lavaggio con H_2O, espresso in grammi (g);
- m = peso del campione utilizzato, espresso in grammi (g);
- 0,25 = rapporto volumetrico;
- 2 = fattore di conversione

Determinazione dell’azoto totale

Metodo Kieldhal

Reagenti: acqua deionizzata, acido solforico concentrato 96%, pastiglie di Kieltabs (catalizzatore a base di CuSO_4 e K_2SO_4), titolante (indicatore precostituito), NaOH.

Apparecchiatura: digestore.

Procedura: Dopo aver pesato da 0,5 a 0,8 g (circa 0,7 per i substrati analizzati) per ciascun campione ed aver introdotto il materiale da analizzare in bustine di carta di composizione nota si è acceso il digestore e programmato ad una temperatura di 450°C. Le singole bustine sono quindi state messe in provettoni numerati in cui sono stati aggiunti una pastiglia di Kieltabs ciascuna (contenente CuSO_4 e KSO_4 per denaturare le proteine) e 20 ml di acido solforico concentrato al 96%. In seguito i provettoni sono stati collocati nel digestore alla temperatura di 450°C e lasciati bollire per 2 ore al termine delle quali sono stati collocati su un apposito vassoio.
Quando i campioni si sono raffreddati sono stati aggiunti circa 50 ml di acqua deionizzata agitandoli manualmente. Poiché questa operazione ha generato calore si è atteso nuovamente che la temperatura scendesse, per poi trasferire le soluzioni da analizzare dai provettoni a dei matracci numerati da 250 ml. Ciascun campione è stato portato a volume (250 ml) con l’aggiunta di acqua deionizzata. Prima di esser portato a volume, il liquido è stato filtrato in quanto presentava sospensioni.
La lettura dell’azoto è stata eseguita tramite lo strumento FIA STAR 5000 della Foss Italia spa procedendo come descritto:
- dopo aver acceso il campionatore, l’analizzatore ed il computer nel programma FIA ci si è assicurati che passasse acqua all’interno dei tubicini della strumentazione;
- si è preparata la curva di taratura con soluzioni a concentrazioni di azoto note (0; 0,25; 1,0; 2,0; 5,0 M);
si sono caricati i campioni sul campionatore e si è atteso che la temperatura
dell’analizzatore raggiungesse i 40°C;
si è immesso il titolante regolando la sua assorbanza con delle gocce di NaOH 0,01
M;
si è fatto partire il campionatore per analizzare i campioni.
Successivamente sul computer sono stati registrati i valori delle concentrazioni di azoto
dei campioni analizzati.
Per calcolare la percentuale di azoto è stata utilizzata la seguente formula:

\[N\% = \left(\frac{L \times D \times 100}{1000000}\right)/P \]
dove:
- \(L\) è la lettura dell’analizzatore in mg/l diluito a 250 ml;
- \(D\) è l’eventuale diluizione con H\(_2\)O se il campione era troppo concentrato;
- \(P\) è il peso del campione.

Determinazione del contenuto di elementi nutritivi solubili in acqua
Per la determinazione degli elementi nutritivi solubili in acqua (N-NO\(_3\), P\(_2\)O\(_5\), K, SO\(_4\),
Ca, Mg) si è adottato il metodo UNI EN 13652 (2001). Gli estratti successivamente
sono stati filtrati con filtri per siringa in acetato di cellulosa (0.20 \(\mu\)m) ed analizzati
mediante cromatografia ionica (I.C.).
Le cromatografie ioniche (IC) sono state effettuate usando un sistema cromatografico
con modalità isocratica (Dinox ICS-900), costituito da una pompa che consente di
operare in modalità e da un rilevatore di conducibilità (Dionex DS5) con soppresore
anionico (AMMS 300, 4 mm) per l’analisi degli anioni e soppresore cationico (CMMS
300, 4 mm) per l’analisi dei cationi. La colonna Ion Pac AS23 con dimensioni 4x250
mm è stata utilizzata per l’analisi degli anioni mentre la colonna Ion Pac CS12A con
dimensioni 4x250 mm è stata utilizzata per l’analisi dei cationi. Entrambe sono
precedute da una precolonna. I dati forniti da questo sistema sono stati raccolti ed
elaborati usando il software Chromeleon per sistemi LC. Le iniezioni sono state fatte
usando l’autocampionatore AS-DV. L’eluente utilizzato per l’identificazione degli
anioni è costituito da sodio carbonato (4.5 mM), sodio bicarbonato (0.8 mM). Mentre
l’eluente utilizzato per l’identificazione dei cationi è costituito da acido metansolfonico
(20 nM). Il flusso utilizzato 3 1 ml/min e la colonna cromatografica opera a temperatura
ambiente. La curva di calibrazione è stata ottenuta con diluizioni seriali della soluzione
madre. Per l’analisi degli anioni è stata utilizzata una miscela costituita da cloruri, bromuri, nitrati, fosfati e solfati. Per l’analisi dei cationi è stata utilizzata una miscela costituita da litio, sodio, ammonio, potassio, magnesio e calcio.

4.3 L’ANALISI STATISTICA DEI DATI

Tutti i dati raccolti sono stati sottoposti all’analisi della varianza (ANOVA) e le medie separate per mezzo del test di Tukey. Dove necessario (dati espressi in percentuale), prima di essere sottoposti ad analisi i dati sono stati convertiti secondo il rispettivo valore angolare.

L’ANOVA è stata gestita come analisi fattoriale con percentuale relativa di lolla, presenza di digestati e macinazione della lolla come i tre effetti principali. Nelle figure verranno anche indicati i risultati di analisi su due substrati commerciali ma questi non sono stati inseriti nella analisi statistica e avranno, quindi, solamente valore indicativo. Per chiarezza espositiva nelle figure e nelle tabelle a lettere diverse corrispondono valori statisticamente diversi secondo il test di Tukey (P ≤ 0,05).
5. RISULTATI

5.1 LE CARATTERISTICHE FISICHE

L’analisi dei dati raccolti ha, per tutti i parametri, evidenziato un effetto significativo di tutti i fattori allo studio (“percentuale di lolla”, “presenza di digestati” e “macinazione”). In tutti i casi, comunque, sono state riscontrate interazioni di secondo ordine (“percentuale di lolla × presenza di digestati”, “percentuale di lolla × macinazione” e “presenza di digestati × macinazione”) altamente significative e, in taluni casi, significativa anche l’interazione di terzo ordine (“percentuale di lolla × presenza di digestati × macinazione”) (Tab. 12).

Nella trattazione dei risultati, si procederà a descrivere direttamente le interazioni di secondo ordine in quanto la trattazione degli effetti principali non risulterebbe esaustiva degli effetti verificatesi. Infine, non verranno riportate nemmeno le interazioni di terzo ordine i quanto di difficile interpretazione.

Nella figura 4 viene riportata come varia la porosità totale dei substrati contenenti diversa proporzione relativa di lolla, rispetto alla torba, in presenza o meno di digestati anaerobici. Si può notare che, in generale, i substrati contenenti digestati hanno presentato valori di porosità totale tendenzialmente maggiori rispetto a quelli che ne erano privi, e che all’aumentare della percentuali di lolla la porosità è diminuita. Va precisato, però, che questa diminuzione è stata più contenuta nel caso dei substrati contenenti i digestati (-4.12% tra substrati contenenti solo torba e quelli contenenti solo lolla), rispetto a quelli senza (-7.96%).

Sempre nei confronti della porosità totale, mentre con l’impiego di lolla tal quale non sono state registrate significative diminuzioni nei valori, quando si è addizionata lolla macinata si è verificata una progressiva diminuzione della porosità che, nel caso dei substrati contenenti solo lolla è diminuita di 8.6 punti percentuali (Fig. 5).

In figura 6 si evidenzia, poi, che i substrati formati da lolla tal quale hanno presentato una porosità totale maggiore dei substrati formati da lolla macinata e che l’aggiunta dei digestati ha ridotto ulteriormente la porosità.
Secondo diversi autori (Arnold Bik, 1983; Boertje, 1984; Jenkins e Jarrell, 1989) la porosità totale ideale per un substrato varia dal 60 all’85%. Secondo queste indicazioni, i substrati a confronto ricadono all’interno di questo range o sono addirittura più porosi. Le analisi condotte su due substrati commerciali usati come riferimento per la coltivazione della rosa e del geranio hanno messo in evidenza che, in linea generale, i substrati con minore porosità totale appaiono idonei alla coltivazione della rosa, mentre quelli più porosi risultano più adatti alla coltivazione del geranio.

Relativamente alla capacità di ritenuta idrica dei substrati, all’aumentare della concentrazione della lolla i valori diminuiscono (Fig. 7); mentre nei substrati privi di lolla l’aggiunta di digestati tende, in linea generale a ridurre la capacità idrica, nei substrati con lolla, la presenza di digestati risulta positiva in quanto tende ad aumentarla.

L’andamento della capacità idrica al variare della percentuale di lolla è variato anche in relazione alla macinazione o meno della lolla (Fig. 8). Infatti, la diminuzione dei valori è risultata molto elevata nel caso di impiego di lolla tal quale (-69.5%) e relativamente contenuta qualora la lolla fosse stata macinata (-23.5%).

In figura 9 appare chiaramente come, la macinazione della lolla abbia aumentato considerevolmente la capacità idrica del substrato; l’aggiunta di digestati ha tendenzialmente aumentato la capacità di ritenzione in modo più marcato nel caso del substrato con lolla tal quale.

Arnold Bik (1983); Boertje (1984) e Jenkins e Jarrell, (1989) ritengono che i valori ottimali di ritenzione idrica di un substrato si debbano aggirare sul 45-65%. I valori evidenziati dai substrati contenenti oltre il 33% di lolla tal quale appaiono quindi troppo bassi per essere impiegati facilmente come substrati. La macinazione della lolla riduce, invece questo problema. Confrontando i risultati ottenuti con i valori espressi dai substrati commerciali di riferimento, i substrati contenenti lolla macinata, che esprimono i valori più alti di capacità idrica, sono tendenzialmente più adatti ad essere impiegati per substrati di coltivazione della rosa, mentre quelli con lolla tal quale, purché in percentuali non eccessive, paiono più adatti alla coltivazione del geranio.

In figura 10, si evidenzia che all’aumentare della percentuale di lolla nel substrato la capacità per l’aria tende ad aumentare in modo progressivo. Relativamente ai substrati senza digestati, passando dalla sola torba alla sola lolla, si è avuto un aumento di circa l’187% della capacità per l’aria, rispetto al 205% dei substrati arricchiti con digestati. Al
variare della percentuale di lolla macinata, la capacità per l’aria dei substrati ottenuti impiegando lolla tal quale è aumentata progressivamente in modo drammatico, con un aumento di ben il 291% tra sola lolla e sola torba (Fig. 11). Impiegando lolla macinata, invece, la capacità per l’aria è rimasta relativamente costante tra i substrati con sola torba e quelli con il 33% di lolla per poi aumentare, ma in modo molto più contenuto, con i substrati con il 67% (+28.4) e il 100% (+68.5) di lolla macinata (Fig. 11). Substrati composti da lolla tal quale hanno presentato una capacità per l’aria maggiore dei substrati formati da lolla macinata; l’aggiunta dei digestati ha ridotto del 19.1% la capacità per l’aria nel caso di substrati con lolla tal quale e del 24% in quelli con lolla macinata (Fig. 12).

Bunt (1974), Jenkins e Jarrell, (1989) ritengono che valori ottimali di capacità per l’aria di un substrato si aggirino tra il 10 e il 20%. Nei substrati analizzati si può notare una certa variabilità (Tab. 12): quelli con sola torba e con varie percentuali di lolla macinata rientrano nel range di valori presi da riferimento mentre quelli contenenti lolla tal quale, la porosità per l’aria risulta elevata già con l’adozione del 33% di lolla. Confrontando i risultati ottenuti con i valori espressi dai substrati commerciali di riferimento, i substrati contenenti una bassa percentuale di lolla tal quale paiono più adatti ad essere impiegati per substrati di coltivazione del geranio, quelli contenenti lolla macinata sembrano più adatti alla coltivazione della rosa.

Nel caso dei substrati contenenti digestati, all’aumentare della concentrazione di lolla nel substrato il peso volumico apparente subisce una graduale diminuzione che, nel caso dei substrati contenenti sola lolla, è stata del 25.8% rispetto a quelli di sola torba. Diversamente, il peso volumico apparente è rimasto costante nel caso di substrati privi si digestati (Fig. 13).

Al variare della percentuale di lolla, il peso volumico apparente è rimasto costante quando si è impiegata lolla macinata mentre si è ridotto considerevolmente nei substrati contenenti il 67 e il 100% di lolla con riduzioni che sono state pari a 23.1 e 41.4%, rispettivamente (Fig. 14).

L’aggiunta di digestati anaerobici (Fig. 15) ha determinato un aumento del peso volumico apparente molto più accentuato in presenza di lolla tal quale (+56.6%) rispetto a substrati con lolla macinata (+21.5%).

Bunt (1974) ritiene che i valori ottimali di peso volumico apparente si debbano aggrirare intorno a 0.4-0.5 g/m³. I pesi volumici apparenti dei diversi substrati analizzati si trovano in un range di valori tra i 0.15 e i 0.35 g/m³ risultando quindi inferiori rispetto ai
valori consigliati. Si tratta quindi di substrati leggeri che offrono poco sostegno alle piante; di conseguenza si prestano meglio all’allevamento di piante di piccola dimensione (come piccole piante da vaso fiorito) piuttosto che piante da vivaio. Queste considerazioni sono in qualche modo avvallate dai risultati ottenuti sui substrati commerciali: anche quello adatto alla coltura del geranio infatti ha riportato valori bassi rispetto a quelli considerati ottimali, mentre quello adatto alla coltivazione della rosa ha mostrato valori compresi nel range consigliato e sempre superiori a quelli ottenuti dai substrati in prova. Probabilmente troppo contenuto è il peso volumico dei substrati contenenti sola lolla.

5.2 LE CARATTERISTICHE CHIMICHE

Nelle tabelle 13 e 14 sono riportati i risultati dell’analisi della varianza delle caratteristiche chimiche rilevate sui substrati oggetto di studio. Con la eccezione della capacità di scambio cationico, e delle concentrazioni di K, Ca, Mg, tutti i parametri chimici sono risultati influenzati in modo altamente significativo delle interazioni di secondo e, talora, di terzo grado. Con le eccezioni dei parametri appena sopra citati, si procederà come già fatto con le caratteristiche fisiche, ovvero con la sola descrizione delle interazioni di secondo ordine.

All’aumentare delle contenuto di lolla si è assistito ad un graduale aumento del pH dei substrati, sino a ottenere i massimi valori in corrispondenza dei substrati contenenti il 67% di lolla. Dopo questa percentuale il pH è significativamente diminuito (Fig. 16). I substrati, contenenti i digestati, hanno avuto valori di pH superiori rispetto a quelli senza digestati, con differenze che sono via via aumentate all’aumentare del contenuto di lolla (+10.4% nei substrati contenenti sola torba rispetto ai +4.7% in quelli contenenti sola lolla) (Fig. 16). L’impiego di lolla macinata invece che lolla tal quale ha tendenzialmente diminuito il pH dei substrati in cui era contenuta (Fig. 17).

La figura 18 riporta l’effetto di interazione tra presenza o meno di digestati e la macinazione o meno della lolla. Risulta chiaro, che l’aggiunta di digestati ai substrati ne ha aumentato il pH; la macinazione non ha influito sul pH dei substrati quando sono stati utilizzati miscugli privi di digestati, mentre ha indotto un aumento dei valori quando i digestati erano presenti.
Valori di pH tra 6.2 e 6.8 sono ideali per una vasta gamma di specie (Bailey, 1996). Dai dati, emerge quindi che la presenza di digestati risulta negativa da questo punto di vista, in quanto aumenta troppo i valori di pH soprattutto quando una elevata percentuale di lolla è stata impiegata. Entrambi i substrati commerciali analizzati, hanno evidenziato pH più bassi dei substrati oggetto di studio.

In presenza di digestati nei miscugli, la conducibilità elettrica subisce minime variazioni all’aumentare della lolla nei miscugli e si mantiene su valori di circa 0.4 mS/cm (Fig. 19). In assenza di digestati, invece, si è osservato un aumento progressivo e sostenuto di questo parametro: infatti mentre i substrati contenenti sola torba hanno presentato conducibilità di 0.06 mS/cm, quelli contenenti sola lolla hanno avuto valori di 0.26 mS/cm (+313%) (Fig. 19).

La macinazione della lolla ha prodotto, come emerge dalla figura 20, un aumento della conducibilità elettrica, ma solo nei substrati contenenti sola lolla.

In generale i valori di conducibilità elettrica consigliati per i substrati variano dallo 0.2 allo 0.5 ms/cm (Pozzi e Valagussa, 2004). Tutti i substrati allo studio hanno mostrato valori compresi tra quelli suggeriti, così come quelli commerciali presi in riferimento (2.2 e 2.7 mS/cm rispettivamente per quelli indicati per geranio e rosa rispettivamente).

Relativamente alla capacità di scambio cationico, solamente gli effetti principali del contenuto relativo di lolla nel substrato e della presenza o meno di digestati sono risultati significativi (Tab. 13). La stessa tabella mette in evidenza come i valori di questo parametro siano diminuiti in modo drammatico all’aumentare del contenuto di lolla, passando da 164 meq per 100 g di substrato contenente sola torba a 42.5 meq per 100 g di substrato contenente sola lolla. L’aggiunta di digestati, nella formulazione dei miscugli, ha inoltre ridotto sensibilmente (-9.2%) la capacità di scambio cationico dei substrati (Tab. 13).

La figura 22 riporta come in assenza di digestati, all’aumentare della lolla di riso si sia avuto una diminuzione della sostanza organica da 93.6%, nei substrati con sola torba, a 82.8% in quelli con sola lolla. Con l’aggiunta dei digestati si è, in generale, di molto ridotto il contenuto di sostanza organica che, comunque, è aumentato all’aumentare della percentuale di lolla nei miscugli (da 64.8% nei substrati di sola torba, a 75.2% in quelli di sola lolla).
Inoltre, mentre all’aumentare della percentuale di lolla macinata nel miscuglio non sono state osservate variazioni nei riguardi di questo parametro, all’aumentare del contenuto di lolla tal quale si è avuto dapprima una tendenziale diminuzione della sostanza organica che poi è nuovamente aumentata (Fig. 23). Come anzidetto, l’aggiunta di digestati ha considerevolmente ridotto il contenuto di sostanza organica; la macinazione, ha sensibilmente aumentato questo parametro ma solamente quando nei miscugli erano contenuti anche i digestati (Fig. 24). In generale i substrati a base di torba bionda sono considerati i substrati più apprezzabili nel comparto florovivaistico. Dato che le torbe bionde di pregio hanno sostanza organica prossima al 100% (>98%; Bunt, 1988), è gioco forza che un elevato contenuto di sostanza organica nei miscugli venga considerato positivo. Valori inferiori al 80%, quindi, sono da ricondurre a torbe degradate, di cattivo pregio, o addirittura a miscugli in cui si impiegano matrici organiche diverse dalla torba e quindi di minor qualità (corteccia compostata: 75-85% di sostanza organica; compost di matrici diverse: 40-60% di sostanza organica). Soprattutto i substrati privi di digestati appaiono quindi più adatti ad essere impiegati come substrati, soprattutto con contenuti nulli o ridotti di lolla. Tra i substrati commerciali presi come riferimento, quello per il geranio ha mostrato valori molto elevati (95%) e paragonabili solamente a quelli ottenuti da substrati contenenti solo torba e senza digestati. La sostanza organica, del substrato per rosa, è risultata invece molto bassa (35.7%) e decisamente più bassa di qualsiasi contenuto dei substrati analizzati in prova. Questo valore basso è, almeno in parte, imputabile alla presenza di argilla nel miscuglio. I substrati privi di digestati hanno presentato valori mediamente bassi di azoto totale che sono ulteriormente diminuiti aumentando la percentuale di lolla nei substrati (Fig. 25). L’aggiunta di digestati ha più che raddoppiato il contenuto di azoto totale dei miscugli, valori che, comunque, sono pure diminuiti all’aumentare della percentuale di lolla. Questa diminuzione è risultata, inoltre, leggermente superiore (49.9% tra Tesi 0 e 100) rispetto a quella osservata nei substrati privi di digestati (42.8% tra Tesi 0 e 100) (Fig. 25). La diminuzione del contenuto di azoto totale all’aumentare del contenuto di lolla è inoltre risultata graduale e progressiva nel caso di impiego di lolla macinata, mentre è risultata più contenuta e apprezzabile in modo netto solamente con contenuti di lolla del 100% nel caso di aggiunta di lolla tal quale (Fig. 26).
La figura 27 pone in risalto, ancora una volta, come l’aggiunta di digestati abbia aumentato in modo rilevante il contenuto di azoto totale, e soprattutto quando è stata impiegata lolla tal quale.

I valori di azoto totale, ottenuti dai substrati commerciali, si sono aggirati tra lo 0.5% del substrato per rosa allo 0.8% di quello del geranio: in generale valori più elevati rispetto a quelli dei substrati senza digestati e più contenuti rispetto a quelli contenenti digestati soprattutto quando la lolla non era stata macinata.

Il rapporto C/N è stato influenzato solamente dai tre effetti principali (Tab. 13). Aumentando la percentuale di lolla questo rapporto è aumentato da un 73.8, nel caso dei substrati con sola torba, a 133 (+80.2%) nei substrati con sola lolla (Tab. 13). Inoltre, in media, la presenza di digestati ha ridotto il rapporto C/N di circa il 68.4% mentre la macinazione della lolla lo ha aumentato di circa il 36% (Tab. 13).

Valori elevati di C/N, come quelli riscontrati nei substrati contenenti elevate percentuali di lolla, possono far presagire una potenziale diminuzione della disponibilità dell’azoto per le piante durante la coltivazione. In realtà, alcune evidenze scientifiche hanno smentito la possibilità che questo si verifichi e questo è dovuto all’elevato contenuto di silicati della lolla e la bassa disponibilità del carbonio, che rendono questi materiali poco fermentescibili rispetto ad altri materiali organici (Kamath e Poctor, 1998, Hadas et al., 2004). In alcune prove di coltivazione è stato confermato che questa diminuzione rapida dell’azoto non si verificano (Evans e Gachukia, 2004). Ovviamente i timori aumentano se i valori di questo rapporto dovessero ulteriormente aumentare per effetto della macinazione, mentre questi diminuiscono se nel substrato viene aggiunto il digestato.

Relativamente alla concentrazione di azoto nitrico nell’estratto acquoso si nota una diminuzione (-47%) tra substrati privi o contenenti poca lolla e quelli con elevate percentuali di lolla, nel caso di substrati arricchiti con digestati, mentre nei substrati senza digestati si è riscontrata la quasi totale assenza di azoto nitrico (Fig. 28). La figura 29 evidenzia come la macinazione condiziona il contenuto di azoto nitrico, infatti è possibile riscontrare come l’aumento della percentuale di lolla macinata porti ad una riduzione progressiva dell’azoto nitrico (- 83% tra Tesi 0 e tesì 67), per poi aumentare sensibilmente in substrati con sola lolla macinata. È evidente, inoltre, che all’aumentare della lolla tal quale i valori di azoto nitrico si sono mantenuti entro un range che di 8 - 12 mg/l. L’aggiunta di digestati nei substrati ha determinato un netto aumento del contenuto di azoto nitrico. Nel caso di substrati addizionati di digestati, con la lolla tal
quale la concentrazione di azoto nitrico è risultata più elevata rispetto alla lolla macinata (+51.3%) (Fig. 30).

In generale, valori di azoto nitrico consigliati per i substrati variano da 11 a 23 mg/l (Pozzi e Valagussa, 2004). I substrati analizzati hanno presentato valori di azoto nitrico appropriati solamente quando sono stati aggiunti digestati nei miscugli.

L’anidride fosforica contenuta nell’estrauto acquoso del substrato è aumentata all’aumentare della percentuale di lolla. I valori non sono stati molto diversi tra substrati contenenti o meno digestati, con l’eccezione di quelli contenenti il 67% di lolla per i quali i valori sono stati molto più elevati nel caso dell’assenza dei digestati (Tab. 14). Nei miscugli contenenti lolla e torba i valori di P₂O₅ sono stati più elevati quando si è impiegata lolla tal quale, mentre nei substrati contenenti sola lolla, i valori sono risultati maggiori quando la lolla era stata macinata (Fig. 32). Infine, la figura 33 mette in evidenza come le uniche differenze, considerando solo gli aspetti macinazione e presenza di digestati, siano tra substrati privi di digestati e con lolla tal quale e le tre altre combinazioni dei due. L’aggiunta di digestati provoca la riduzione sia con lolla tal quale che con lolla macinata della quantità di P₂O₅. Valori ottimali di P₂O₅ nei substrati si aggirano intorno a 14-19 mg/l (Pozzi e Valagussa, 2004). Dei substrati analizzati quelli più prossimi a quelli ideali sono quelli contenenti elevate percentuali di lolla o con digestati, valori che sono comunque in linea con quelli riscontrati sul substrato consigliato per geranio. Negli altri casi i valori sono risultati molto bassi, ma comunque simili a quelli del substrato adatto a rosa.

Per il potassio, contenuto nell’estrauto acquoso del substrato, sono risultati significativi solamente gli effetti principali del contenuto relativo di lolla nel substrato e della presenza o meno di digestati (Tab. 14). Si evidenzia infatti che all’aumento della percentuale di lolla aumenta gradualmente anche la concentrazione di potassio (96% tra Tesi 0 e Tesi 100). Nella tabella 14 si nota un aumento sensibile del potassio quando vengono aggiunti i digestati (+116%). Autori vari dichiarano che valori ottimali dei substrati si aggirano da 4 a 14 mg/l (Pozzi e Valagussa, 2004). Dell’analisi dei substrati, i valori di potassio trovati sono al di sopra dei valori ottimali riscontrati e ai valori dei substrati commerciali, utilizzati per la coltivazione di geranio e rosa, presi come riferimento; probabilmente rientrano nei limiti solamente i substrati contenenti sola torba e in assenza di digestati.

Anche per il contenuto di calcio, nell’estrauto acquoso del substrato, si valutano gli effetti principali del contenuto relativo di lolla nel substrato e della presenza o meno dei
digestati, tali effetti sono gli unici ad essere risultati significativi (Tab. 14). Inoltre si vede che all’aumentare della percentuale di lolla si è avuta una riduzione progressiva della concentrazione di calcio (-72%; tra Tesi 0 e Tesi 100). L’aggiunta di digestati (Fig. 14) ha portato un aumento della concentrazione (15.5 mg/l) rispetto ai substrati senza digestati (6.44 mg/l). Valori ottimali di calcio secondo vari autori si aggirano intorno a 10-19 mg/l (Pozzi e Valagussa, 2004). Relativamente ai dati ottenuti nei substrati analizzati si riscontrano valori che ricadono in tale range, e sono compresi tra i valori dei substrati commerciali usati come riferimento.

Nessuno dei trattamenti allo studio ha influito sulla concentrazione di magnesio dei substrati che, in media, si è assista sui 1.65 mg/l (Tab. 14). Valori ottimali di magnesio si aggirano tra 6 e 10 mg/l (Pozzi e Valagussa, 2004). Valori riscontrati dalle analisi dei substrati sono tutti più bassi. Comunque, i valori sono in linea con quelli riscontrati nel substrato suggerito per la coltivazione del geranio.

L’aumento percentuale di lolla di riso nel substrato ha portato ad una diminuzione della quantità di solfati dei substrati. Nel caso dei substrati privi di digestati questa diminuzione è stata pari a 74% (tra substrati di sola lolla e sola torba), mentre con l’aggiunta di digestati è stata del 58%. La diminuzione della concentrazione di solfati all’aumentare della concentrazione di lolla è stata più contenuta nel caso di impiego di lolla tal quale rispetto all’impiego di lolla macinata (Fig. 39). La macinazione ha aumentato leggermente la disponibilità di solfati nei substrati privi di digestati; nei substrati addizionati con digestati non si sono invece avute differenze (Fig. 40). Valori ottimali di solfati nei substrati si aggirano sui 35-45 mg/l (Pozzi e Valagussa, 2004): nei substrati analizzati i valori sono risultati molto bassi, molto più bassi anche rispetto ai substrati commerciali presi come riferimento. Solamente l’aggiunta dei digestati ha permesso di migliorarne, anche se solo parzialmente, le concentrazioni.
6. DISCUSSIONE E CONCLUSIONI

I trattamenti allo studio hanno modificato, e talora anche in modo molto marcato, tutti i parametri chimico-fisici considerati. L’aumento della percentuale di lolla di riso tal quale ha modificato solo marginalmente la porosità totale, ma ha aumentato notevolmente la porosità per l’aria e ridotto, parimenti, la capacità di trattenuta idrica del substrato. Queste variazioni sono state tali che, con il 67% di lolla, la capacità idrica dei miscugli usciva di già dal range considerato ottimale, mentre la capacità per l’aria era di già eccessiva con il 33% di lolla. Questa peculiarità della lolla, e in particolare la grande porosità per l’aria, è già conosciuta ed è per questo che molti autori hanno condotto prove per valutare la possibilità di sostituire la perlite (materiale molto poroso, impiegato spesso proprio per aumentare la porosità dei substrati) nei miscugli commerciali (Evans e Gachukia, 2004 e 2007). Questo è anche il motivo per cui nel presente lavoro si è investigato anche sulle proprietà dei substrati ammendati con lolla di riso macinata. La macinazione, infatti, ha da un lato diminuito la porosità per l’aria e aumentato la capacità di ritenzione. I risultati hanno indicato che l’aggiunta di una qualsiasi percentuale di lolla macinata hanno fatto rientrare entrambi i parametri entro i valori considerati ottimali o, comunque, più simili a quelli della torba.

Dal punto di vista delle caratteristiche chimiche, l’aumento dei contenuti di lolla ha aumentato la conducibilità elettrica, diminuito la sostanza organica, diminuito la concentrazione di nutrienti quali azoto totale, calcio e solfati, e aumentato le concentrazioni di anidride fosforica e potassio. Questi risultati sono in linea con quanto ottenuto da un precedente lavoro condotto da Zanin et. al. (2011). Questi cambiamenti hanno sicuramente modificato anche le proporzioni relative tra i nutrienti che possono, in linea ipotetica, creare squilibri nutrizionali durante la coltivazione. La macinazione della lolla, a sua volta, ha ulteriormente modificato le caratteristiche chimiche come ad esempio ridotto la concentrazione di nitrati e anidride fosforica che possono aver acuito le differenze.

L’aggiunta di digestati, nella composizione dei miscugli, ha modificato sia le caratteristiche fisiche che quelle chimiche. I cambiamenti procurati alle caratteristiche fisiche sono però di poco conto, variando la porosità totale e le sue componenti di non

Sulle caratteristiche fisiche e chimiche dei substrati vanno fatte alcune considerazioni. E’ opinione comune che le caratteristiche fisiche dei substrati siano in qualche modo più importanti di quelle chimiche. Il motivo è da ricondurre al fatto che queste non sono modificabili una volta che la coltura sia in atto e che anzi, durante la coltivazione queste tendano a peggiorare (es. diminuzione della porosità per l’aria, riduzione della capacità di drenaggio) (Handreck and Black, 2002; Michiels et al. 1993; Nelson, 2003). Relativamente alle caratteristiche chimiche, invece, esiste una maggiore tolleranza. La torba, ad esempio, più volte citata come il “substrato principe” nel florovivaismo, è tendenzialmente povera in nutrienti. Questo limite viene in qualche modo bypassato semplicemente addizionando al substrato quantitativi diversi di concimi complessi idrosolubili. Al contrario, anche durante la coltivazione, concentrazioni eccessive di nutrienti possono essere eliminate eseguendo irrigazioni abbondanti, in modo da dilavare i nutrienti. Si tenga anche presente che nella normale pratica una certa quota di liscivio (20% o anche maggiore) è considerata desiderabile allo scopo di assicurare la sufficiente bagnatura di tutti i vasi e, visto che in floricoltura sempre più spesso si adotta la fertirrigazione continua, evitare l’eccessivo depauperamento o arricchimento di nutrienti nel substrato. D’altro canto, esperienze condotte su substrati con note alterazione tra le concentrazioni relative dei nutrienti e la presenza di concentrazioni molto elevate di alcuni di questi, non hanno sortito effetti negativi almeno in termini di manifestazione di sintomi visibili di fitotossicità (Zanin et al., 2011).

Volendo trarre delle indicazioni generali su quali dei diversi miscugli analizzati in questa prova possa risultare adatto all’impiego nel settore vivaistico si deve precisare, anzitutto, che substrati diversi possono essere impiegati per colture diverse. Le stesse differenze, talora notevoli, osservate tra i substrati commerciali introdotti come riferimento, ne sono una prova. Sicuramente non adatti alla coltivazione sia per eccessiva aerazione che per ridotta capacità di ritenuta idrica sono i substrati contenenti il 67% e il 100% di lolla tal quale (sia con che senza aggiunta di digestati). Relativamente alle caratteristiche fisiche, soddisfacenti risultano i substrati costituiti
anche con percentuali molto alte di lolla di riso, purché macinata. Particolarmente interessante pare ad esempio il substrato contenente il 100% di lolla macinata ammendata con digestati, che presenta porosità per l’aria e capacità idrica molto simili a quelle del substrato indicato per rosa. Relativamente alle caratteristiche chimiche l’aumento della concentrazione di nutrienti associato all’aggiunta di digestati fa ipotizzare che possa risultare un problema qualora il substrato venga impiegato nelle fasi di vivaio per le produzioni di semenzali o di taleati, perché la maggiore salinità e/o maggiore concentrazione di nutrienti può costituire un fattore negativo per la germinazione/radicazione e accrescimento delle giovani piante che, in questa fase, hanno ridotte esigenze nutrizionali. Viceversa, l’aggiunta di digestati può costituire un vantaggio nella formulazione di substrati di coltura in quanto in questa fase le piante esprimono maggiori esigenze nutrizionali. Va precisato inoltre che, con l’aggiunta di digestati, le numerosi interazioni osservate tra i tre fattori allo studio, ed il fatto che in taluni casi l’effetto va nella direzione e in altri va in un’altra direzione, non è facile stabilire quale dei substrati analizzati si possa proporre con serenità ad un operatore del settore. Per poter far questo si rendono necessari ulteriori approfondimenti sul tema, magari tramite la conduzione di prove specifiche di coltivazione, anche al fine di verificare dal punto di vista sperimentale, le considerazioni, fatte poco sopra, relative alla possibilità di modificare in coltivazione eventuali eccessi/carenze di nutrienti e/o sbilanciamenti presenti nei substrati.
7. BIBLIOGRAFIA

8. TABELLE E FIGURE
8. TABELLE E FIGURE
Tab. 12. Tabella dell'analisi della varianza sui parametri fisici rilevati sui substrati a confronto.

<table>
<thead>
<tr>
<th></th>
<th>Porosità totale (%)</th>
<th>Capacità di ritenzione idrica massima (%)</th>
<th>Capacità per l'aria (%)</th>
<th>PVA (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lolla (L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>87,7 a</td>
<td>73,3 a</td>
<td>14,5 d</td>
<td>271 a</td>
</tr>
<tr>
<td>33</td>
<td>84,5 b</td>
<td>61,7 b</td>
<td>22,8 c</td>
<td>260 b</td>
</tr>
<tr>
<td>67</td>
<td>83,6 c</td>
<td>49,2 c</td>
<td>34,4 b</td>
<td>237 c</td>
</tr>
<tr>
<td>100</td>
<td>82,4 d</td>
<td>39,7 d</td>
<td>42,7 a</td>
<td>227 c</td>
</tr>
<tr>
<td>Digestato (D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>senza</td>
<td>86,4 a</td>
<td>54,5 b</td>
<td>25,3 b</td>
<td>211 b</td>
</tr>
<tr>
<td>con</td>
<td>82,7 b</td>
<td>57,4 b</td>
<td>31,9 a</td>
<td>286 a</td>
</tr>
<tr>
<td>Macinazione (M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>macinata</td>
<td>82,3 b</td>
<td>67,3 a</td>
<td>15,1 b</td>
<td>279 a</td>
</tr>
<tr>
<td>tal quale</td>
<td>86,8 a</td>
<td>44,7 b</td>
<td>42,1 a</td>
<td>219 b</td>
</tr>
<tr>
<td>Significatività</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lolla</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Digestato</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Macinazione</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>LxD</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>LxM</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>DxM</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>LxDxM</td>
<td>**</td>
<td>n.s.</td>
<td>n.s.</td>
<td>***</td>
</tr>
</tbody>
</table>

Valori con lettera diversa nelle colonne indicano differenze significative per P≤ 0.05 (test di Tukey).
*** e ** = significativo per P≤0.001 e 0.01; n.s. = non significativo.
Tab. 13. Tabella dell'analisi della varianza su alcuni parametri chimici rilevati sui substrati a confronto.

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>EC (mS/cm)</th>
<th>CSC</th>
<th>Sostanza organica (%)</th>
<th>Azoto (%)</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lolla (L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6,28 c</td>
<td>0,235 d</td>
<td>163,6 a</td>
<td>79,2 a</td>
<td>0,898 a</td>
<td>73,8 c</td>
</tr>
<tr>
<td>33</td>
<td>6,46 b</td>
<td>0,274 c</td>
<td>131,2 b</td>
<td>77,5 bc</td>
<td>0,755 b</td>
<td>89,3 bc</td>
</tr>
<tr>
<td>67</td>
<td>6,78 a</td>
<td>0,293 b</td>
<td>77,9 c</td>
<td>77,2 c</td>
<td>0,628 c</td>
<td>105,0 ab</td>
</tr>
<tr>
<td>100</td>
<td>6,35 c</td>
<td>0,321 a</td>
<td>42,5 d</td>
<td>79,0 b</td>
<td>0,466 d</td>
<td>133,0 a</td>
</tr>
<tr>
<td>Digestato (D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>senza</td>
<td>6,24 b</td>
<td>0,155 b</td>
<td>108,8 a</td>
<td>87,1 a</td>
<td>0,359 b</td>
<td>152,4 a</td>
</tr>
<tr>
<td>con</td>
<td>6,69 a</td>
<td>0,406 a</td>
<td>98,8 b</td>
<td>69,3 b</td>
<td>1,004 a</td>
<td>48,1 b</td>
</tr>
<tr>
<td>Macinazione (M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>macinata</td>
<td>6,50 a</td>
<td>0,301 a</td>
<td>103,5</td>
<td>79,5 a</td>
<td>0,575 b</td>
<td>115,6 a</td>
</tr>
<tr>
<td>tal quale</td>
<td>6,43 b</td>
<td>0,260 b</td>
<td>104,1 n.s.</td>
<td>76,9 b</td>
<td>0,805 a</td>
<td>84,9 b</td>
</tr>
<tr>
<td>Significatività</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lolla</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Digestato</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Macinazione</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>LxD</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>LxM</td>
<td>**</td>
<td>***</td>
<td>n.s.</td>
<td>***</td>
<td>**</td>
<td>n.s.</td>
</tr>
<tr>
<td>DxM</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>LxDxM</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Valori con lettera diversa nelle colonne indicano differenze significative per P≤0.05 (test di Tukey).
*** e ** = significativo per P≤0.001 e 0.01; n.s. = non significativo.
Tab. 14. Tabella dell'analisi della varianza su alcuni parametri chimici rilevati sui substrati a confronto.

<table>
<thead>
<tr>
<th></th>
<th>N-NO₃ (mg/l)</th>
<th>P₂O₅ (mg/l)</th>
<th>K (mg/l)</th>
<th>Ca (mg/l)</th>
<th>Mg (mg/l)</th>
<th>SO₄ (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lolla (L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10,71 a</td>
<td>1,04 d</td>
<td>35,7 b</td>
<td>16,11 a</td>
<td>2.68</td>
<td>16,26 a</td>
</tr>
<tr>
<td>33</td>
<td>9,69 b</td>
<td>3,16 c</td>
<td>35,8 b</td>
<td>13,83 ab</td>
<td>1.31</td>
<td>14,15 b</td>
</tr>
<tr>
<td>67</td>
<td>6,01 c</td>
<td>6,81 b</td>
<td>53,0 ab</td>
<td>9,47 ab</td>
<td>1.20</td>
<td>9,17 c</td>
</tr>
<tr>
<td>100</td>
<td>5,77 c</td>
<td>10,22 a</td>
<td>70,1 a</td>
<td>4,54 b</td>
<td>1.42 n.s.</td>
<td>6,12 d</td>
</tr>
<tr>
<td>Digestato (D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>senza</td>
<td>0,25 b</td>
<td>6,40 a</td>
<td>30,8 b</td>
<td>6,45 b</td>
<td>1.41</td>
<td>3,02 b</td>
</tr>
<tr>
<td>con</td>
<td>15,84 a</td>
<td>4,22 b</td>
<td>66,5 a</td>
<td>15,53 a</td>
<td>1.90 n.s.</td>
<td>19,83 a</td>
</tr>
<tr>
<td>Macinazione (M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>macinata</td>
<td>6,46 b</td>
<td>4,34 b</td>
<td>50,8</td>
<td>9,9</td>
<td>1.72</td>
<td>11,6</td>
</tr>
<tr>
<td>tal quale</td>
<td>9,62 a</td>
<td>6,27 a</td>
<td>46,5 n.s.</td>
<td>12,1 n.s.</td>
<td>1,59 n.s.</td>
<td>11,3 n.s.</td>
</tr>
<tr>
<td>Significatività</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lolla</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>Digestato</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>Macinazione</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>LxD</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>LxM</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>DxM</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>LxDxM</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>***</td>
</tr>
</tbody>
</table>

Valori con lettera diversa nelle colonne indicano differenze significative per $P \leq 0.05$ (test di Tukey).

***, ** e * = significativo per $P \leq 0.001$, 0.01 e 0.05; n.s. = non significativo.
Fig. 4. Effetto della percentuale di lolla e dell'aggiunta di digestati anaerobici sulla porosità totale dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 5. Effetto della percentuale e della macinazione della lolla sulla porosità totale dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 6. Effetto dell'aggiunta di digestati anaerobici e della macinazione della lolla sulla porosità totale dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 7. Effetto della percentuale di lolla e dell'aggiunta di digestati anaerobici sulla capacità idrica dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 8. Effetto della percentuale e della macinazione della lolla sulla capacità idrica dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 9. Effetto dell'aggiunta di digestati anaerobici e della macinazione della lolla sulla capacità idrica dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 10. Effetto della percentuale di lolla e dell'aggiunta di digestati anaerobici sulla capacità per l'aria dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 11. Effetto della percentuale e della macinazione della lolla sulla capacità per l'aria dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 12. Effetto dell'aggiunta di digestati anaerobici e della macinazione della lolla sulla capacità per l'aria dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 13. Effetto della percentuale di lolla e dell'aggiunta di digestati anaerobici sul peso volumico apparente dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 14. Effetto della percentuale e della macinazione della lolla sul peso volumico apparente dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 15. Effetto dell'aggiunta di digestati anaerobici e della macinazione della lolla sul peso volumico apparente dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 16. Effetto della percentuale di lolla e dell'aggiunta di digestati anaerobici sul pH dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 17. Effetto della percentuale e della macinazione della lolla sul pH dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 18. Effetto dell'aggiunta di digestati anaerobici e della macinazione della lolla sul pH dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 19. Effetto della percentuale di lolla e dell'aggiunta di digestati anaerobici sulla conducibilità elettrica (EC) dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 20. Effetto della percentuale e della macinazione della lolla sulla conducibilità elettrica (EC) dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 21. Effetto dell'aggiunta di digestati anaerobici e della macinazione della lolla sulla conducibilità elettrica (EC) dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 22. Effetto della percentuale di lolla e dell'aggiunta di digestati anaerobici sul contenuto di sostanza organica dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 23. Effetto della percentuale e della macinazione della lolla sul contenuto di sostanza organica dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 24. Effetto dell'aggiunta di digestati anaerobici e della macinazione della lolla sul contenuto di sostanza organica dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 25. Effetto della percentuale di lolla e dell'aggiunta di digestati anaerobici sul contenuto di azoto totale (N) dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 26. Effetto della percentuale e della macinazione della lolla sul contenuto di azoto totale (N) dei substrati analizzati. Le barre indicano l’errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 27. Effetto dell’aggiunta di digestati anaerobici e della macinazione della lolla sul contenuto di azoto totale (N) dei substrati analizzati. Le barre indicano l’errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 28. Effetto della percentuale di lolla e dell'aggiunta di digestati anaerobici sul contenuto di azoto nitrico (N-NO₃) nell'estratto acquoso dei substrati analizzati. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 29. Effetto della percentuale e della macinazione della lolla sul contenuto di azoto nitrico (N-NO₃) nell'estratto acquoso dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 30. Effetto dell'aggiunta di digestati anaerobici e della macinazione della lolla sul contenuto di azoto nitrico (N-NO₃) nell'estratto acquoso dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 31. Effetto della percentuale di lolla e dell'aggiunta di digestati anaerobici sul contenuto di P₂O₅ nell'estratto acquoso dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 32. Effetto della percentuale e della macinazione di lolla sul contenuto di P₂O₅ nell'estratto acquoso dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 33. Effetto dell'aggiunta di digestati anaerobici e della macinazione della lolla sul contenuto di P₂O₅ nell'estratto acquoso dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 34. Effetto della percentuale di lolla e dell'aggiunta di digestati anaerobici sul contenuto di solfati (SO₄) nell'estratto acquoso dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.

Fig. 35. Effetto della percentuale e della macinazione della lolla sul contenuto di solfati (SO₄) nell'estratto acquoso dei substrati analizzati. Le barre indicano l'errore standard della media. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.
Fig. 36. Effetto dell'aggiunta di digestati anaerobici e della macinazione della lolla sul contenuto di solfati (SO₄) nell'estratto acquoso dei substrati analizzati. Le linee tratteggiate indicano i valori di substrati commerciali di coltivazione di Geranio e Rosa.