La volatilità nelle serie finanziarie
- Evidenze empiriche e modelli-

Relatore: CH.MO PROF. SILVANO BORDIGNON

Laureando: DIEGO ZANON

Anno Accademico 2004 – 2005
Alla mia famiglia
INDICE

1. PREMESSA ... 1

2. INTRODUZIONE ... 3
 2.1 I PRINCIPALI STRUMENTI FINANZIARI.................... 3
 2.2 LE VARIABILI DI INTERESSE.............................. 5

3. ANALISI DEI RENDIMENTI 9
 3.1 NOTAZIONE.. 10
 3.2 IL PROCESSO WHITE NOISE E RANDOM WALK............. 11
 3.3 UN MODELLO PER LA MEDIA CONDIZIONATA............... 13

4. CARATTERISTICHE DELLA VOLATILITÀ 14
 4.1 PERSISTENZA... 14
 4.2 RITORNO IN MEDIA DELLA VOLATILITÀ...................... 15
 4.3 L’IMPATTO ASIMMETRICO DELL’INNOVAZIONE SULLA VOLATILITÀ.. 16
 4.4 LE VARIABILI ESOGENE..................................... 18
 4.5 LEPTOCURTOSI... 19

5. MODELLI PER LA VOLATILITÀ 21
 5.1 Modello ARCH- AUTOREGRESSIVE CONDITIONAL
 HETEROSKEDASTICITY....................................... 21
 5.2 GENERALIZED ARCH-GARCH................................. 22

6. MODELLI ASIMMETRICI .. 26
6.1 THRESHOLD GARCH -
TGARCH...26
6.2 EXOPNENTIAL GARCH-EGARCH27

7. LA FUNZIONE D’IMPATTO DELLE NOTIZIE 29

8. ESEMPI EMPIRICI ..30
8.1 IL TEST SULLA RADICE UNITARIA........................30
8.2 DISTRIBUZIONE EMPIRICA.................................34
8.3 IL MODELLO PER LA MEDIA36
8.4 UN MODELLO PER LA VOLATILITÀ.....................38
8.5 I MODELLI ASIMMETRICI43
8.6 UN MODELLO CON VARIABILI
 ESOGENE..47

9. CONCLUSIONI ...48

10. BIBLIOGRAFIA ..50
1. PREMESSA

Nella maggior parte delle attività finanziarie si è interessati non solo al livello della serie ma anche alla sua varianza. Variazioni nella varianza sono abbastanza importanti per comprendere i mercati finanziari, poiché gli investitori richiedono rendimenti più elevati come compensazione per detenere attività più rischiose.

Ovviamente il risk-manager sarà interessato alla capacità di un modello di prevedere la distribuzione futura dei profitti, più che alla rappresentazione dei rendimenti passati; così da poter prevedere oggi una caduta del prezzo del suo portafoglio. Allo stesso modo, un azionista deve poter conoscere oggi la volatilità attesa alla fine di un contratto e il possessor di un portafoglio può decidere di vendere prima che questo diventi troppo volatile.

Nel determinare la copertura (hedging) da rischi di fluttuazioni con acquisti o vendite a termine, nei problemi di risk-management o di selezione del portafoglio, e in generale, nella maggior parte delle applicazioni finanziarie viene richiesta una previsione della volatilità. Un buon modello per l’analisi delle serie finanziarie deve pertanto essere in grado di poter fornire delle previsioni accurate della volatilità. È utile quindi analizzare quali caratteristiche deve incorporare un buon modello e allo stesso tempo discutere le proprietà che i modelli standard di volatilità non sembrano soddisfare.

La volatilità non è direttamente osservabile, tuttavia sono state riscontrate delle caratteristiche che valgono più in generale per la maggior parte delle serie finanziarie.

Una regolarità è il comportamento eteroschedastico della varianza. Accettare l’ipotesi di varianza costante nel tempo (ipotesi di omoschedasticità) di fatto vuol dire introdurre nell’analisi un elemento che può portare a dei risultati forvianti dal punto di vista inferenziale.

Un’altra caratteristica tipica delle serie finanziarie è la pesantezza delle code nella distribuzione dei rendimenti. Questa tendenza ad osservare code più pesanti rispetto alla distribuzione normale è definita con il termine di leptocurtosi. Le distribuzioni leptocurtiche hanno la peculiarità di assegnare una maggiore probabilità ad eventi molto lontani dal valor medio della distribuzione. Per questo motivo si parla anche di distribuzione con code spesse. La presenza di leptocurtosi è inoltre compatibile con l’ipotesi di varianza dipendente dal tempo.

Altre evidenze empiriche sono: l’asimmetria delle quotazioni, per cui shock negativi sembrano incrementare la volatilità di più di quanto non facciano gli shock positivi
(leverage effect) e il così detto effetto clustering, ossia l’addensamento in valore assoluto di rendimenti elevati (o bassi) in certi periodi. In altri termini, la volatilità dei rendimenti sembra essere autocorrelata.

Alcuni esempi empirici verificano le proprietà appena elencate per i più importanti indici della borsa italiana e americana. Si sono analizzate le caratteristiche che un modello per la volatilità deve incorporare dedicando meno spazio ai modelli per la media condizionata e allo stesso tempo, si sono discusse le proprietà che i modelli standard di volatilità non sembrano soddisfare. Si è verificato l’impatto positivo di variabili esogene sui titoli, rimuovendo così l’ipotesi che la volatilità dipenda unicamente dalla sua storia passata.

Concluderemo infine con alcune considerazioni per delle ricerche future in questo campo.
2. INTRODUZIONE

Prima di occuparci della parte più squisitamente econometrica che riguarda la stima di un modello appropriato per la volatilità è utile considerare le principali caratteristiche dei maggiori strumenti finanziari. Nel nostro caso quest’operazione è di particolare interesse visto che gli indici sono costruiti artificialmente per fornire un dato sintetico dell’andamento del mercato. Molti di questi, familiarmemente chiamati Dow-Jones, Nasdaq, Nikkei, sono entrati nel linguaggio comune di tutti i giorni e sovente vengono citati senza che necessariamente si abbiano presenti le potenziali carenze nella loro struttura.

2.1 I PRINCIPALI STRUMENTI FINANZIARI

L’azione può essere definita come l’unità minima di partecipazione di un socio al capitale sociale. Il documento che attesta la proprietà di una quota del capitale sociale è il titolo azionario e garantisce una serie di diritti al titolare. Per esempio alcuni diritti amministrativi come il diritto al voto, il diritto d’impugnativa delle delibere assembleari, il diritto di recesso, e quello d’opzione e altri diritti economico–patrimoniali come il diritto al dividendo ed infine il diritto al rimborso.

Ogni azione ha un valore nominale (uguale per tutte le azioni emesse dalla società) che è pari al capitale sociale diviso il numero di azioni emesse dalla società, e un valore di mercato che corrisponde al prezzo effettivo al quale le azioni, quote in borsa, sono scambiate sui mercati. Il valore di mercato, per tale motivo, varia notevolmente ogni giorno in funzione della domanda e dell’offerta e per questo motivo può discostarsi anche di molto dal valore nominale.

I dati azionari con frequenza giornaliera usualmente riportano accanto alla data i prezzi rilevati all’apertura del mercato (definito *Open*), il prezzo più alto (definito *High*), il prezzo più basso (definito *Low*), il prezzo relativo alla chiusura (definito *Close*) e il volume di scambio della giornata espresso in numero d'azioni.

Una classifica particolarmente rilevante è quella che consente di distinguere, all’interno di una stessa categoria d'azioni, titoli ad alta o bassa capitalizzazione. Si è soliti indicare le azioni relative a titoli ad alta capitalizzazione con il termine *blue-chips*, intendendo per valore di capitalizzazione di una società il prodotto tra il numero di azioni quote in borsa ed il loro valore di mercato.
Quotidianamente le azioni vengono scambiate nei diversi mercati. Per valutare l’andamento della Borsa nel suo complesso, si utilizzano gli indici azionari. Alcuni, familiarimente chiamati Dow Jones, Nasdaq, Nikkei, sono entrati nei commentari dei quotidiani economici e alla loro variazione si attribuisce il valore di sintesi dell’andamento generale dell’economia. Basta confrontare il valore assunto dal rispettivo indice di Borsa in due date differenti, oppure in tutte le giornate all’interno di un determinato periodo per avere una visione chiara dell’andamento di un determinato mercato.

Gli indici sono espressi in funzione di una base che può assumere valori diversi a seconda del tipo d’indice: in centesimi oppure in millesimi. Gli indici di Borsa, calcolati perlopiù sulla base dei prezzi ufficiali, sono ottenuti come medie ponderate dei prezzi dei titoli presenti in un dato mercato e rappresentano pertanto uno strumento immediato per valutare in quale direzione si sta muovendo il mercato azionario e con quale intensità.

Agli indici generali, la cui funzione è quella di rappresentare in maniera sintetica l’andamento di tutto il mercato azionario, si affiancano gli indici parziali che evidenziano la quotazione soltanto di un gruppo di titoli, classificati in base ad uno specifico criterio. Il vantaggio più evidente del calcolo di questi indici parziali è quello di dare un’indicazione dell’andamento dei titoli più richiesti dal mercato; generalmente hanno una buona rappresentatività dell’andamento generale in quanto i titoli che li compongono costituiscono di norma una quota molto elevata della capitalizzazione del mercato.

Il Mib30 sintetizza l’andamento complessivo dei 30 titoli più rappresentativi del mercato italiano ed è calcolato come media ponderata su una base millesimale “aperta”. Questo significa che in qualsiasi giorno dell’anno è possibile includere o escludere determinati titoli. La Borsa Italiana rivede periodicamente la composizione del paniere in base ad alcuni indicatori statistici (criteri di liquidità e di capitalizzazione). Il controllo viene effettuato semestralmente (marzo e settembre) anche se sono previsti dei controlli straordinari in caso di fusioni tra società sui titoli che fanno parte di quest’indice.

Per quanto riguarda il mercato americano il più noto e anche il più antico indicatore dell’andamento del mercato azionario è il Dow Jones Industrial Average. È calcolato come media (con fattore di correzione) dei prezzi dei 30 titoli a più elevata capitalizzazione ma alla sua semplicità di calcolo contrappone alcune carenze strutturali come l’assenza di ponderazione ed una certa arbitrarità nel calcolo del divisore.

L’indice più rappresentativo della così detta New Economy è il Nasdaq Composite Index. Calcolato come rapporto tra il valore di capitalizzazione presente ed il valore di
capitalizzazione al tempo base, viene eventualmente aggiustato per tenere conto di modificazioni.

2.2 LE VARIABILI DI INTERESSE
Alla base dell’analisi delle serie finanziarie è utile distinguere tre fondamentali oggetti d'analisi:

1. **Prezzi.** I prezzi indicizzati dall’istante temporale al quale sono osservati, \(P_t \) con \(t=1\ldots T \), presentano alcune peculiarità statistiche che devono essere prese in considerazione: come per esempio, la possibile presenza di una radice unitaria nel processo generatore dei dati.

Un’assunzione che sta alla base della ricerca è l’ipotesi d’efficienza dei mercati, vale a dire la proprietà dei prezzi degli strumenti di riflettere pienamente l’informazione a disposizione. L’idea poco realistica è quella di un mercato senza imperfezioni, frizioni e costi di transizione, dove il prezzo del bene incorpori abbastanza velocemente tutta l’informazione del mercato. Come conseguenza, ogni vantaggio informativo che può portare ad un vantaggio in termini di profitto viene istantaneamente sfruttato. Da questo punto di vista dunque, il rendimento atteso di un’attività dovrebbe essere uguale a zero. Sotto l’ipotesi d'efficienza dei mercati l’informazione disponibile è poco rilevante per la previsione dei prezzi e/o dei rendimenti; al contrario diventa rilevante per la previsione della volatilità.

La figura 2.2.1 traccia il grafico del tasso sui fondi federali. Questo tasso d’interesse è molto più volatile in alcuni periodi rispetto ad altri. Variazioni nella varianza sono abbastanza importanti per comprendere i mercati finanziari, poiché gli investitori richiedono rendimenti più elevati come compensazione per detenere attività più rischiose. Una varianza che varia nel tempo ha anche implicazioni per la validità e l’efficienza dell’inferenza statistica sui parametri che descrivono l’andamento della serie.
2. **Rendimenti.** Rappresentano l’oggetto più interessante nell’analisi delle serie finanziarie, in quanto misurano la redditività dell’attività finanziaria.

Dato che l’evoluzione dei prezzi è guidata dai rendimenti, è utile distinguere la media del rendimento, calcolata sulla base dell’informazione a disposizione al tempo precedente, da quello che costituisce un’innovazione rispetto a quanto ci si aspettava. In questa logica, la media è indicizzata dal tempo μ_t come pure l’innovazione a_t:

$$r_t = \mu_t + a_t$$

La maggior parte degli studi finanziari riguarda i rendimenti anziché i prezzi principalmente per due motivi:

- I rendimenti rappresentano per l’investitore medio un sommario completo e adimensionale dell’opportunità d’investimento;
- Le serie dei rendimenti sono più facili da trattare da un punto di vista statistico e manifestano proprietà più attraenti.

Consideriamo la relazione temporale fra i prezzi. Per definizione il prezzo al tempo t è legato al prezzo al tempo $t-1$ attraverso il rendimento dell’attività fra $t-1$ e t, vale a dire:

$$1 + R_t = \frac{P_t}{P_{t-1}} \text{ oppure } P_t = P_{t-1}(1 + R_t)$$
È facile vedere come questa definizione sia in disaccordo con l’assunzione tradizionale che vede i rendimenti semplici \(\{R_t\}_{t=1}^T \) identicamente distribuiti come una Normale di media e varianza costante.

In particolare, si nota che:

- Il limite inferiore di un rendimento semplice è \(-1\);
- Se \(R_t \) è normalmente distribuito, allora il rendimento semplice multiperiodale non è distribuito normalmente;
- L’assunzione di normalità non è comprovata dall’evidenza empirica (leptocurtosi).

Un’opportuna trasformazione permette tuttavia di ottenere delle proprietà statistiche apprezzabili. Consideriamo a questo proposito il rendimento composto a tempo continuo:

\[
r_t = \log(1 + R_t) = \log \frac{P_t}{P_{t-1}} = P_t - P_{t-1}
\]

dove \(P_t = \log(P_t) \)

- Il rendimento logaritmico multiperiodale è semplicemente la somma dei rendimenti logaritmici uniperiodali:

\[
r_t(k) = \log[1 + R_t(k)] = \log[(1 + R_t)\ldots(1 + R_{t-k+1})] = r_t + r_{t-1} + \ldots + r_{t-k+1}
\]

e dato che la somma di un numero finito di normali i.i.d. è ancora normale, allora anche \(r_t(k) \) è normale.
- Non esiste più un limite inferiore per \(r_t \) che varia da \(+\infty\) a \(-\infty\) proprio come nella distribuzione normale.
- L’assunzione log-normale continua ad essere inconsistente rispetto alle regolarità empiriche osservate nelle serie dei rendimenti. In particolare l’eccesso di curtosi prova che i rendimenti logaritmici non sono identicamente distribuiti come una Normale di media e varianza costante.

3. **Volatilità.** È una misura delle fluttuazioni dei rendimenti e dato che il rischio è connesso alla volatilità dello strumento, rappresenta una misura di rischio dell’attivo finanziario. Nello specifico, analizzeremo una classe di modelli per la

L’idea di Engle è quella di modellare la varianza dei rendimenti sulla base dell’informazione a disposizione, formalmente:

\[
\text{var} \left(a_t \mid I_{t-1} \right)
\]

Questo è coerente con il fenomeno di *volatility-clustering* osservato per le serie dei rendimenti e permette inoltre di formulare ipotesi sul comportamento futuro della volatilità, che come vedremo, ha caratteristiche di prevedibilità che possono essere analizzate.
3. **ANALISI DEI RENDIMENTI**

Occupiamoci ora di un problema più radicale che riguarda la forma della distribuzione dei rendimenti. E’ stato, infatti, osservato che la distribuzione normale non è appropriata a rappresentare l’aleatorietà dei rendimenti. In particolare si è notato che essa tende a sottovalutare la probabilità attribuita ad eventi estremi. Un esempio per tutti: è stato calcolato che il crollo del 29% dell’indice della borsa americana fatto registrare il 19 ottobre 1987 avrebbe, secondo la distribuzione normale dei rendimenti, una probabilità pari a 10^{-160}, praticamente pari a zero. Questa tendenza a sottovalutare eventi estremi è definita con il termine di leptocurtosi, mentre nel gergo dei risk-manager è anche nota come il fenomeno di “code spesse” (*fat tails*), a rappresentare una distribuzione con code più alte della distribuzione normale.

Un’altra possibile forma di violazione dell’ipotesi di normalità è legata all’asimmetria della distribuzione. Un caso di questo tipo è stato affrontato per la valutazione di posizioni in titoli il cui pay-off incorpora caratteristiche di non linearietà: è chiaro, infatti, che chi scrive un’opzione fronteggia un rischio molto superiore a chi acquista la stessa opzione.

Una soluzione al problema è la scelta di una distribuzione che meglio descriva il comportamento dei rendimenti. Gli esempi più semplici sono rappresentati dall’utilizzo della distribuzione *t* di Student o della classe delle distribuzioni stabili (Cauchy). Le misture di normali offrono delle buone proprietà: la varianza esiste finita e i primi due momenti bastano a descrivere l’intero processo, ma hanno lo svantaggio di richiedere sforzi notevoli per la stima dei parametri.

Un approccio alternativo mira alla ricerca di un modello econometrico che leggi fra loro le osservazioni, vale a dire un possibile processo generatore dei dati nel quale la conoscenza delle realizzazioni ad un certo istante temporale fornisca indicazioni circa le realizzazioni future. Questa, ovviamente, appare come la situazione più realistica: ogni giorno sul mercato gli operatori conoscono quanto già successo e si creano delle aspettative per quanto accadrà domani.

Cerchiamo quindi di ricostruire il processo di generazione dei dati, modellando in modo opportuno la parte sistematica per estrarre dalla serie ulteriori informazioni utili soprattutto ai fini previsivi.
3.1 NOTAZIONE

Una volta assunto il processo generatore dei dati di tipo stocastico, questo sarà definito sia in termini di funzione di densità che di probabilità, sia, in particolare, dal punto di vista dei valori attesi condizionati e non condizionati.

Se definiamo con P_t il prezzo al tempo t e $r_t = \log(P_t) - \log(P_{t-1})$ il rendimento logaritmico, possiamo indicare la media e la varianza condizionata1 del processo, rispettivamente con:

$$
\mu_t = E(r_t / I_{t-1}), \quad \sigma_t^2 = \text{var}(r_t / I_{t-1}) = E[(r_t - \mu_t)^2 / I_{t-1}]
$$

dove I_{t-1} è l’insieme informativo a disposizione al tempo $t-1$.

Senza perdita di generalità possiamo quindi scrivere il processo r_t in termini dei valori attesi condizionati appena definiti, come:

$$
r_t = \mu_t + a_t, \quad a_t = \sigma_t \varepsilon_t
$$

dove $\{\varepsilon_t\}$ è una sequenza di variabili casuali indipendenti e identicamente distribuite (i.i.d.) con media 0 e varianza 1.

Fissiamo ora momenti non condizionati del processo e i momenti di ordine superiore. Media e varianza sono naturalmente formulate come:

$$
\mu = E[r_t], \quad \sigma^2 = E[r_t - \mu]^2
$$

L’indice di simmetria e di curtosi rispettivamente definiti da:

$$
\xi = \frac{E(r_t - \mu)^3}{\sigma^3}, \quad \zeta = \frac{E(r_t - \mu)^4}{\sigma^4}
$$

1 Diversi autori indicano la varianza condizionata con h_t. In questo caso l’innovazione diventata:

$$
a_t = \sqrt{h_t} \varepsilon_t
$$
3.2 IL PROCESSO WHITE NOISE E RANDOM WALK

L’ipotesi più semplice che si può fare su \(\{ r_t \} \) è che sia un processo così detto white noise o rumore bianco. Numerose verifiche empiriche hanno messo in evidenza che diverse serie finanziarie possiedono, per alcuni aspetti, le caratteristiche di questo modello appartenente alla classe più ampia dei processi stazionari. Una classe che riveste grande importanza dal punto di vista empirico per la sua trattabilità.

Il processo white noise è così definito:

\[r_t = \epsilon_t \sim i.i.d.(0, \sigma^2), \quad t = 1, \ldots, T \]

Dove le variabili casuali \(r_t \), con \(t = 1, \ldots, T \) sono tutte indipendenti e identicamente distribuite con media 0 e varianza \(\sigma^2 \). Sotto le ipotesi di indipendenza e di identica distribuzione, dunque, le variazioni relative di prezzo avrebbero in comune la caratteristica di possedere una media uguale a zero e una varianza costante.

Se la distribuzione comune è quella normale si parla di white noise gaussiano, in questo caso indipendenza equivale ad incorrelazione, che è una proprietà più facile da verificare.

In economia è piuttosto frequente il caso di serie per le quali è ragionevole ipotizzare un processo generatore non stazionario. Limitandosi ai primi due momenti, la non stazionarietà può dipendere dal fatto che la media o la varianza non siano costanti. Nel
prim caso si parla di non stazionarietà in media, e tipicamente accade in presenza di un trend, nel secondo caso si parla di non stazionarietà in varianza.

Consideriamo come esempio un particolare elemento della classe dei processi autoregressivi:

\[p_t = p_{t-1} + \varepsilon_t \]

La formulazione appena data descrive un comportamento chiamato passeggiata casuale (*random walk*) che possiede particolari proprietà. Tra le più rilevanti è opportuno menzionare:

- La varianza di \(p_t \) non è costante nel tempo. Sostituendo nell’espressione del prezzo \(p_t \) l’espressione del prezzo ritardato \(p_{t-1} \) e, proseguendo all’indietro nel tempo fino ad incontrare la condizione iniziale \(p_0 \) otteniamo:

\[
p_t = p_0 + \sum_{\tau=0}^{t-1} \varepsilon_{t-\tau}
\]

è facile verificare che la \(\text{Var}[p_t | I_{t-1}] = t\sigma^2 \) dipende dal tempo e dunque il processo non è stazionario.

- La previsione un passo in avanti di \(p_t \) risulta essere semplicemente \(p_t \) stesso, si può pertanto scrivere:

\[
p_t(1) = E(\text{p}_{t+1} | I_t) = p_t
\]

dove \(E(\text{p}_{t+1} | I_t) \) rappresenta appunto l’aspettativa del prezzo per il tempo \(t+1 \) condizionatamente all’informazione posseduta al tempo \(t \). Questo risultato sembra per certi aspetti sconfortante: la migliore previsione per il prezzo di domani è il prezzo osservato oggi sul mercato. Il prezzo presente contiene tutta l’informazione necessaria a formare l’aspettativa degli operatori ed è un’informazione disponibile a tutti. Questo risultato è coerente con l’ipotesi di mercato efficiente ma non ne costituisce condizione sufficiente. Infatti, l’ipotesi d’efficienza può sussistere anche in presenza di processi diversi dal *random walk*;

- Il processo è detto a radice unitaria (*unit root process*) perché può essere reso stazionario tramite l’operazione di differenza prima. Gli incrementi di prezzo in questo modo risulteranno indipendenti nel tempo gli uni dagli altri e con varianza costante.
3.3 UN MODELLO PER LA MEDIA CONDIZIONATA

Secondo l’approccio moderno non è detto che le variabili casuali che descrivono il processo siano indipendenti e/o identicamente distribuite; modellando in modo opportuno la parte sistematica è possibile estrarre dalla serie ulteriori informazioni utili soprattutto a fini previsivi. In materia fanno da riferimento i processi a Media mobile - MA(q) e i processi AutoRegressivi - AR(p). Tuttavia, prese singolarmente, le forme pure dei processi AR e MA richiedono spesso una specificazione per la media condizionata piuttosto dispendiosa. Una rappresentazione più parsimoniosa può essere ottenuta considerando la classe di processi ARMA - *AutoRegressive Moving Average*.

In questa classe di modelli \(r_t \) dipende linearmente: dalle variabili casuali riferite ai rendimenti passati, da un termine di disturbo corrente e dalle variabili casuali di disturbo riferite a periodi precedenti. Formalmente:

\[
r_t = \mu_t + a_t, \quad \mu_t = \phi_0 + \sum_{i=1}^{p} \phi_i r_{t-i} - \sum_{i=1}^{q} \theta_i a_{t-i}
\]

Processi di questo tipo sono stati proposti da Box e Jenkins (1976) come una classe standard per il trattamento di serie storiche. Ovviamente quando \(p=0 \) si torna ad avere un modello a Media mobile - MA(q) e quando \(q=0 \) si ritorna ad un modello AutoRegressivo - AR(p).

Il modello ARMA racchiude in sé i singoli casi particolari dei processi AR e MA e per questo, ne incorpora anche le principali caratteristiche.

Per la parte autoregressiva la stazionarietà dipende dalle radici dell’equazione caratteristica che, per \(p>1 \) possono anche essere complesse coniate. La stazionarietà è assicurata quando tutte le \(p \) radici dell’equazione caratteristica sono maggiori di uno in modulo o in modo equivalente stanno tutte al di fuori del cerchio di raggio unitario. Questo cerchio è una conveniente rappresentazione dell’insieme dei numeri complessi su un sistema di coordinate cartesiane.

Per quanto riguarda la parte a media mobile, quello che conta è la proprietà d'invertibilità visto che la stazionarietà è assicurata dal fatto che il processo MA(q) può essere visto come un troncamento di un MA(\(\infty \)). Come si si può aspettare, la proprietà d'invertibilità è assicurata quando le \(q \) radici dell’equazione caratteristica giacciono tutte al di fuori del cerchio unitario.
4. CARATTERISTICHE DELLA VOLATILITÀ

La volatilità non è direttamente osservabile, tuttavia sono state riscontrate delle caratteristiche comunemente osservate per le serie dei rendimenti. La classe di modelli a varianza condizionale autoregressiva (Autoregressive Conditional Heteroskedasticity – ARCH) introdotta da Engle nel 1982, si è dimostrata spesso empiricamente adatta ad interpretare gli andamenti della volatilità dei rendimenti.

Prima di cominciare ad analizzare nel dettaglio questa classe di modelli è utile, a questo punto, dare un’occhiata alle proprietà che questi devono soddisfare.

4.1 PERSISTENZA

Per dare una definizione più precisa della persistenza della volatilità, consideriamo il valore atteso della varianza dei rendimenti per k periodi futuri:

$$\sigma^2_{t+k|t} \equiv E_t(r_{t+k} - \mu_{t+k})^2$$

Per non rendere la scrittura troppo pesante, si è indicato con $E_t[u]$ il valore atteso della variabile u condizionata all’informazione al tempo t.

Dalla definizione appena data si può notare come la previsione di volatilità dipenda dall’insieme informativo a disposizione. Shock sulla volatilità passata hanno ripercussioni sulla volatilità futura, il processo è quindi autocorrelato. La conseguenza principale, dal punto di vista statistico, è l’abbandono dell’ipotesi di una distribuzione comune dei rendimenti per individuare un modello in grado di descrivere l’evoluzione temporale della varianza condizionata.

Una misura formale di persistenza $\theta_{t+k|t}$, è stata suggerita da Engle e Patton (2001) come la derivata parziale della previsione della varianza condizionata di k periodi in avanti rispetto al valore assunto dal rendimento al quadrato al tempo t.

19
Formalmente:
\[\theta_{t+k|t} = \frac{\partial \sigma^2_{t+k|t}}{\partial r^2_t} \]

L’*half life* della volatilità invece valuta la velocità con la quale la previsione condizionata converge a quella non condizionata. Essa è definita come il numero di periodi necessari a dimezzare la distanza fra la previsione della varianza condizionata e il suo limite (la varianza non condizionata) rispetto alla previsione un periodo in avanti. In termini analitici si ha la seguente formulazione:

\[\text{half-life} = k : \left| \sigma^2_{t+k|t} - \sigma^2 \right| = \frac{1}{2} \left| \sigma^2_{t+k|t} - \sigma^2 \right| \]

4.2 Ritorno in media della volatilità

La persistenza nella serie dei rendimenti porta ad avvicendare periodi con una volatilità molto elevata a periodi più calmi. Significa che periodi con alta volatilità saranno seguiti da periodi con una volatilità più piccola e allo stesso modo, periodi con bassa volatilità daranno luogo ad incrementi. Questo fenomeno prende il nome di ritorno in media della volatilità (*Mean Reversion in Volatility*) e sta ad indicare che esiste un livello normale al quale la volatilità condizionata farà, prima o poi, ritorno.

Più precisamente il ritorno in media della volatilità implica che l’informazione corrente non ha alcun effetto sulla previsione di lungo periodo, quindi si può scrivere:

\[\text{plim}_{k \to \infty} \theta_{t+k|t} = 0, \text{ per ogni } t \]

in modo abbastanza equivalente:

\[\text{plim}_{k \to \infty} \sigma^2_{t+k|t} = \sigma^2 < \infty \]

Ad indicare che al limite la previsione della varianza condizionata deve convergere alla varianza non condizionata del processo.
Vedremo in seguito che i modelli appartenenti alla classe ARCH riescono a tener conto di questa caratteristica, a patto che siano soddisfatte le ipotesi di stazionarietà sui coefficienti. Sotto queste ipotesi, le previsioni del modello per lunghi periodi convergono alla varianza non condizionata del processo.

4.3 L’IMPATTO ASIMMETRICO DELL’INNOVAZIONE SULLA VOLATILITÀ

Nei mercati azionari è stato spesso osservato che movimenti al ribasso tendono ad essere seguiti da una volatilità maggiore di quella risultante da movimenti al rialzo dello stesso ordine di grandezza. Quest'asimmetria documentata da Black (1976) è nota come effetto leva (leverage effect) o premio al rischio (risk premium) ed è una delle evidenze empiriche osservate per le serie dei rendimenti.

In generale quest'evidenza non è stata riscontrata per i tassi di cambio, mentre un’asimmetria simile è stata evidenziata per i tassi d’interesse. Negli studi proposti da Engle Ng, Rothschild e Chan (1992) quando il tasso cade in corrispondenza di un aumento del prezzo, si nota una diminuzione della volatilità.

Visto che il modello GARCH, utilizzato per la gran parte delle analisi empiriche, non è in grado di riprodurre un effetto asimmetrico, introdurremo una nuova classe di modelli.

La verifica di effetti asimmetrici nel modello GARCH, è condotta con una batteria di test proposti da Engle e Ng nel 1993. Riportiamo di seguito i tre tipi di test, denominati rispettivamente:

- **Sign Bias Test,**
- **Negative Size Bias Test,**
- **Positive Size Bias Test.**

Sign Bias Test: Questo test si basa su una semplice regressione dei residui standardizzati al quadrato \(\{a_t^2/\sigma_t^2\}\), su una costante e su una variabile dummy che assume il valore 1 in corrispondenza di valori negativi dei residui di stima ritardati di un periodo.

\[
\frac{a_t^2}{\sigma_t^2} = b_0 + b_1 D_{t-1}^- + u_t,
\]

\[
D_{t-1}^- = \begin{cases}
1 & \text{se } a_{t-1} < 0 \\
0 & \text{se } a_{t-1} \geq 0
\end{cases}
\]

La logica è quella di vedere se la media dei residui standardizzati al quadrato sia diversa a seconda che i residui precedenti siano positivi o negativi. Dato che il coefficiente della variabile dummy misura una possibile differenza nella media, la statistica test si riferisce alla significatività dello stesso coefficiente. In particolare l’effetto leverage si manifesta quando questo è positivo.

Negative Size Bias Test: In questo test la volatilità è influenzata non solo dal segno di \(a_{t-1}\), ma anche dalla sua dimensione. Il test si basa sulla regressione:

\[
\frac{a_t^2}{\sigma_t^2} = b_0 + c_1 D_{t-1}^- a_{t-1} + u_t.
\]

Per il test si utilizza la statistica t sul singolo coefficiente \(c_1\). Rispetto al Size Bias Test controlleremo che il coefficiente determini un aumento della volatilità, ma proporzionale al suo valore. Sotto l’ipotesi di un effetto leverage \(c_1\) è negativo, dato che dev'essere \(c_1 a_{t-1}\) positivo.
Positive Size Bias Test: Il test è analogo al precedente con un segno positivo anziché negativo.

\[
\frac{a_t^2}{\sigma_t^2} = b_0 + d_1 D_{t-1}^+ a_{t-1} + u_t, \quad D_{t-1}^+ = 1 - D_{t-1}^-.
\]

In tal caso \(d_1\) misura l’effetto differenziale relativo alle innovazioni positive. L’effetto leverage si manifesta quando questo è statisticamente negativo perché porta ad una riduzione della volatilità.

È possibile sottoporre congiuntamente a test le tre ipotesi viste finora. Il test congiunto si basa sulla seguente regressione:

\[
\frac{a_t^2}{\sigma_t^2} = b_0 + b_1 D_{t-1}^- + c_1 D_{t-1}^- a_{t-1} + d_1 D_{t-1}^+ a_{t-1} + u_t.
\]

In questo caso l’ipotesi nulla di effetto leverage è: \(H_0: b_1 = c_1 = d_1 = 0\)
Ovvero, non ci sono effetti differenziali di nessun tipo, né sulla media né sui coefficienti. L’ipotesi nulla può essere verificata con un test F sulla regressione.

4.4 LE VARIABILI ESOGENE

Una possibile spiegazione all’insorgere e alla persistenza della volatilità è che i prezzi si muovano sulla base delle reazioni degli agenti economici ai flussi di informazione. Le informazioni di dominio pubblico a livello macroeconomico hanno quindi un certo grado d’impatto sulle persone: come i dati sull’offerta di moneta, la produzione industriale, l’inflazione, e la disoccupazione. Questa spiegazione sarebbe in accordo con l’ipotesi d’efficienza dei mercati in quanto manterrebbe la capacità degli operatori di assorbire le notizie via via che esse giungono.

Fino ad ora si è ipotizzato che la volatilità della serie dipenda unicamente dalla sua storia passata. Nessuno però crederebbe che il prezzo dei beni finanziari si evolva in modo indipendente dal mercato, così ci aspettiamo che altre variabili possano contenere informazioni rilevanti per la volatilità.

l’inserimento di variabili dummy per i giorni d’annuncio mostra la significativa differenza d’impatto rispetto ai giorni di non annuncio.

4.5 LEPTOCURTOSI

Ci siamo già occupati in precedenza del problema della distribuzione dei rendimenti che non sembrano avere una distribuzione normale. La relazione tra la densità condizionata e la densità non condizionata dei rendimenti può aiutarci a capire, almeno in parte, la presenza di code pesanti nei rendimenti e quindi la presenza, in termini di probabilità, di numerosi valori estremi. Se la densità condizionata si distribuisce normalmente, la densità non condizionata dei rendimenti sarà caratterizzata da un eccesso di curtosi dovuta ad una mistura di Normali con differenti volatilità. Tuttavia, non c’è nessuna ragione particolare per assumere che il processo generatore della serie sia di tipo Gaussiano, molti modelli di volatilità assumono una distribuzione condizionata dei rendimenti con delle code pesanti che generano a loro volta una curtosi maggiore nella distribuzione non condizionata.

La rappresentazione grafica mediante istogramma fornisce una prima indicazione grezza sulla forma della distribuzione di probabilità che ha generato i rendimenti. Consente quindi di valutare le caratteristiche della distribuzione: simmetria-asimmetria, curtosi, nonché di effettuare un primo confronto grafico con la distribuzione normale per giudicarne la similitudine o la dissimilarità.

In generale per le serie storiche finanziarie la media aritmetica costituisce una buona stima del valore atteso\(^2\). La mediana, invece è una misura di tendenza centrale con caratteristiche di maggior robustezza, perché meno sensibile alla presenza di rendimenti anomali rispetto alla media aritmetica.

Un’indicazione della dispersione della distribuzione dei rendimenti attorno al valor medio è dato dal calcolo della deviazione standard dei rendimenti.

L’indice di simmetria è pari a zero se la distribuzione è simmetrica, come nel caso della Normale. Una distribuzione leptocurtica, con indice di curtosi maggiore di 3, risulta essere più appuntita della Normale e con code più pesanti, parliamo invece di distribuzione paticurtica se risulta essere più appiattita della Normale.

\(^{2}\) La media costituisce una buona stima del valore atteso se il processo stocastico sottostante presenta determinate proprietà di ergodicità. Questi requisiti sono di norma soddisfatti dalle serie storiche finanziarie.
Molte procedure per la verifica dell’ipotesi di normalità si basano sulle caratteristiche di asimmetria e curtosi della distribuzione osservata. In particolare la statistica test Jarque-Bera, utilizzata nell’analisi empirica, si basa sul calcolo della differenza fra gli indici di simmetria e curtosi della serie osservata rispetto ai valori che si hanno per una distribuzione Gaussiana:

\[JB = (K^*)^2 + (S^*)^2 \rightarrow \chi^2_2 \]

S* e K* sono i rispettivi test per la verifica di asimmetria e di curtosi, qui di seguito riportati:

\[S^* = \frac{\hat{S}}{\sqrt{6/T}} \rightarrow N(0,1) \quad \quad \quad \quad K^* = \frac{\hat{K} - 3}{\sqrt{24/T}} \rightarrow N(0,1) \]

Sotto l’ipotesi di normalità la statistica test JB si dimostra essere asintoticamente distribuita come una variabile casuale \(\chi^2 \) con 2 gradi di libertà. Se il valore osservato supera il valore teorico corrispondente ad un livello di significatività dato, allora l’ipotesi di normalità è rifiutata.

La classe dei modelli GARCH che andremo ad utilizzare rappresentano una distribuzione leptocurtica con code pesanti sotto la condizione di esistenza del momento quarto.
5. MODELLI PER LA VOLATILITÀ

Se si accetta l’idea che i prezzi siano governati da un modello econometrico, allora è possibile utilizzare il prezzo per ottenere una volatilità implicita. Un approccio che ha avuto molta fortuna negli ultimi anni, in particolare per quanto riguarda le applicazioni ai mercati finanziari, e che consente di tener conto di deviazioni dall’ipotesi di normalità dei rendimenti, è rappresentato dai modelli ARCH, acronimo che indica modelli a volatilità variabile nel tempo (Auto-Regressive Conditional Heteroskedasticity). Si ricorda che in econometria il concetto di eteroschedasticità indica che la varianza non è costante tra le diverse osservazioni del campione, mentre il termine auto-regressivo rappresenta la dipendenza di una variabile dai valori passati. L’idea che sta alla base dello studio della volatilità, è che la serie dei rendimenti \(\{r_t\} \) sia serialmente incorrelata ma non indipendente. Si cerca quindi di modellare questa dipendenza per poterne ricavare dell’informazione.

La volatilità implicita è stimata sotto l’ipotesi di distribuzione log-normale della serie dei rendimenti e l’esperienza empirica mostra che la volatilità dei rendimenti tende ad essere più grande di quella stimata utilizzando modelli per la volatilità GARCH.

Per semplicità introducendo i modelli per la volatilità assumeremo dato il modello per la media condizionata. Questo perché nello studio empirico stimeremo il modello per la volatilità e il modello per la media condizionata congiuntamente.

5.1 Modello ARCH - AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY

Consideriamo il seguente modello per i rendimenti:

\[
r_t = \mu_t + a_t,
\]

\(\mu_t \) rappresenta l’equazione data per la media condizionata dei rendimenti, \(a_t \) rappresentano gli shock o l’innovazione.

Secondo Engle, le innovazioni seguono un processo del tipo:

\[
a_t = \sigma_t \epsilon_t,
\]

dove \(\sigma_t \) è la varianza condizionata e \(\epsilon_t \), condizionatamente all’insieme informativo al tempo \(t-1 \), si distribuisce come una variabile casuale normale standardizzata. Questo
implica che \(a_n \), sempre in termini condizionati, sia distribuita come una variabile casuale normale di media 0 e varianza \(\sigma_t^2 \).

Engle (1982) suggerisce che l’andamento della varianza condizionata del processo di generazione dei dati sia di tipo autoregressivo. Nel suo lavoro propone quindi il modello ARCH(m), che risulta essere così specificato:

\[
\sigma_t^2 = \text{var}(a_t / I_{t-1}) = \alpha_0 + \alpha_1 a_{t-1}^2 + \ldots + \alpha_m a_{t-m}^2,
\]

La varianza condizionata al tempo \(t \) è espressa come somma di una costante e del quadrato delle innovazioni passate. Di conseguenza forti shock tendono ad essere seguiti da altre variazioni della volatilità riproducendo il fenomeno osservato di volatility clustering. Il coefficiente \(\alpha_0 \) deve essere strettamente positivo, per la necessaria positività della varianza e i coefficienti \(\alpha_i \) con \(i = 1, \ldots, m \); devono soddisfare dei vincoli per garantire che la varianza non condizionata esista finita. Ad ogni modo, questi coefficienti non possono assumere valori negativi perché darebbero luogo ad una varianza negativa.

In virtù del fatto che la varianza è variabile nel tempo, i rendimenti risultano essere realizzazioni di distribuzioni dalle caratteristiche diverse e, in quanto tali, la loro distribuzione non condizionata mostra le caratteristiche di leptocurtosi osservate empiricamente.

Questa classe di modelli tuttavia, non è stata risparmiata da alcune critiche:

- Il modello è privo di effetti asimmetrici e reagisce in modo analogo a shock positivi e negativi della stessa entità;
- Questo tipo di specificazione presenta delle restrizioni troppo forti. È possibile verificare per esempio, che il coefficiente \(\alpha_i^2 \) di un modello ARCH(1) deve appartenere all’intervallo \([0,1/3]\) affinché il momento quarto esista finito. Queste restrizioni diventano più complesse all’aumentare dell’ordine del modello;
- Il modello fornisce solo un meccanismo per descrivere il comportamento della varianza condizionata senza dare nessuna indicazione circa le cause che la generano.

5.2 GENERALIZED ARCH-GARCH

La rappresentazione della varianza condizionata appena descritta richiede spesso una specificazione dispendiosa. Il modello ARCH generalizzato, *Generalized Autoregressive

L’idea è quella di introdurre una nuova componente autoregressiva ottenendo in questo modo la seguente formulazione:

\[a_t = \sigma_t \varepsilon_t \]

\[\sigma_t^2 = \alpha_0 + \sum_{i=1}^{m} \alpha_i a_{t-i}^2 + \sum_{j=1}^{s} \beta_j \sigma_{t-j}^2, \]

La varianza condizionata al tempo \(t\) è una combinazione lineare di \(m\) ritardi dei residui al quarto, (ricavati dall’equazione della media condizionata) e di \(s\) ritardi della varianza condizionata.

\(\{\varepsilon_t\}\) è una sequenza di variabili casuali i.i.d.(0,1), eventualmente distribuiti normalmente. Condizione sufficiente per avere una varianza positiva è la non negatività di tutti i parametri \(\alpha_0, \alpha_i\) e \(\beta_j\). Mentre perché la varianza non condizionata esista finita, per \(\alpha_0\) deve valere il vincolo più forte di non negatività stretta.

La stazionarietà dei rendimenti è assicurata se vale il seguente vincolo:

\[\sum_{i=1}^{\max(m,s)} (\alpha_i + \beta_i) < 1. \]

L’introduzione della parte autoregressiva rispetto al modello precedente conduce tipicamente ad una specificazione meno ricca della volatilità, cosicché nella pratica, la struttura parametrica di gran lunga più utilizzata è quella GARCH(1,1), sulla quale ci concentreremo d’ora in avanti.

\[a_t = \sigma_t \varepsilon_t \]

\[\sigma_t^2 = \alpha_0 + \alpha_i a_{t-1}^2 + \beta_i \sigma_{t-1}^2, \]

\[\alpha_0 > 0, \alpha_i \geq 0, \beta_1 \geq 0, \alpha_1 + \beta_1 < 1. \]

Per verificare come il GARCH(1,1) sia una rappresentazione parsimoniosa del modello ARCH è sufficiente osservare che la più semplice rappresentazione GARCH corrisponde ad un particolare struttura ARCH(\(\infty\)). Sostituendo iterativamente l’equazione della varianza al tempo \(t - i - 1\) in quella del tempo \(t - i\) otteniamo:
Abbiamo così mostrato come un GARCH(1,1) corrisponde ad un modello ARCH con un numero infinito di ritardi che diminuiscono esponenzialmente. A questo punto è chiaro che l’idea principale nella specificazione GARCH è quella di modellare la distribuzione condizionata di probabilità dei rendimenti sulla base dell’informazione disponibile al tempo t.

Se rappresentiamo tale distribuzione attraverso i momenti, è immediato notare che la loro esistenza è verificata soltanto sotto alcune restrizioni imposte ai parametri del modello.

L’esempio più semplice è dato dal momento secondo. Infatti, se la varianza σ^2 esiste, verifichiamo direttamente che deve essere:

$$E(a_t^2) = \sigma^2 = \alpha_0 \sum_{i=1}^{\infty} \beta_i + \alpha_1 \sum_{i=1}^{\infty} \beta_i' E(a_{t-i}^2) = \alpha_0 \sum_{i=1}^{\infty} \beta_i + \alpha_1 \sum_{i=1}^{\infty} \beta_i' \sigma^2$$

e sotto l’ipotesi $\beta_1 < 1$, otteniamo:

$$\sigma^2 = \frac{\alpha_0}{1 - \beta_1 - \alpha_1}$$

Deve quindi essere verificata la condizione $\beta_1 + \alpha_1 < 1$ affinché la varianza non condizionata sia ben definita. In questo caso si dice che il processo stocastico dei rendimenti è stazionario in varianza.

Per quanto riguarda il momento quarto della distribuzione non condizionata facciamo riferimento al lavoro di Bollerslev (1986) che definisce la curtosi nel modo seguente:

$$E(a_t^4) = \frac{3\alpha_0^2 (1 + \alpha_1 + \beta_1)}{(1 - \alpha_1 - \beta_1)(1 - \beta_1^2 - 2\alpha_1 \beta_1 - 3\alpha_1^2)}$$

Si può notare che l’esistenza del momento quarto richiede due condizioni: la prima è la stessa richiesta per l’esistenza del momento secondo $\beta_1 + \alpha_1 < 1$ mentre la seconda è $\beta_1^2 + 2\alpha_1 \beta_1 + 3\alpha_1^2 < 1$.

\footnote{una delle restrizioni sui parametri vedremo essere $0 \leq \beta_1 < 1$.}
Se le due ipotesi sono soddisfatte il processo presenterà una curtosi positiva. Una misura d'eccesso di curtosi rispetto alla distribuzione normale è calcolata come:

\[
\frac{E(a_i^4)}{\text{var}(a_i)^2} - 3 = \frac{3(1-(\alpha_i+\beta_i)^2)}{1-\beta_i^2 - 2\alpha_i\beta_i - 3\alpha_i^2} - 3 = \frac{6\alpha_i^2}{1-\beta_i^2 - 2\alpha_i\beta_i - 3\alpha_i^2}
\]

Il modello GARCH (1,1) rappresenta allora una distribuzione leptocurtica con "code grasse" che rispecchia le caratteristiche empiriche evidenziate per le serie dei rendimenti.

Per quanto riguarda le previsioni della varianza condizionata, se \(h \) è l’ultimo periodo osservato possiamo scrivere la previsione un passo in avanti come:

\[
\sigma_{h+1}^2 = \alpha_0 + \alpha_1 a_h^2 + \beta_1 \sigma_h^2
\]

Essendo \(a_h^2 \) e \(\sigma_h^2 \) note al tempo \(h \). L’espressione può essere riscritta nel seguente modo:

\[
\sigma_{h}^2(1) = \alpha_0 + \alpha_1 a_h^2 + \beta_1 \sigma_h^2
\]

Per più passi in avanti, conviene riscrivere la previsione un passo in avanti, sfruttando l’uguaglianza \(a_h^2 = \sigma_h^2 e_h^2 \), otteniamo in questo modo la seguente espressione:

\[
\sigma_{h+1}^2 = \alpha_0 + (\alpha_1+\beta_1)\sigma_h^2 + \alpha_1 \sigma_h^2(e_h^2-1)
\]

Quando \(h = t + 1 \), l’equazione diventa:

\[
\sigma_{t+2}^2 = \alpha_0 + (\alpha_1+\beta_1)\sigma_{t+1}^2 + \alpha_1 \sigma_{t+1}^2(e_{t+1}^2-1)
\]

Poiché \(E(e_{t+1}^2 - 1 / I_t) = 0 \), la previsione di volatilità per due passi in avanti è così riscritta:

\[
\sigma_{h}^2(2) = \alpha_0 + (\alpha_1+\beta_1)\sigma_{h}^2(1)
\]

Più in generale vale:

\[
\sigma_{h}^2(l) = \alpha_0 + (\alpha_1+\beta_1)\sigma_{h}^2(l-1), \quad \text{Per } l > 1.
\]

Se consideriamo previsioni della volatilità per orizzonti molto lunghi, la varianza condizionata converge alla varianza non condizionata del processo:

\[
\sigma_{h}^2(l) \rightarrow \frac{\alpha_0}{1-(\alpha_1+\beta_1)}, \quad \text{per } l \rightarrow \infty
\]

Questo concorda con il ritorno in media della volatilità osservato per la serie dei rendimenti. Esiste un livello normale di volatilità al quale la varianza condizionata farà ritorno. Periodi con volatilità alta saranno seguiti da periodi con una volatilità più bassa e allo stesso modo, periodi con bassa volatilità saranno seguiti da incrementi.
6. MODELLI ASIMMETRICI

6.1 THRESHOLD GARCH - TGARCH

Il modello TGARCH proposto da Gloste, Jagannathan e Runkle nel 1993; e da Zakoïan nel 1994, introduce un diverso comportamento in corrispondenza dell’attraversamento da parte dell’innovazione ritardata di una soglia (threshold), di solito posta a zero. Il modello può essere formalizzato nel modo seguente:

\[a_t = \sigma_t \varepsilon_t, \]

\[\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \gamma D_{t-1} a_{t-1}^2 + \beta_1 \sigma_{t-1}^2, \]

dove

\[D_{t-1} = \begin{cases} 1 & \text{se } a_{t-1} < 0 \\ 0 & \text{se } a_{t-1} \geq 0 \end{cases} \]

In questo modo, l’impatto delle “buone” notizie sarà determinato dal solo coefficiente \(\alpha_1 \), mentre l’impatto degli shock negativi sarà misurato come somma di \(\alpha_1 + \gamma \). Il coefficiente \(\gamma \) misura l’effetto differenziato per gli shock negativi: il segno atteso di \(\gamma \) è positivo, con la conseguenza che la volatilità è più elevata in corrispondenza d’innovazioni negative e lo
sarà tanto di più quanto maggiore sarà la dimensione dell’innovazione. In definitiva se γ≠0 l’impatto delle notizie è asimmetrico, se γ>0, possiamo affermare che esiste un effetto leverage.

6.2 EXPONENTIAL GARCH - EGARCH

La specificazione di questo modello, proposta da Nelson nel 1991, è nata in seguito alla derivazione di procedure di stima che hanno imposto la positività dei parametri. Le principali caratteristiche di questo tipo di rappresentazione sono:

- L’impossibilità di ottenere una varianza negativa, senza bisogno di imporre alcuna restrizione ai parametri;
- La presenza di asimmetria per quanto riguarda la reazione della volatilità a shock positivi o negativi;
- La possibilità di misurare un effetto asimmetrico proporzionale all’entità delle innovazioni.

A differenza del modello TGARCH, nel quale è inserito una variabile dummy, il modello di Nelson è specificato in termini del logaritmo della varianza condizionata e la trasformazione esponenziale assicura la non negatività della varianza:

\[
\log(\sigma_t^2) = \alpha_0^* + \beta_1 \log(\sigma_{t-1}^2) + \alpha_1 \left(\frac{a_{t-1}}{\sigma_{t-1}} \right) + \gamma \frac{a_{t-1}}{\sigma_{t-1}}
\]

con

\[
\alpha_0^* = \alpha_0 - \alpha_1 \sqrt{\frac{2}{\pi}}
\]

Dato che l’espressione ha un termine autoregressivo, il coefficiente \(\beta_1\) cattura l’effetto di persistenza della volatilità, la stazionarità è assicurata dalla condizione 0<\(\beta_1<1\) e la sua dimensione determinerà quanto rapido sia l’assorbimento degli shock passati.

Il secondo termine dell’espressione è una variabile casuale a media zero, nel caso in cui le innovazioni standardizzate siano distribuite normalmente, che consente di tener conto della possibilità di una reazione asimmetrica proporzionale alle innovazioni. L’effetto
misurato dal termine espresso in valore assoluto è evidentemente indipendente dal fatto che gli shock siano positivi o negativi.

L’effetto asimmetrico viene colto dall’ultimo elemento dell’espressione, questo tipo di specificazione è molto raffinata in quanto a_{t-1} può assumere qualunque segno e la trasformazione esponenziale mantiene comunque la varianza positiva.

Il segno atteso per γ sarà negativo, in quanto ci aspettiamo un effetto amplificativo sulla volatilità nel caso di innovazioni negative ed un impatto ridotto sulla volatilità nel caso di innovazioni positive.

Supponendo $\gamma<0$, se lo shock a_{t-1} è positivo, esso avrà un impatto complessivo pari a $\alpha_1-\gamma<\alpha_1$, mentre se lo shock è negativo a_{t-1} avrà un effetto pari a $\alpha_1+\gamma>\alpha_1$, ovvero un effetto amplificativo. Per sottoporre a verifica la presenza d'asimmetria, è sufficiente valutare la significatività di γ con un test del tipo t.
7. LA FUNZIONE D’IMPATTO DELLE NOTIZIE

La News Impact Curve (NIC) suggerita da Engle (1993) misura la reazione della volatilità a realizzazione delle innovazioni. Le notizie che arrivano sui mercati provocano una reazione da parte degli operatori e statisticamente si traducono in realizzazioni di variabili casuali che determinano il processo del prezzo. Valutando la reattività siamo in grado di rappresentare graficamente il modo in cui queste innovazioni si traducono in volatilità. Ciò che va messo in risalto è che, a parte la presenza d'asimmetria, gli shock hanno un impatto quadratico nel modello GARCH ed esponenziale nel modello EGARCH. Quindi, per shock di più elevata dimensione, la risposta EGARCH è più sensibile alla risposta TGARCH, in quanto la funzione esponenziale domina la parabola quadratica.
8. ESEMPI EMPIRICI

8.1 IL TEST SULLA RADICE UNITARIA

Riportiamo di seguito la serie dei prezzi dell’indice Mib30:

![Figura 8.1.1 Serie dei prezzi dell'indice Mib30](image-url)
Come si può facilmente osservare dalla figura 8.1.1 il processo non fluttua attorno ad un valore costante, la media del processo varia in funzione del tempo e la funzione di autocorrelazione ha una memoria molto lunga. Il processo non può dirsi stazionario. Alla stessa conclusione arriviamo sottoponendo la serie al test di radice unitaria, riportata in tabella 8.1.3, che accetta l’ipotesi nulla per opportuni livelli di significatività.

Il test Dickey-Fuller prende il nome dai ricercatori che l’hanno proposto per la prima volta. Si tratta di saggire la presenza di una radice unitaria nella serie dei prezzi.

Per verificare che il processo generatore dei dati sia effettivamente un random-walk, si potrebbe essere tentati di stimare la seguente relazione:

\[p_t = \phi p_{t-1} + a_t \]

e sottoporre a test il seguente sistema di ipotesi:

\[
\begin{cases}
H_0 : \phi = 1 \\
H_1 : \phi < 1
\end{cases}
\]

La statistica test è il rapporto (\(t\)-ratio) definito da:

\[\tau = \frac{\hat{\phi} - 1}{s.e.r.r.(\hat{\phi})} \]
Il fatto che la varianza di p_t dipenda dal tempo t e che diverga, ha delle implicazioni negative nella stima del parametro e di conseguenza nel testare l’ipotesi nulla. Nel caso in questione, infatti, lo stimatore del coefficiente Φ presenta alcune anomalie.

La prima irregolarità, dal punto di vista inferenziale è che lo stimatore dei minimi quadrati di Φ, ha una distribuzione non simmetrica e un valore atteso che è minore di 1, solo per $T \to \infty$ lo stimatore coincide con il vero valore del parametro pari a uno.

In secondo luogo, sotto l’ipotesi nulla, il rapporto t (t-ratio) non è distribuito come una variabile casuale t di Student, ma ha una distribuzione asimmetrica (con skewness negativo). Si sono pertanto derivati dei percentili notevoli: se il t-ratio calcolato nella regressione risulta inferiore a uno dei valori critici simulati, l’ipotesi nulla di radice unitaria viene rifiutata al livello di significatività corrispondente.

Tabella 8.1.3 Test Dickey-Fuller per la serie dei prezzi

<table>
<thead>
<tr>
<th>Null Hypothesis: P_MIB30 has a unit root</th>
<th>Exogenous: Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lag Length: 0 (Automatic based on SIC, MAXLAG=26)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t-Statistic</th>
<th>Prob.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmented Dickey-Fuller test statistic</td>
<td>-1.578940</td>
</tr>
<tr>
<td>Test critical values:</td>
<td></td>
</tr>
<tr>
<td>1% level</td>
<td>-3.433015</td>
</tr>
<tr>
<td>5% level</td>
<td>-2.862603</td>
</tr>
<tr>
<td>10% level</td>
<td>-2.567382</td>
</tr>
</tbody>
</table>

Per i valori critici il test accetta l’ipotesi nulla di presenza di radice unitaria nella serie dei prezzi.

Consideriamo ora la serie dei rendimenti logaritmici:

La figura 8.1.4 traccia il livello dei rendimenti dell’indice per tutta la durata del periodo considerato. Per opportuni livelli di significatività il test Dickey-Fuller sembra ora rifiutare al presenza di radici unitarie nella serie dei rendimenti.

Tabella 8.1.5 Test Dickey-Fuller per la serie dei rendimenti

<table>
<thead>
<tr>
<th>Null Hypothesis: R has a unit root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous: Constant</td>
</tr>
<tr>
<td>Lag Length: 0 (Automatic based on SIC, MAXLAG=26)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Augmented Dickey-Fuller test statistic</th>
<th>t-Statistic</th>
<th>Prob.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test critical values:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% level</td>
<td>-3.433016</td>
<td>0.0001</td>
</tr>
<tr>
<td>5% level</td>
<td>-2.862604</td>
<td></td>
</tr>
<tr>
<td>10% level</td>
<td>-2.567382</td>
<td></td>
</tr>
</tbody>
</table>

8.2 **DISTRIBUTUZIONE EMPIRICA**

La rappresentazione grafica mediante istogramma della distribuzione di frequenza dei rendimenti fornisce una prima indicazione sulla forma di distribuzione che ha generato i dati. Un sommario dei principali indici di posizione è riportato in figura 8.2.1

![Figura 8.2.1 Istogramma dei rendimenti](image)

La media non è significativamente diversa da zero, come evidenzia il test che accetta l’ipotesi nulla.

Tabella 8.2.2 Test sulla media

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-statistic</td>
<td>0.810929</td>
<td>0.4175</td>
</tr>
</tbody>
</table>

Possiamo pertanto affermare che il valore atteso del rendimento è zero in accordo con l’ipotesi d’efficienza dei mercati.

Gli altri indici sono significativi ed evidenziano le caratteristiche di asimmetria e curtosi già riscontrate nell’approccio teorico. La distribuzione normale non sembra appropriata a rappresentare l’aleatorietà dei rendimenti. La distribuzione appare, infatti, con una coda leggermente più lunga a sinistra, indice di una lieve asimmetria negativa. Questo vuol dire...
che la distribuzione avrà un valore medio più basso del suo valore modale. L’indice di curtosi, 6.7643, è molto alto e da un’idea della pesantezza delle code. L’ipotesi di normalità risulta violata anche dal test di Jarque-Bera, che rifiuta l’ipotesi nulla di distribuzione normale dei rendimenti a qualsiasi livello di significatività. Un ulteriore strumento per verificare la compatibilità dei dati con una distribuzione di tipo normale è il grafico quantile-quantile (Q-Q plot). Lo scostamento dei dati dalla bisettrice, soprattutto nelle code, conferma la deviazione dall’ipotesi di normalità.

Un’analisi del correlogramma dei rendimenti in figura 8.2.4 indica una debole dipendenza in media della serie. Il correlogramma dei rendimenti al quadrato, tuttavia indica una sostanziale dipendenza in volatilità dei rendimenti.

![Q-Q plot dei rendimenti](image)

Tabella 8.2.4 Correlogramma dei rendimenti

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.004</td>
<td>0.004</td>
<td>0.0363</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.012</td>
<td>0.012</td>
<td>0.0598</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.014</td>
<td>-0.014</td>
<td>0.8020</td>
<td>0.849</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.071</td>
<td>0.071</td>
<td>12.458</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-0.053</td>
<td>-0.054</td>
<td>18.904</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.010</td>
<td>0.009</td>
<td>19.119</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.019</td>
<td>-0.016</td>
<td>19.923</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.006</td>
<td>-0.001</td>
<td>19.994</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.005</td>
<td>0.013</td>
<td>20.049</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.014</td>
<td>0.010</td>
<td>20.523</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.000</td>
<td>0.003</td>
<td>20.524</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-0.021</td>
<td>-0.023</td>
<td>21.530</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-0.022</td>
<td>-0.022</td>
<td>22.602</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.062</td>
<td>0.063</td>
<td>31.535</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.050</td>
<td>0.051</td>
<td>37.335</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-0.029</td>
<td>-0.029</td>
<td>39.340</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>
8.3 IL MODELLO PER LA MEDIA

Visto che, per ritardi superiori al quarto, il correlogramma dei rendimenti evidenzia una debole dipendenza. Costruiamo un modello parsimonioso, in grado di descrivere la struttura di dipendenza dei dati. La classe di modelli ARMA, eventualmente dopo opportune trasformazioni preliminari dei dati, è in grado di fornire questa descrizione per molte serie osservate.

Servendoci dei criteri di Akaike e Schwarz per riconoscere la forma del processo arriviamo alla formulazione qui di seguito riportata.

Tabella 8.3.1 Modello per la media condizionata

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>-0.547887</td>
<td>0.211528</td>
<td>-2.590133</td>
<td>0.0097</td>
</tr>
<tr>
<td>MA(1)</td>
<td>0.548904</td>
<td>0.208024</td>
<td>2.638658</td>
<td>0.0084</td>
</tr>
<tr>
<td>MA(4)</td>
<td>0.075352</td>
<td>0.026645</td>
<td>2.827968</td>
<td>0.0047</td>
</tr>
</tbody>
</table>

Tabella 8.2.5 Correlogramma dei rendimenti al quadrato

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.138</td>
<td>0.138</td>
<td>43.467</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.179</td>
<td>0.163</td>
<td>116.965</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.196</td>
<td>0.150</td>
<td>205.111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.197</td>
<td>0.141</td>
<td>294.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.258</td>
<td>0.191</td>
<td>446.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.120</td>
<td>0.019</td>
<td>479.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.131</td>
<td>0.020</td>
<td>516.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.119</td>
<td>0.006</td>
<td>550.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.121</td>
<td>0.016</td>
<td>564.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.113</td>
<td>0.012</td>
<td>613.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>0.106</td>
<td>0.034</td>
<td>640.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.140</td>
<td>0.056</td>
<td>685.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>0.127</td>
<td>0.055</td>
<td>722.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>0.092</td>
<td>0.006</td>
<td>742.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0.093</td>
<td>0.004</td>
<td>762.39</td>
</tr>
</tbody>
</table>

I coefficienti sono significativi, ma vedremo in seguito, che una volta specificato il modello per la volatilità, il modello per la media condizionata sarà ridotto ad un’ARMA(1,1).
È possibile valutare la bontà del modello considerando la serie dei residui. Le rispettive funzioni di autocorrelazione parziale e totale ci confermano che il processo è incorrelato ma non indipendente.
L’ipotesi che ci sia ancora qualcosa da modellare è confermata anche dal test ARCH in tabella 8.3.3, che evidenzia una dipendenza lineare nei quadrati dei residui. I coefficienti della regressione sono tutti significativi fino al quinto ritardo, questo vuol dire che i residui non sono indipendenti ed è possibile estrarre nuove informazioni dalla serie, modellando in modo opportuno la parte stocastica.

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.137 0.137</td>
<td>42.889</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 0.178 0.162</td>
<td>115.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 0.194 0.159</td>
<td>201.53 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 0.196 0.140</td>
<td>288.42 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 0.262 0.196</td>
<td>445.22 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 0.120 0.021</td>
<td>478.35 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 0.131 0.030</td>
<td>517.98 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 0.119 0.036</td>
<td>550.41 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 0.120 0.014</td>
<td>563.27 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0.115 0.012</td>
<td>513.55 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 0.109 0.025</td>
<td>564.08 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 0.140 0.069</td>
<td>886.34 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 0.129 0.067</td>
<td>724.60 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 0.093 0.038</td>
<td>744.58 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 0.093 0.033</td>
<td>764.48 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 0.123 0.036</td>
<td>799.59 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabella 8.3.3 ARCH test sui residui

<table>
<thead>
<tr>
<th>ARCH Test:</th>
<th>F-statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>49.48820</td>
<td>0.000000</td>
</tr>
<tr>
<td>Obs*R-squared</td>
<td>263.4178</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Equation:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable: RESID^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method: Least Squares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Heteroskedasticity-Consistent Standard Errors & Covariance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>9.62E-05</td>
<td>1.35E-05</td>
<td>7.106165</td>
<td>0.000</td>
</tr>
<tr>
<td>RESID^2(-1)</td>
<td>0.037749</td>
<td>0.032709</td>
<td>1.154074</td>
<td>0.248</td>
</tr>
<tr>
<td>RESID^2(-2)</td>
<td>0.102215</td>
<td>0.047117</td>
<td>2.169362</td>
<td>0.030</td>
</tr>
<tr>
<td>RESID^2(-3)</td>
<td>0.131237</td>
<td>0.031077</td>
<td>4.222951</td>
<td>0.000</td>
</tr>
<tr>
<td>RESID^2(-4)</td>
<td>0.101131</td>
<td>0.030499</td>
<td>3.315833</td>
<td>0.009</td>
</tr>
<tr>
<td>RESID^2(-5)</td>
<td>0.178051</td>
<td>0.062797</td>
<td>2.835535</td>
<td>0.046</td>
</tr>
<tr>
<td>RESID^2(-6)</td>
<td>0.027223</td>
<td>0.028419</td>
<td>0.957928</td>
<td>0.338</td>
</tr>
</tbody>
</table>

R-squared	0.115585	Mean dependent var	0.000228
Adjusted R-squared	0.113249	S.D. dependent var	0.000535
S.E. of regression	0.000504	Akaike info criterion	-12.34641
Sum squared resid	0.000576	Schwarz criterion	-12.32881
Log likelihood	14075.74	F-statistic	49.48820
Durbin-Watson stat	2.000970	Prob(F-statistic)	0.000000

8.4 UN MODELLO PER LA VOLATILITÀ

Per scegliere la specificazione da adottare, facciamo riferimento al test ARCH, precedentemente svolto sui residui del modello per la media condizionata. Stimiamo quindi un modello ARCH(5) per la volatilità, riportato in tabella 8.4.1.

Tabella 8.4.1 ARMA(1,1)-ARCH(5)

<table>
<thead>
<tr>
<th>Method: ML - ARCH (Marquardt)</th>
<th>Bollerslev-Wooldrige robust standard errors & covariance</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>-0.547887</td>
<td>0.211528</td>
<td>-2.590133</td>
<td>0.0097</td>
<td></td>
</tr>
<tr>
<td>MA(1)</td>
<td>0.548904</td>
<td>0.208024</td>
<td>2.638658</td>
<td>0.0084</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variance Equation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>6.77E-05</td>
<td>7.63E-06</td>
</tr>
<tr>
<td>ARCH(1)</td>
<td>0.101046</td>
<td>0.035058</td>
</tr>
<tr>
<td>ARCH(2)</td>
<td>0.186243</td>
<td>0.033104</td>
</tr>
<tr>
<td>ARCH(3)</td>
<td>0.177723</td>
<td>0.044020</td>
</tr>
<tr>
<td>ARCH(4)</td>
<td>0.161934</td>
<td>0.045986</td>
</tr>
</tbody>
</table>
Tutti i coefficienti sono significativi e l’analisi dei residui conferma la bontà del modello. I dati non presentano più alcun tipo di dipendenza e i residui assumono le caratteristiche tipiche di un white-noise. Le tabelle 8.4.2 e 8.4.3 riportano rispettivamente la funzione di autocorrelazione e il test ARCH sui residui del modello.

Tabella 8.4.2 Autocorrelazione del quadrato dei residui standardizzati ARMA(1,1)-ARCH(5)

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.002</td>
<td>0.002</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.023</td>
<td>0.023</td>
<td>1.256</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.017</td>
<td>0.017</td>
<td>1.953</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>-0.212</td>
<td>0.222</td>
<td>2.946</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-0.026</td>
<td>0.027</td>
<td>4.553</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.054</td>
<td>0.053</td>
<td>11.369</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>-0.008</td>
<td>0.010</td>
<td>11.426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.019</td>
<td>0.020</td>
<td>12.247</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.007</td>
<td>0.007</td>
<td>12.364</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>-0.014</td>
<td>-0.011</td>
<td>12.763</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>0.010</td>
<td>0.014</td>
<td>13.014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.049</td>
<td>0.046</td>
<td>10.572</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>0.048</td>
<td>0.051</td>
<td>23.872</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>0.008</td>
<td>0.009</td>
<td>24.024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0.004</td>
<td>0.007</td>
<td>24.057</td>
</tr>
</tbody>
</table>

Tabella 8.4.3 ARCH test

ARCH Test:

<table>
<thead>
<tr>
<th>F-statistic</th>
<th>1.850719</th>
<th>Probability</th>
<th>0.085724</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs*R-squared</td>
<td>11.08435</td>
<td>Probability</td>
<td>0.085804</td>
</tr>
</tbody>
</table>

Dependent Variable: STD_RESID^2
Method: Least Squares
White Heteroskedasticity-Consistent Standard Errors & Covariance

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.034168</td>
<td>0.063607</td>
<td>16.25874</td>
<td>0.0000</td>
</tr>
<tr>
<td>STD_RESID^2(-1)</td>
<td>0.001803</td>
<td>0.019989</td>
<td>0.090207</td>
<td>0.9281</td>
</tr>
<tr>
<td>STD_RESID^2(-2)</td>
<td>-0.022768</td>
<td>0.013796</td>
<td>-1.650310</td>
<td>0.0990</td>
</tr>
<tr>
<td>STD_RESID^2(-3)</td>
<td>-0.017168</td>
<td>0.016501</td>
<td>-1.040415</td>
<td>0.2983</td>
</tr>
</tbody>
</table>
Consideriamo la classe di modelli proposta da Bollerslev (1986) per ottenere una specificazione più compatta. I coefficienti sono stimati massimizzando la funzione di verosimiglianza una volta che la distribuzione per l’innovazione è stata specificata. L’assunzione comunemente impiegata è che l’innovazione sia gaussiana\(^4\).

Si è utilizzato il criterio informativo di Schwarz per discriminare i numerosi modelli testati, perché a parità di capacità esplicativa, è il più parsimonioso tra i due. In questo modo si sono confrontati le diverse specificazioni. Quella migliore nella classe dei modelli GARCH\((m,s)\) con \(m \in [1,5]\) e \(s \in [1,2]\) è il modello GARCH\((1,1)\).

\[\text{Tabella 8.4.4 modello ARMA}(1,1)-\text{GARCH}(1,1)\]

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>0.717771</td>
<td>0.238162</td>
<td>3.013794</td>
</tr>
<tr>
<td>MA(1)</td>
<td>-0.714873</td>
<td>0.240031</td>
<td>-2.978248</td>
</tr>
</tbody>
</table>

Variance Equation

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4.89E-06</td>
<td>1.42E-06</td>
<td>3.444047</td>
</tr>
<tr>
<td>ARCH(1)</td>
<td>0.122052</td>
<td>0.025689</td>
<td>4.751145</td>
</tr>
<tr>
<td>GARCH(1)</td>
<td>0.860949</td>
<td>0.023238</td>
<td>37.04986</td>
</tr>
</tbody>
</table>

R-squared 0.000394 Mean dependent var 0.000255
Adjusted R-squared -0.001359 S.D. dependent var 0.015149
S.E. of regression 0.015159 Akaike info criterion -7.65398
Sum squared resid 0.523930 Schwarz criterion -5.752851
Log likelihood 6591.967 Durbin-Watson stat 1.997801

Inverted AR Roots .72
Inverted MA Roots .71

I coefficienti sono tutti significativi e nei residui non vi è alcuna traccia di dipendenza. Un’occhiata veloce delle funzione di autocorrelazione in tabella 8.4.5 conferma la bontà del modello.

Tabella 8.4.5 Autocorrelazione del quadrato dei residui standardizzati ARMA(1,1)-GARCH(1,1)

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.019</td>
<td>-0.019</td>
<td>0.0499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.006</td>
<td>-0.007</td>
<td>0.9371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.016</td>
<td>0.014</td>
<td>1.288</td>
<td>0.232</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.034</td>
<td>0.035</td>
<td>4.1455</td>
<td>0.0126</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.007</td>
<td>0.008</td>
<td>4.2425</td>
<td>0.256</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.002</td>
<td>0.003</td>
<td>4.5231</td>
<td>0.373</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.024</td>
<td>-0.025</td>
<td>5.6635</td>
<td>0.351</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.010</td>
<td>0.008</td>
<td>5.7963</td>
<td>0.446</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-0.001</td>
<td>-0.002</td>
<td>5.8010</td>
<td>0.563</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-0.027</td>
<td>-0.026</td>
<td>7.4400</td>
<td>0.490</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-0.018</td>
<td>-0.018</td>
<td>8.1687</td>
<td>0.514</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.016</td>
<td>0.014</td>
<td>8.7298</td>
<td>0.556</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.011</td>
<td>0.013</td>
<td>9.0213</td>
<td>0.580</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-0.015</td>
<td>-0.013</td>
<td>9.5367</td>
<td>0.567</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-0.018</td>
<td>-0.017</td>
<td>10.259</td>
<td>0.573</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-0.003</td>
<td>-0.005</td>
<td>10.278</td>
<td>0.742</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.044</td>
<td>0.042</td>
<td>14.724</td>
<td>0.471</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-0.017</td>
<td>-0.015</td>
<td>15.595</td>
<td>0.496</td>
<td></td>
</tr>
</tbody>
</table>

I risultati della tabella 8.4.4 indicano una volatilità dei rendimenti piuttosto persistente. La somma di α e β (0.983) è prossima a uno, valore per cui la serie presenta tipicamente una memoria molto lunga. L’half-life della volatilità è di circa 41 giorni ma anche se il fenomeno di volatility-clustering è piuttosto forte la volatilità prima o poi ritornerà alla sua media.

La somma di α e β è significativamente più piccola di uno, questo implica che; anche se si ha bisogno di molto tempo, la volatilità farà ritorno alla varianza non condizionata del processo (0.000288835). Si ricorda che nel modello GARCH(1,1) la varianza condizionata è calcolata come il rapporto tra α_0 e la differenza di 1 e $\alpha + \beta$.

Una strada alternativa per misurare il ritorno in media della volatilità è considerare previsioni per lunghi periodi. In figure 8.4.6 e 8.4.7 sono riportate delle previsioni dinamiche della volatilità dei rendimenti.

\[5\] La statistica test è 1.811 che in valore assoluto è più grande del valore critico al 10% di 1.64
La prima previsione è stata fatta in un periodo con un livello di volatilità insolitamente alto, così la volatilità decresce gradualmente verso la varianza incondizionata. Allo stesso modo la previsione in figura 8.4.7 è effettuata durante un periodo calmo, così la previsione nel lungo periodo cresce per raggiungere il livello di volatilità incondizionato.

Figura 8.4.6 Previsione dinamica della volatilità

Figura 8.4.7 Previsione dinamica della volatilità

Si può notare come la condizione di esistenza sul momento quarto, $\beta_1^2 + 2\alpha_1\beta_1 + 3\alpha_1^2 < 1$, risulti essere verificata. Il modello GARCH (1,1) rappresenta allora una distribuzione
leptocurtica con “code grasse”, che rispecchia le caratteristiche empiriche evidenziate per le serie dei rendimenti.

8.5 I MODELLI ASIMMETRICI

- **Sign Bias Test:**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.763783</td>
<td>0.050311</td>
<td>15.18126</td>
<td>0.000</td>
</tr>
<tr>
<td>DMENO(-1)</td>
<td>0.477763</td>
<td>0.071726</td>
<td>6.660948</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Poiché il coefficiente della variabile Dummy è significativo e positivo concludiamo affermando che nei dati c’è la presenza di un effetto leva.

- **Negative Size Bias Test:**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.932780</td>
<td>0.040398</td>
<td>23.08993</td>
<td>0.000</td>
</tr>
<tr>
<td>DMENOA(-1)</td>
<td>-14.70474</td>
<td>4.063671</td>
<td>-3.618585</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Poiché il coefficiente della variabile Dummy è significativo e positivo concludiamo affermando che nei dati c’è la presenza di un effetto leva.
Il coefficiente della variabile Dummy questa volta negativo è ancora significativo, possiamo concludere quindi dicendo che il coefficiente determini un aumento della volatilità, ma proporzionale al suo valore.

- **Positive Size Bias Test:**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.075760</td>
<td>0.040933</td>
<td>26.28078</td>
<td>0.0000</td>
</tr>
<tr>
<td>DIPUA(-1)</td>
<td>-18.10867</td>
<td>4.577285</td>
<td>-3.956204</td>
<td>0.0001</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.004982</td>
<td>Mean dependent var</td>
<td>0.998846</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.004664</td>
<td>S.D. dependent var</td>
<td>2.019366</td>
<td></td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>2.014652</td>
<td>Akaike info criterion</td>
<td>4.239409</td>
<td></td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>12687.88</td>
<td>Schwarz criterion</td>
<td>4.243276</td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-6628.436</td>
<td>F-statistic</td>
<td>15.65155</td>
<td></td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>1.969741</td>
<td>Prob(F-statistic)</td>
<td>0.000078</td>
<td></td>
</tr>
</tbody>
</table>

C'è ancora effetto leverage perché il coefficiente statisticamente negativo porta ad una riduzione della volatilità.

Stimiamo il modello TGARCH (1,1,1) i cui risultati sono presentati in tabella 8.5.1. Il segno dell’innovazione ha un significativo effetto sulla volatilità dei rendimenti. Il coefficiente dei residui negativi al quadrato è grande e significativo. Possiamo dire che un’innovazione negativa al tempo \(t \) incrementerà la volatilità al tempo \(t+1 \) di circa il doppio, rispetto ad una innovazione positiva dello stesso ordine di grandezza.

Tabella 8.5.1 Risultati del modello TGARCH

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.000688</td>
<td>0.000149</td>
<td>4.624060</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variance Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>ARCH(1)</td>
</tr>
<tr>
<td>(RESID<0)*ARCH(1)</td>
</tr>
<tr>
<td>GARCH(1)</td>
</tr>
<tr>
<td>R-squared</td>
</tr>
</tbody>
</table>
Riportiamo in tabella 8.5.2 il modello esponenziale proposto da Nelson. È ancora evidente lo stesso effetto asimmetrico già osservato per il modello TGARCH, dato che il coefficiente dei residui standardizzati è significativamente positivo.

Il termine autoregressivo (0.98164) cattura l’effetto di persistenza della volatilità e poiché è verificata la condizione di stazionarietà la dimensione del coefficiente determinerà quanto sia rapido l’assorbimento degli shock passati.

Il secondo termine dell’equazione della varianza consente di tener conto della possibilità di una reazione asimmetrica proporzionale alle innovazioni. Il coefficiente è significativo e molto grande. Si può allora concludere dicendo che l’effetto asimmetrico sarà correlato alla grandezza dell’innovazione, maggiore è lo shock negativo più grande sarà l’impatto sulla volatilità.

Tabella 8.5.2 Risultati del modello EGARCH

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.000697</td>
<td>0.000154</td>
<td>4.527242</td>
</tr>
</tbody>
</table>

Variance Equation

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.319849</td>
<td>0.050201</td>
<td>-6.371435</td>
</tr>
<tr>
<td>RES/SQRGARCH</td>
<td>0.201222</td>
<td>0.024303</td>
<td>8.279710</td>
</tr>
<tr>
<td>RES/SQRGARCH</td>
<td>0.057743</td>
<td>0.017065</td>
<td>-3.383711</td>
</tr>
<tr>
<td>EGARCH(1)</td>
<td>0.981642</td>
<td>0.004534</td>
<td>216.4923</td>
</tr>
</tbody>
</table>

R-squared | -0.000056 | Mean dependent var | 0.000597 |
Adjusted R-squared | -0.001336 | S.D. dependent var | 0.013384 |
S.E. of regression | 0.013393 | Akaike info criterion | -6.344699 |
Sum squared resid | 0.560367 | Schwarz criterion | -6.335034 |
Log likelihood | 9931.282 | Durbin-Watson stat | 1.873473 |
Se consideriamo la funzione di impatto delle notizie (NIC – News Impact Curve) per i vari modelli analizzati possiamo confermare quanto già affermato in precedenza.

In particolare per il modello GARCH(1,1) la curva in figura 8.5.3 è simmetrica; shock di pari entità sulla volatilità avranno lo stesso impatto sulla varianza condizionata indipendentemente dal segno dell’innovazione stessa.

La funzione per il modello TGARCH è asimmetrica con due rami di parabola diversi. Infine, la curva di impatto delle notizie per il modello EGARCH evidenzia ancora un impatto asimmetrico degli shock, ma la risposta questa volta è maggiore, in quanto la funzione esponenziale domina sulle altre.

Figura 8.5.3 Funzione d’impatto delle notizie- NIC
8.6 UN MODELLO CON VARIABILI ESOCENE

Può essere interessante misurare l’impatto di variabili esogene sulla volatilità del processo. Utilizziamo il livello ritardato di 3 mesi dei Buoni Ordinari del Tesoro come variabile esogena e specifichiamo un modello per la volatilità dei rendimenti mensili dell’indice Mib30.

\[
\sigma_t^2 = \alpha_0 + \sum_{i=1}^{m} \alpha_i a_{t-i}^2 + \sum_{j=1}^{s} \beta_j \sigma_{t-j}^2 + \varphi X_{t-1}
\]

I Buoni Ordinari del Tesoro sono correlati con i costi di prestito alle aziende e possono così trasportare l’informazione che è rilevante per la volatilità dell’indice.

Di seguito sono riportati i principali risultati:

<table>
<thead>
<tr>
<th>Tabella 8.6.1 Risultati del modello GARCH-X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance Equation</td>
</tr>
<tr>
<td>Coefficient</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>ARCH(1)</td>
</tr>
<tr>
<td>GARCH(1)</td>
</tr>
<tr>
<td>X(1)</td>
</tr>
<tr>
<td>R-squared</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
</tr>
<tr>
<td>S.E. of regression</td>
</tr>
<tr>
<td>Sum squared resid</td>
</tr>
<tr>
<td>Log likelihood</td>
</tr>
</tbody>
</table>

Quello che si può osservare è che l’impatto dei BOT sulla volatilità del processo è significativo. Il segno positivo di questo coefficiente indica che alti tassi di interesse in generale saranno associati a livelli alti di volatilità. Il risultato concorda con quanto affermato nel lavoro Glosten (1993), cioè che il Treasury bill rate è correlato positivamente con la volatilità dei rendimenti.

Il problema principale è la negatività del coefficiente dell’intercetta che è di difficile giustificazione. Una possibile spiegazione è legata al fatto che la variabile esogena introdotta è sempre positiva e che quindi parte della costante della varianza condizionata può essere stata assorbita da questo termine.
9. CONCLUSIONI

Si è cercato di costruire un buon modello per la volatilità in grado di riprodurre le caratteristiche empiriche rilevate per le serie dei rendimenti. Queste evidenze includono: la persistenza della volatilità e il suo ritorno, nel lungo periodo, ad un livello “normale”; l’impatto asimmetrico degli shock negativi rispetto ad innovazioni positive dei rendimenti ed infine la possibilità che esogene o predeterminate variabili possano avere una significativa influenza sulla volatilità dei rendimenti.

Gli esempi empirici illustrati hanno evidenziato l’abilità dei modelli GARCH a mimare queste caratteristiche. L’analisi sull’indice Mib30 ha evidenziato una volatilità condizionata abbastanza persistente, il calcolo dell’half-life della volatilità era di circa 41 giorni. Tuttavia si è visto che, nel lungo periodo, la volatilità fa comunque ritorno alla varianza incondizionata del processo. I modelli sull’indice Nasdaq hanno evidenziato un impatto asimmetrico degli shock negativi rispetto a quelli positivi. In particolare shock negativi sembrano incrementare la volatilità di più di quanto fanno gli shock dello stesso ordine di grandezza ma di segno opposto. Caratteristica prima confermata dai test asimmetrici e in seguito dal modelli TGARCH e dal modello esponenziale. Infine, il coefficiente positivo della variabile esogena, introdotta nella specificazione, indica che i tassi di interesse sono correlati positivamente con la volatilità. Alti tassi d'interesse si traducono in alti livelli di volatilità.

Nonostante il successo dei modelli GARCH nel catturare le caratteristiche della volatilità condizionata, dobbiamo passare in rassegna alcune carenze messe in luce da questa struttura parametrica. Una questione aperta riguarda la specificazione della dinamica della volatilità nel lungo periodo. Il problema è di notevole rilevanza per tutte le applicazioni finanziarie che hanno a che fare con date d'esercizio molto lontane nel tempo. A questo proposito i modelli stazionari in varianza, visti finora, esauriscono l’effetto di uno shock in pochi mesi e, in generale, non forniscono soluzioni di immediato utilizzo. La ricerca si sta oggi spostando verso modelli più complessi in cui gli shock hanno effetti anche sulla volatilità di lungo periodo.

Nei modelli considerati fin’ora è lo stesso shock a determinare l’evoluzione della variabile di riferimento e la sua volatilità. Questa caratteristica consente, da un lato, una rappresentazione più parsimoniosa della dinamica dei rendimenti e della volatilità, e ne
costituisce, dall’altro, un limite introducendo una relazione troppo stretta tra i due processi.

Nell’analizzare i singoli attivi finanziari abbiamo anche tralasciato una visione più completa dell’analisi quantitativa, che mira a porre in relazione fra loro insiemi informativi più complessi. Nella realtà informazioni utili in ambito decisionale non possono essere limitate alla conoscenza del passato di una singola serie, ma devono comprendere tutte le interrelazioni fra gli strumenti finanziari sui diversi mercati. Un problema che nasce riguarda, dunque, le caratteristiche di un insieme di strumenti finanziari; se un bene segue un modello GARCH, lo stesso non si può dire per un portafoglio o un paniere di beni.

Un’ulteriore carenza riguarda l’instabilità temporale dei coefficienti: se il modello GARCH è correttamente specificato per una frequenza di dati, allora non è specificato per dati con differenti scale temporali, rendendo difficili le ricerche.
10. BIBLIOGRAFIA

Andrea Sironi, Michele Morsella, Analisi dei risultati (approccio varianza-covarianza), La misura e la Gestione dei rischi di Mercato, 4, 376-418.

Bruno S., Modelli per l’eteroschedasticità nelle serie storiche, Econometria delle serie storiche, 21, 841-862.

Chatfield, 2000, Univariate time series Modelling, Time Series Forecasting, 37-72, [3].

Giampietro M. Gallo, Barbara Pacini, Analisi della volatilità, Metodi quantitativi per i mercati Finanziari, 251-310.

Giampietro M. Gallo, Barbara Pacini, Analisi dei Rendimenti , Metodi quantitativi per i mercati Finanziari, 183-248.

Umberto Cherubini, Giovanni della L., Volatilità e correlazione, Il rischio finanziario, 7, 320-351.