Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Paccagnella, Miriam (2013) Marine Geology of Core V28-179 and Plio-Pleistocene climate implications = Geochimica e nannofossili calcarei del Core V28-179: implicazioni climatiche durante il Plio-Pleistocene. [Magistrali biennali]

Full text disponibile come:



The Central Pacific Ocean is an area of great interest for the oceanographers because the current high amount of nutrients and productivity provide an excellent study area for past environmental changes. A study was performed on a Plio-Pleistocene Core VEMA 28-179 (V28-179) positioned at 4° 37’ N, 139° 36' W in the Pacific Ocean, 2081 cm in length and 4502 meters depth below the sea level in order to improve the paleoceanographic knowledges. The core is located along the equatorial zone which extends a range of high nutritional values. Several studies are been performed on the Core V28-179 (Shackleton and Opdyke, 1977; Backman and Shackleton, 1983; Dunn, 1982) and integrated with sedimentation rates, carbonate contents, isotopic values and fossil contents in this thesis. It was possible to emphasize 2.7 to 3 million years ago a change of orbital and tectonic parameters, which would lead progressively to the North Hemisphere Glaciation. Chapter 1 analyzes the visual description of the color, the carbonate content, particle size, the fossil content, sedimentary structures, the presence or absence of bioturbation and contacts that delimit net changes in the characteristics of the sediment. The high degree of compositional and structural changes indicate considerable variations in the carbonate content.Chapter 2 analyzes the magnetic polarity reversals occurred in Core V28-179, based on Laurens et al.(2004). The sedimentation rate has not remained constant over the time. Different causes may have been variations of orbital parameters and variations of physical (particle transport and sedimentation) and chemical (diagenesis) parameters. In addition, the carbonate component from surface productivity involves almost all of the sediment composition in V28-179. Chapter 3 analyzes the fossil content. In particular, we considered three species of calcareous nannofossils Discoaster brouweri, Discoaster tamalis and Discoaster asymmetricus. In particular we carried out the analysis of the abundance of species in the sediment from 1000 to 2065 cm, showing an effective predominance of the species D. brouweri than the other two species, up to about 700 individuals per mm-2 against approximately 110 and 75 respectively for D. asymmetricus and D. tamalis. Chapter 4 is dedicated to the discussion about the processes involved in the carbon cycle (production, transport, deposition and post-depositional processes). V28-179 is positioned in an area of high surface productivity, driven by a high nutrients input, due to upwelling of cold deep waters in the east Pacific Ocean.This results in a high carbonate content. The CaCO3 content analysis also showed a progressive increase from 4,085 Ma to the present time, probably caused by a nutrients increase, and an initial prominent cyclicity of ca. 400 000 years, that becomes indistinguishable in younger sediments. The migration northward of V28-179 position (plate tectonics movements), the migration of the high nutrient content area or its expansion can be the causes of variation in the calcium carbonate content.Chapter 5 analyzes the isotopic values of oxygen (18O / 16O) and carbon (13C / 12C), both reconnected to the carbon cycle. From the carbon isotope at 2.1 Ma is evident a change in the mode of deposition. The comparison with the CaCO3 content shows a stronger anti-phasing trend from 2.1 to 0 Ma. Oxygen isotope values shows an increase in 18O values, representing the transition from a warm climate to the formation of ice sheets in the northern hemisphere. Data were then compared with the isotopic values described by Shackleton and Opdyke (1977) and was summarized the isotopic antithetical diversity with the Atlantic Ocean. In Chapter 6 was performed a research on temperature and orbital parameters variations, occurred during the Plio-Pleistocene. The closure of the Isthmus of Panama, the tibetan uplift and the closure of Indonesian Seaway are among the possible causes that has led to the glaciation of the northern hemisphere, concomitant to changes in orbital parameters from cycles of 41 000 years to 100 000 years. The change in ocean circulation has led to strong variation in the heat distribution in oceanic waters and to the formation of upwelling zones, especially in the equatorial Pacific and along east coasts, where even today there is a seasonal atmospheric disturbance known as El Niño, the proof of the great changes that occurred in the past.

Item Type:Magistrali biennali
Uncontrolled Keywords:Marine Geology, V28-179, Plio-Pleistocene, Geochimica, Nannofossili
Subjects:Area 04 - Scienze della terra > GEO/02 Geologia stratigrafica e sedimentologica
Area 04 - Scienze della terra > GEO/01 Paleontologia e paleoecologia
Area 04 - Scienze della terra > GEO/12 Oceanografia e fisica dell'atmosfera
Codice ID:42806
Relatore:Fornaciari, Eliana
Correlatore:Backman, Jan
Data della tesi:15 March 2013
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

ANDERSON R. N., (1986), Marine Geology A planet Earth Prospective, Lamont-Doherty Geological Observatory, Columbia University, John Wiley & Sons, pp. 328. Cerca con Google

ARRHENIUS G., (1952), Sediment cores from the East Pacific, Rep. Swed. Deep-Sea Exped., Vol. 5, pp. 1-227. Cerca con Google

BACKMAN J., RAFFI I., RIO D., FORNACIARI E., PÄLIKE H., (submitted), Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Cerca con Google

BACKMAN J., SHACKLETON N.J., (1983), Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific Oceans, in ‘Marine Micropaleonotlogy’, 8, Elsevier Scienze Publishers, pp. 141-170. Cerca con Google

BANDY O., CASEY R. E., WRIGHT R.C., (1971), Late Neogene planktonic zonation, magnetic reversals, and radiometric dates, Antarctic to the tropics, Antarctic Research Series, VOL. 15, pp. 1-26. Cerca con Google

BARREIRO M., FEDEROV A., PACANOWSKI R., PHILANDER S.G., (2008), Abrupt Climate Changes: How Freshening of the Northern Atlantic Affects the Thermohaline and Wind-Driven Oceanic Circulations, Annu. Rev. Earth Planet. Sci., 36, pp. 33-58. Cerca con Google

BARTOLI G., SARNTHEIN M., WEINELT M., (2006), Late Pliocene millennial-scale climate variability in the northern North Atlantic prior to and after the onset of Northern Hemisphere glaciations, Paleoceanography Vol. 21, Issue: 4, Publisher: Amer Geophysical Union, pp. 1-15. Cerca con Google

BERGER, W.H., (1970), Biogenous deep-sea sediments: fractionation by deep-sea circulation, Bull. Geol. Soc. Am., 81, pp. 1385-1402. Cerca con Google

BERGGREN W.A., VAN COUVERING J.A., (1974), The late Neogene: biostratigraphy, geochronology and paleoclimatology of the last 15 million years in marine and continental sequences, Developments in paleontology and stratigraphy, Vol 2, Elsevier Scientific Publishing Company, pp. 216. Cerca con Google

BILLUPS K., (2002), Late Miocene through erasly Pliocene deep water circulation and climate change viewed from the sub-Antarctic South Atlantic, Paleogeography, Paleoclimatology, Paleoecology 185, pp. 287-307. Cerca con Google

BILLUPS K., RAVELO A.C., ZACHOS J.C., (1997), Early Pliocene deep water circulation: stable isotope evidence for enhanced northern component deep water, N. Shackleton, et al. (Eds.), Proc. ODP, Sci. Results, 154: College Station, TX (Ocean Drilling Program), pp. 319-330. Cerca con Google

BROECKER W. S., (2003), The oceanic CaCO3 cycle , In: The Oceans and Marine Geochemistry (ed. H. Elderfield), Treatise on Geochemistry (eds. Holland, H.D. and Turekian, K.K.), Elsevier- Pergamon, Oxford, 6, pp. 529-549. Cerca con Google

BUKRY D., (1971), Cenozoic calcareous nannofossils from the Pacific Ocean, Trans. San Diego Soc. Nat. Hist., VOL. 16, pp. 307-327. Cerca con Google

BUKRY, D., OKADA, H., (1980), Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Mar. Micropalentol., VOL.5, pp. 321-325. Cerca con Google

BURDRIGE D. J., (2006), Geochemistry of Marine Sediments, Princeton Univ. Press., pp. 609. Cerca con Google

BURKLE L. H., TRAINER J., (1979), Middle and late Pliocene datum levels from the central Pacific, Micropaleontology Vol. 25, pp. 281-293. Cerca con Google

BUTZIN M., LOHMANN G., BICKERT T., GROSFELD K., (2003), Evolution of ocean circulation and climate during Miocene: results from GCM simulations, EGS-AGU-EUG Joint Assembly 06, Nice, France, pp. 1. Cerca con Google

CANDE S.C., KENT D.V., (1995), Revised calibration of the Geomagnetic Polarity Time Scale for the Late Cretaceous and Cenozoic, Journal of Geophysical Research, Vol. 100, NO. B4, pp. 6093-6095. Cerca con Google

CHESTER R., (1999), Marine Geochemistry, Department of Earth Science, University of Liverpool, 2nd edition, Blackwell science, pp. 506. Cerca con Google

COLIN DÈ VERDIERE A., TEE RAA L., (2009), Weak oceanic heat transport as a cause of the instability of glacial climates, in “Climate Dynamics, Vol. 35, Number 7-8, pp. 1237-1256. Cerca con Google

COMBOURIEU NEBOUT N., VERGNAUD GRAZZINI C., (2003), Late Pliocene Northern Hemisphere glaciations: The continental and marine responses in the central Mediterranean, Quaternary Science Reviews, Volume 10, Issue 4, 1991, pp. 319-334. Cerca con Google

CROWLEY J.T., HYDE W.T., (2008), Transient nature of late Pleistocene climate variability, Nature, Vol. 456, Issue: 7219, pp. 226-230. Cerca con Google

CRUCIFIX M., (2011), Oscillators and relaxation phenomena in Pleistocene climate theory, Phil. Trans. R. Soc. A 2012 370, pp. 1140-1165. Cerca con Google

CURRY, W.B., SHACKLETON, N.J., RICHTER, C., ET AL., (1995), Proc. ODP, Init. Repts., 154: College Station, TX (Ocean Drilling Program), pp. 1-1111. Cerca con Google

DEAN A.D., (1982), Change from “Atlantic-type” to “Pacific-type” carbonate stratigraphy in the middle Pliocene Equatorial Pacific Ocean, in ‘Marine Geology, 50’, Elsevier Scientific Publishing Company, Amsterdam, pp. 41-60. Cerca con Google

DEAN A.D., MOORE T.C., JR, (2011), Late Miocene—Pliocene (Magnetic Epoch 9—Gilbert Magnetic Epoch) calcium-carbonate stratigraphy of the equatorial Pacific Ocean: Summary, in ‘Geological Society of American Bulletin’, Part II of the Bulletin, v. 92, no. 3, pp. 408–451. Cerca con Google

EMILIANI C., (1955), Pleistocene temperatures, J. Geol, Vol. 63, pp. 534-578. Cerca con Google

FARNETI R., DELWORTH T.L., (2010), The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds, J. Phys. Oceanogr., Vol. 40, 10, pp. 2348-2354. Cerca con Google

FARQUHAR G.D., FASHAM M.J.R., GOULDEN M.L., HEIMANN M., JARAMILLO V.J., KHESHGI H.S., LE QUÉRÉ C., SCHOLES R.J., WALLACE D.W.R., ARCHER D., ASHMORE M.R., AUMONT O., BAKER D., BATTLE M., BENDER M., BOPP L.P., BOUSQUET P., CALDEIRA K., CIAIS P., COX P.M., CRAMER W., DENTENER F., ENTING I.G., FIELD C.B., FRIEDLINGSTEIN P., HOLLAND E.A., HOUGHTON R.A., HOUSE J.I., ISHIDA A., JAIN A.K., JANSSENS I.A., JOOS F., KAMINSKI T., KEELING R.F., KICKLIGHTER D.W., KOHFELD K.E., KNORR W., LAW R., LENTON T., LINDSAY K., MAIER-REIMER E., MANNIN A.C., MATEAR R.J., McGUIRE A.D., MELILLO J.M., MEYER R., MUND M., ORR J.C., PIPER S., PLATTNER K., RAYNER P.J., SITCH S., SLATER R., TAGUCHI S., TANS P.P., TIAN H.Q., WEIRIG M.F., WHORF T., YOOL A., PITELKA L., RAMIREZ ROJAS, (2001), Executive Summary, In (book chapter): 3, The Carbon Cycle and Atmospheric Carbon Dioxide, In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson (eds)), Print version: Cambridge University Press. This version: GRID-Arendal website, pp. 183-238. Cerca con Google

FARRELL J.W., PRELL W.L., (1991), Pacific CaCO3 preservation and δ18O since 4 Ma: paleoceanic and paleoclimatic implications, in ‘Paleoceanography, Vol. 6, NO. 4’, pp. 485-498. Cerca con Google

FARRELL J.W., RAFFI I., JANECEK T.C., MURRAY D.W., LEVITAN M., DADEY K.A., EMEIS K.C., LYLE M., FLORES J.A., HOVAN S., (1995), Late Neogene Sedimentation Patterns in the Eastern Equatorial Pacific Ocean, In ‘Pisias’, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), pp. 717–756. Cerca con Google

FEDOROV A.V., BRIERLEY C., EMANUEL K., (2010), Tropical cyclones and permanent El Niño in the Early Pliocene, Nature 463, pp. 1066-1070. Cerca con Google

FEDOROV A.V., RAVELO A.C., DEKENS P.S., DeMENOCAL P., BARREIRO M., PACANOWSKI R., PHILANDER S.G., (2006), The Pliocene paradox (Mechanisms for a permanent El Niño), Science 2006, pp. 1485-1489. Cerca con Google

FILIPPELLI G.M., FLORES J.A., (2009), From the warm Pliocene to the cold Pleistocene: a tale of two oceans, Geology Vol. 37, pp. 959-960 Cerca con Google

FORNACIARI, E., AGNINI, C., CATANZARITI, R., RIO, D., BOLLA, E.M., VALVASONI, E., (2010), Midlatitude calcareous nannofossil biostratigraphy, biochronology and evolution across the middle to late Eocene transition, Stratigraphy VOL. 7 (4), pp. 229–264. Cerca con Google

GARTNER S., (1969), Correlation of Neogene planktonic foraminifer and calcareous nannofossils zones. Trans. Gulf Coast Assoc. Geol. Soc., 19: 585-599 Cerca con Google

GRADSTEIN F., OGG J.G, SMITH A.G., et al. (2004), A geologic time scale, Cambridge University Press, pp. 589. Cerca con Google

GIBBS S., SHACKLETON N.J., YOUNG J.R., (2004), Orbitally-forced Cerca con Google

climate signals in mid Pliocene nannofossil assemblages, Mar. Micropaleontol. Vol. 51, pp. 39–56. Cerca con Google

GRADSTEIN F., OGG J.G, SMITH A.G., BLEECKER W., LAURENS L.J., (2004), A new geologic time scale , with special reference to Precambrian and Neogene, Geological Society of the Philippines, Episodes, 27(2): 83-100, pp.18. Cerca con Google

GRANT K.M., DICKENS G.R., (2002), Coupled productivity and carbon isotope records in the southwest Pacific Ocean during the late Miocene-early Pleistocene biogenic bloom, in ‘Palaeogeography, Palaeoclimatology, Palaeoecology 187’, pp. 61-82. Cerca con Google

GUSSONE N., EISENHAUER A., TIEDEMANN R., HAUG G.H., HEUSER A., BOCK B., NÄGLER T.F., MÜLLER A., (2004), Reconstruction of Caribbean sea surface temperature and salinity fluctuations in response to the pliocene closure of the Central American Gateway and radiative forcing, using delta Ca-44/40, delta O-18 and Mg/Ca ratios, Earth and Planetary Science Letters (2004) Cerca con Google

Volume: 227, Issue: 3-4, pp. 201-214. Cerca con Google

GUYODO Y., CHANNELL J.E.T., (2002), Effects of variable sedimentation rates and age errors on the resolution of sedimentary paleointensity record, Geochemistry Geophysics Geosystems, Vol. 3, 1048, pp.18. Cerca con Google

HAYS G.C., RICHARDSON A.J., ROBINSON C., (2005), Climate change and marine plankton, Trends in Ecology & Evolution, Vol. 20, Issue 6, pp. 337-344. Cerca con Google

HAYWOOD A.M., DEKENS P., RAVELO C., WILLIAMS M., (2005), Warmer tropics during the mid-Pliocene? Evidence from alkenone paleothermometry and a fully coupled ocean-atmosphere GCM, in ‘Geochemistry, Geophysics, Geosystems’, Vol. 6, Number 3, pp. 20. Cerca con Google

HEEZEN B. C., (1977), Influence of Abyssal circulation on Sedimentary Accumulations in Space and Time, Developments in Sedimentology 23, pp. 215. Cerca con Google

HONJO S., (1976), Coccoliths: production, transportation and sedimentation, Marine Micropaleontology, 1, pp. 65-79 Cerca con Google

JIANG S., (2007), Applications of calcareous nannofossils and stable isotopes to Cenozoic paleoceanography: Examples from the eastern equatorial Pacific, western equatorial Atlantic and southern Indian Oceans, The Florida State University, pp. 189. Cerca con Google

JANIN M.C., (1987), The Imprints of Cenozoic Calcareous Nannofossils from Polymetallic Concretions: Biostratigraphic Significance for two Crusts from the Central Pacific (Line Islands Ridge and Mid-Pacific Mountains), Volume 115, Issues 3–4, December 1993, pp. 289–306. Cerca con Google

JIANG Z., LIU Q., (2012), Magnetic characterization and paleoclimatic significances of the late Pliocene-early Pleistocene sediments at site 882A, northwestern Pacific Ocean, in ‘Science China, Earth Sciences’, Vol. 55, February 2012, pp. 323-331. Cerca con Google

JUMARS P.A., WHEATCROFT R.A., (1989), Responses of benthos to changing food quality and quantity, with a focus on deposit feeding and bioturbation. In: Berger WH, Smetacek FS, Wefer G (eds) Productivity of the ocean: present and past. John Wiley & Sons, Dahlem, pp. 235–253. Cerca con Google

KAMPTNER E., (1967), Kalkflagellaten-Skelett treste aus Tiefseeschlamm des Südatlantischen Ozeans, Ann. Naturhist. Mus. Wien, 71, pp. 117-198. Cerca con Google

KARAS C., NÜRNBERG D., GUPTA A.K., TIEDEMANN R., MOHAN K., BICKERT T., (2009), Mid-Pliocene climate change amplified by a Cerca con Google

switch in Indonesian subsurface throughflow, Nature Geoscience Vol. 2, pp. 434 – 438. Cerca con Google

KATZ M.E., WRIGHT J.D., MILLER K.G., CRAMER S.B., FENNEL K., FALKOWSKI P.G., (2005), Biological overprint of the geological carbon cycle, Mar. Geol., Vol. 21, pp. 323-338. Cerca con Google

KENNETT J. P., (1982), Marine Geology: Prentice-Hall, Englewood Cliffs New Jersey, pp. 813. Cerca con Google

KENNET J.P., VON DER BORCH C.C., (1986), Southwest Pacific Cenozoic paleoceanography, in KENNETT J.P., VON DER BORCH C.C., et al., Init. Repts. DSDP, 90 (Pt. 2): Washington (U.S. Govt. Printing Office), pp. 1943-1517. Cerca con Google

LAWRENCE K.T., LIU Z., HERBERT T.D., (2006), Evolution of the Eastern Tropical Pacific Through Plio-Pleistocene Glaciation, Science 7 April 2006: Cerca con Google

Vol. 312, no. 5770, pp. 79-83. Cerca con Google

LEE S., POULSEN C.J., (2006), Sea ice control of Plio–Pleistocene tropical Pacific climate evolution, Earth and Planetary Science Letters, Volume 248, Issue 1-2, pp. 253-262. Cerca con Google

LISIECKI L.E., RAYMO M.E., (2007), Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics, Quaternary Science Reviews, Vol. 26, pp. 56-69. Cerca con Google

LYLE M., (2003), Neogene carbonate burial in the Pacific Ocean, in Paleoceanography, Vol. 18, No. 3, pp. 4. Cerca con Google

LYNCH-STIEGLITZ J., (2003), Tracers of the Past Oceanic Circulation, Treatise on Geochemistry, Vol. 6, pp. 433-451. Cerca con Google

MARSH M. E., (2003), Regulation of CaCO3 formation in coccolithophores, Comp. Biochem. Physiol, B Biochem, Mol. Biol., Vol. 136, pp. 743-754. Cerca con Google

MARTINI, E., (1971), Standard Tertiary and Quaternary calcareous nannoplankton zonation, In Farinacci, A. (Ed.), Proc. Second Planktonic Conf.: Rome (E. Tecnoscienza), pp. 739-785. Cerca con Google

MASLIN M.A., RIDGEWELL A., (2005), Mid-Pleistocene Revolution and the “eccentricity myth”, Special Publication of the Geological Society of London, Vol. 247, pp. 19-34. Cerca con Google

McMANUS D. A., CHAMLEY H., (1991), Marine Geology Vol. 99 – NO. 3 / 4, Special issue Deep Ocean Sediment Transport, International Journal of Marine Geology, Geochemistry and Geophisics. Cerca con Google

MENARD H. W., (1964), Marine Geology of the Pacific, International series in the Earth Sciences, McGraw Hill Book Company, pp. 271. Cerca con Google

MOLINEAUX L., (1971), A complete result magnetometer for measuring the remanent magnetization of rocks, Geophys. J.R. astr. Soc. 24, pp. 429-434. Cerca con Google

O’LEARY M. H., (1988), Carbon isotopes in photosynthesis, Bio Science, Vol. 38, No. 5, pp. 328-336. Cerca con Google

PETERSON, M. N. A., (1966), Calcite: rates of dissolution in a vertical profile in the Central Pacific: Science, Vol. 154, pp. 1542-1544. Cerca con Google

PLACENCIA J.A., GARCÉS-VARGAS J., LANGE C.B., HEBBELN D., (2010), Alkenone-based temperature patterns along the eastern South Pacific Coastal Ocean: the effect of upwelling and advection on the sedimentary alkenone unsaturation-index (UK’37), Biogeosciences Discuss., 7, pp. 545–564. Cerca con Google

PÄLIKE H., NORRIS R.D., HERRLE J.O., WILSON P.A., COXALL H.K., LEAR C.H., SHACKLETON N.J., TRIPATI A.K., WADE B.S., (2006), The Heartbeat of the Oligocene Climate System, Science 22, Vol. 314 no. 5807, pp. 1894-1898. Cerca con Google

RAFFI I., BACKMAN J., RIO D., SHACKLETON N.J., (1993), Plio-Pleistocene nannofossil biostratigraphy and calibration to oxygen isotope stratigraphies from Deep Sea Drilling Project Site 607 and Ocean Drilling Program Site 677. Paleoceanography, Vol.8, pp.387-408. Cerca con Google

RAYMO M.E., RUDDIMAN W.F., SHACKLETON N.J., OPPO D.W., (1990), Evolution of Atlantic.-Pacific δ13C gradients over the last 2.5 m.y., Earth and Planetary Science Letters 97 (3-4), pp. 353-368. Cerca con Google

RAFFI I., FLORES J.-A., (1995), Pleistocene through Miocene calcareous nannofossils from eastern equatorial Pacific Ocean (Leg 138), In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), pp. 233-286. Cerca con Google

RAVELO A.C., BILLUPS K., DEKENS P.S., HERBERT T.D., LAWRENCE K.T., (2007), Onto the ice ages: proxy evidence for the onset of Northern Hemisphere glaciation, in Haywood, Gregory and Schmidt (eds) Deep-time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, The Geolgoical Society, London, pp. 563-573. Cerca con Google

RAVELO A.C., DEKENS P.S., McCARTHY M., (2006), Evidence for El Niño-like conditions during the Pliocene, GSA Today, 16, pp. 4-11. Cerca con Google

REY J., GALEOTTI S., (2008), Stratigraphy. Terminology and Practice, Technip Édit. - B.R.G.M. - TOTAL, pp. 176. Cerca con Google

RILEY J. P., CHESTER R., (1976), Chemical Oceanography, Department of Oceanography, The University of Liverpool, England, Vol 5, 2nd edition, Academic press, pp.401. Cerca con Google

RIO, D., SPROVIERI, R., RAFFI, I., (1984), Calcareous plankton biostratigraphy and biochronology of the Pliocene-Lower Pleistocene succession of the Capo Rossello area, Sicil, Marine Micropaleontology, Vol. 9, pp. 135-180. Cerca con Google

SARNTHEIN M., BARTOLI G., PRANGE M., SCHMITTNER A., SCHNEIDER B., WEINELT M., ANDERSEN N., GARBE-SCHÖNBERG D., (2009), Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates, Clim. Past, 5, pp. 269-283. Cerca con Google

SHACKLETON N.J., (1967), Oxygen Isotope Analyses and Pleistocene Temperatures Re-assessed, Nature, Vol. 215, pp. 15-17. Cerca con Google

SHACKLETON N.J., BACKMAN J., ZIMMERMAN H., KENT D.V., HALL M.A., ROBERTS D.G., SCHNITKER D., BALDAUF J.G., DESPRAIRIES A., HOMRIGHAUSEN R., HUDDLESTUN P., KEENE L.B., KALTENBACK A.J., KRUMSIEK K.A.O., MORTON A.C., MURRAY J.W., WESTBERG-SMITH J., (1984), Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region, Nature Nr. 307, pp. 620 – 623. Cerca con Google

SHACKLETON N. J., HALL M. A., PATE D., (1995), Pliocene stable isotope stratigraphy of site 846, Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 138, pp. 337- 355. Cerca con Google

SHACKLETON N.J., OPDYKE N.D., (1973), Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale, Quaternary Research (1973), Vol. 3, Issue: 1, Publisher: Elsevier, pp. 39-55. Cerca con Google

SHACKLETON N.J., OPDYKE N.D., (1977), Oxygen isotope and paleomagnetic evidence for early Northern Emisphere glaciations, in ‘Nature Vol. 270’, 17 November 1977, pp. 216-219. Cerca con Google

SIDDALL M., HÖNISCH B., WAELBROECK C., HUYBERS P., (2010), Changes in deep Pacific temperature during the mid-Pleistocene transition Cerca con Google

and Quaternary, Vol. 29, Issues 1–2, pp. 170–181. Cerca con Google

SIGMAN D. M., BOYLE E. A., (2000), Glacial/interglacial variations in atmospheric carbon dioxide, Nature, Vol. 407, Issue 6806, pp. 859-869. Cerca con Google

SKINNER L.C., ELDERFIELD H., HALL M., (2007), Phasing of millennial climate events and northeast Atlantic deep-water temperature change since 50 ka BP, Geophysical Monograph Series, Vol. 173, pp. 197-208. Cerca con Google

SPROVIERI R. ET AL., (1998), Integrated calcareous plankton biostratigraphy and cyclostratigraphy at site 964, Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 160, pp. 155-165. Cerca con Google

STEINMETZ J. C., (1991), Calcareous Nannoplankton Biocoenosis: Sediment Trap in the Equatorial Atlantic, Central Pacific, and Panama Basin, in: Woods Hole Oceanographic Institution. Ocean Biocoenosis Series, Vol. 1, pp. 85. Cerca con Google

SULZMAN E.W., (1995), The Carbon Cycle, Global Change Instruction Program, University Corporation for Atmospheric Research, Boulder, CO. (In press), pp. 28. Cerca con Google

TAN SIN HOK, (1927), Discoasteridae incertae sedis. Proc. Sect. Sc. K. Acad. Wet. Amsterdam,Vol. 30, pp. 411-419. Cerca con Google

VALI H., VON DOBENECK T., AMARANTIDIS G., FÖRSTER O., MORTEANI G., BACHMANN L., PETERSEN N., (1989), Biogenic and lithogenic magnetic minerals in Atlantic and Pacific deep sea sediments and their paleomagnetic significance, Geologische Rundschau, Vol. 78, Number 3, pp. 753-764. Cerca con Google

VAN ANDEL T. H., HEATH G. R., MOORE JR. T. C., (1975), Cenozoic History and Paloeceanography of the Central Equatorial Pacific Ocean, a Regional Synthesis of Deep Sea Drilling Project Data, The Geological Society of America Memoir, Vol. 143, pp. 134. Cerca con Google

VAN ANDEL T.H., TJEERD H., (1974), Cenozoic Migration of the Pacific Plate, Northward Shift of the Axis of Deposition, and Paleobathymetry of the Central Equatorial Pacific, Geology, Vol. 2, Issue 10, pp. 507 Cerca con Google

VINCENT E., (1981), Neogene carbonate stratigraphy of Hess Rise (central North Pacific) and paleoceanographic implications, In Thiede, J., Vallier, T.L., et al., Init. Repts. DSDP, Vol. 62, Washington (U.S. Govt. Printing Office), pp.571-606. Cerca con Google

WADE B.S., PÄLIKE H., (2004), Oligocene climate dynamics, Paleoceanography, Vol. 19, pp. 16. Cerca con Google

WESTERHOLD T., RÖHL U., DONNER B., McCARREN H. K., ZACHOS J. C., (2011), A complete high-resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209), Paleoceanography, Vol. 26, pp. 13. Cerca con Google

WINTERER E.L., EWING J.I., DOUGLAS R.G., JARRAD R.D., LANCELOT Y., MOBERLY R.M., MOORE T.C., ROTH P.H., SCHLANGER S.O., (1971), Deep Sea Drilling Project Initial Reports Vol. 17, pp. 922. Cerca con Google

XANTHAKIS J., LIRITZIS I., TZANIS E., (1995), Periodic variation of δ18O values from V28-239 Pacific Ocean deep-sea core, Moon, Planets Vol. 66, pp. 253-278. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record