UNIVERSITA’ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI MEDICINA ANIMALE, PRODUZIONI E SALUTE

Corso di Laurea Specialistica a ciclo unico in

MEDICINA VETERINARIA

TESI DI LAUREA

EFFETTO DEL CARICO DI GLUCOSIO SULLE VARIAZIONI DI ALCUNI PARAMETRI DEL METABOLISMO ENERGETICO DELLA BOVINA DA LATTE

Relatore: dott. Matteo Gianesella
Correlatore: dott. Enrico Fiore

Laureanda: Francesca Zambelli
matricola 576172MV

ANNO ACCADEMICO 2012-2013
Ai miei genitori e
ai miei fratelli
INDICE

1. ABSTRACT .. 3
2. PREMESSA ... 5
3. INTRODUZIONE... 7
 3.1 METABOLISMO ENERGETICO NELLA BOVINA DA LATTE 9
 3.1.1 Bilancio del glucosio .. 9
 3.1.2 Bilancio energetico negativo ... 11
 3.1.3 Meccanismi di adattamento al bilancio energetico negativo 13
 3.2 INSULINO RESISTENZA ... 16
 3.3 DIABETE MELLITO ... 18
 3.4 DISORDINI METABOLICI LEGATI AI LIPIDI ... 19
 3.5 STATO INFiamMATORIO E IMMUNODEPRESSIONE ... 21
4. MATERIALI E METODI ... 23
 4.1 PROCEDURA SPERIMENTALE .. 23
 4.1.1 Determinazione del Body Condition Score ... 23
 4.1.2 Test da carico del glucosio ... 24
 4.1.3 Determinazione della glicemia e della chetonemia di campo 24
 4.1.4 Dati clinici e produttivi ... 25
 4.2 ANALISI DI LABORATORIO ... 25
 4.3 ANALISI STATISTICA .. 26
5. RISULTATI ... 27
6. DISCUSSIONE .. 47
7. CONCLUSIONI ... 53
8. BIBLIOGRAFIA .. 55
1. ABSTRACT

The aim of this study was to evaluate the change of some metabolic parameters (glucose, insulin, NEFA and BHB) after a glucose tolerance test (GTT) and the correlation between these changes and some pathologies of the transition period in dairy cows. The study was carried out on 42 multiparous Holstein cows from 2 high producing dairy farms located in northern Italy. The GTT was performed before (7 days) and after (7 days) calving. Glucose was administrated intravenously in a 50% solution at a dose of 0,25 g/Kg. Blood samples were collected before (T0) and after the beginning of the test at different times (T2, T5, T10, T15, T20, T30, T40, T60, T80, T100, T120, T140, T160) and values of glucose, insulin, NEFA and BHB were analyzed. The collected data were statistically analyzed by the analysis of variance (ANOVA), using SIGMA STAT 3.7 to evaluate the effect of the period (pre-partum and post-partum) and the farm (farm A and farm B) on the hematic, clinical and productive parameters. Pearson’s coefficients were also calculated between the collected data; finally the AUC (Area Under Curve) of glucose, insulin, NEFA and BHB were calculated. In the post-partum period after the GTT, cows reported lower levels of glucose and insulin compared to the pre-partum period. In the same period higher levels of BHB and NEFA (P<0,05) were also showed. A significant positive correlation (P<0,05) was found between NEFA at T80 and milk fever and also between BHB at T160 and mastitis. Moreover metritis were significantly and negatively correlated (P<0,05) with glucose at T160. Clinical diseases showed a different incidence between the two farms, and this could be a consequence of a different management, that is an important factor in the etiology of pathologies during the transition period in the farm. The result also proved that in the post-partum period cows show insulin resistance that causes a reduction of the levels of glucose and insulin and a consequent increase of the levels of NEFA and BHB; this mechanism permits to spare glucose (and so energy) for the mammary gland for the lactation. Finally it was also proved that there is a correlation between hematic parameters in the pre-partum and the pathologies of the first days of lactation; imbalances in the energetic metabolism during the pre-partum predispose to developing of clinical disease.
2. PREMESSA

Il periodo di transizione nelle bovine da latte è caratterizzato da alterazioni ormonali e metaboliche che esitano in un bilancio energetico negativo (BEN). Nel corso di questo periodo, i principi nutritivi vengono utilizzati principalmente a favore del feto (prepartum) e della ghiandola mammaria (postpartum), nello stesso momento in cui l’assunzione giornaliera di sostanza secca (DMI) sta diventando inadeguata in relazione al fabbisogno energetico crescente. Ne consegue un aumento del catabolismo dei tessuti adiposo e muscolare. Per favorire il reindirizzamento dei principi nutritivi verso il feto e la ghiandola mammaria, la bovina sviluppa un fenomeno di insulino-resistenza nei tessuti periferici. La mobilizzazione dal tessuto adiposo di elevati tassi di lipidi che passano come NEFA nel sangue esita in un accumulo di trigliceridi nel fegato e nel conseguente sviluppo di uno stato di chetosi. Inoltre, le variazioni metaboliche e ormonali proprie del periodo del periparto favoriscono l’incidenza di patologie caratteristiche del primo periodo di lattazione. Assicurare alle bovine una corretta assunzione di energia per evitare squilibri nel metabolismo energetico significa ridurre la probabilità di comparsa di malattie che rappresentano un grave problema per l’allevamento e che comportano continue perdite economiche a carico dell’allevatore, dovute principalmente a una diminuzione della produzione di latte, ad un aumento della riforma degli animali e a maggiori spese per prestazioni veterinarie e terapie.

Lo scopo di questa tesi sarà quello di monitorare l’andamento di glucosio, insulina, NEFA e BHB in seguito alla somministrazione del carico di glucosio in due distinti momenti (pre-parto e post-parto). Inoltre verrà preso in considerazione il rapporto tra l’incidenza delle principali patologie metaboliche riscontrate all’inizio della lattazione e le variazioni riportate nei parametri del metabolismo energetico nel pre-parto in seguito alla somministrazione del carico di glucosio.
3. INTRODUZIONE

Negli ultimi decenni l’allevamento della bovina da latte si è evoluto verso una forma di tipo intensivo, in risposta alla necessità di adattarsi a criteri economicamente soddisfacenti: mentre il numero totale delle aziende è in continua diminuzione, aumenta la media del numero di capi per allevamento e la media di produzione di latte per singola bovina. Grazie a nuove tecniche di alimentazione e al miglioramento genetico delle razze, negli anni si è ottenuto un considerevole incremento delle performance individuali delle bovine. A questo ha corrisposto un deciso salto di qualità nei metodi di gestione: il lavoro umano è stato ampiamente rimpiazzato dai mezzi meccanici; anche le operazioni di osservazione e di esame diretto dei singoli animali allevati (ad esempio per l’individuazione dei calori, delle mastiti e per il controllo dello stato di salute degli animali), a causa delle notevoli difficoltà dovute all’elevato numero di capi da gestire, sono state in parte sostituite da sistemi tecnologici e informatizzati che hanno permesso di ridurre la presenza ed il numero degli operatori in stalla, di effettuare con maggiore rapidità le procedure operative e, all’allevatore, di dedicare sempre più tempo a compiti di natura tecnico-manageriale.

correlata alla produzione di latte, ma anche ad altre variabili, legate alla gestione nutrizionale e aziendale degli animali.

E’ importante ricordare infatti che le patologie da produzione sono dovute più probabilmente a degli squilibri tra richiesta e assunzione effettiva di energia e nutrienti, più che a un aumento della sola energia utilizzata. Questi squilibri diventano particolarmente evidenti durante il periodo di transizione; infatti la più alta incidenza di patologie da produzione si concentra nei primi 10 giorni post-parto (Ingvartsen et al., 2003).

Il periodo di transizione è l’intervallo di tempo che va da 3 settimane prima del parto a 3 settimane dopo il parto (Grummer, 1995). Il termine della gravidanza e l’inizio della lattazione sono accompagnati da cambiamenti significativi del profilo endocrino e metabolico della bovina: aumenta la richiesta di nutrienti per lo sviluppo del feto e per la lattogenesi imminente nello stesso momento in cui si verifica una diminuzione nell’assunzione di alimento (e quindi di energia), che viene misurata come ingestione di sostanza secca (Dry Matter Intake o DMI). Questa subisce un calo progressivo da 20 a 40% durante le ultime 3 settimane di gestazione e in questo modo viene a crearsi uno stato di bilancio energetico negativo (BEN) che compromette la capacità della bovina di far fronte ai cambiamenti fisiologici in atto (Van Saun, 1991). Inoltre, nello stesso periodo si riscontra un certo grado di immunosoppressione, dovuta sostanzialmente a fattori ambientali stressanti a cui è sottoposta la bovina, che quindi risulta essere più suscettibile allo sviluppo di infezioni.

Le malattie da produzione sono state definite recentemente come l’influenza dell’elevata produttività e del management aziendale su fattori quali il benessere, lo stato immunitario e l’espressione genetica dell’animale (Herdt, 2006). Oltre alle patologie tradizionali legate a squilibri metabolici, come la chetosi, l’ipocalcemia e l’ipomagnesiemia, è possibile includere nella definizione patologie con una base metabolica, quali la dislocazione dell’abomaso, la ritenzione placentare e la laminite oltre che patologie di natura infiammatoria e infettiva, come mastiti e metriti.

Raramente i problemi che si verificano nel periodo di transizione sono degli eventi isolati, ma piuttosto sono da considerarsi come eventi complessi e interconnessi tra loro, che
coinvolgono la bovina sotto diversi aspetti. Ad esempio l’immunosoppressione sembra essere la causa principale della ritenzione placentare essendo fondamentale la migrazione dei leucociti in utero per il corretto distacco tra tessuti materni e fetali (Le Blanc, 2008), mentre le bovine sovralimentate nel periodo che precede il parto sono più predisposte a sviluppare ipocalcemia, che esacerba l’immunosoppressione e aumenta il rischio di chetosi e ritenzione della placenta (Houe et al., 2001). Le vacche in bilancio energetico negativo prima del parto sono più soggette alla dislocazione dell’abomaso nella lattazione successiva (Le Blanc et al., 2005 a,b), questo perché alla riduzione dell’ingestione consegue una diminuzione del riempimento del rumine che permette quindi una maggior possibilità di movimento dell’abomaso. Le bovine che presentano acidosi ruminale più probabilmente svilupperanno laminiti e subiranno un eccessivo bilancio energetico negativo (Enemark, 2008).

E’ chiaro, quindi, come stato energetico dell’animale, sistema immunitario e disordini metabolic i in un periodo critico come quello di transizione siano interconnessi tra loro e abbiano importanti ripercussioni sia sulla sfera produttiva che sulla sfera riproduttiva dell’animale.

Nel corso degli ultimi trent’anni si è intensificato il lavoro di ricerca per comprendere i meccanismi che correlano le patologie del periparto con la nutrizione e il management aziendale. Su questi due aspetti si deve basare un piano di controllo e di prevenzione in allevamento, volto a limitare la comparsa delle patologie più frequenti nella bovina da latte ad alta produzione e a massimizzare la fase produttiva e riproduttiva dell’azienda.

3.1 METABOLISMO ENERGETICO NELLA BOVINA DA LATTE

3.1.1 Bilancio del glucosio

Il glucosio svolge un ruolo cruciale nel metabolismo della bovina, sia per i fabbisogni di mantenimento che per il sostentamento delle funzioni produttive, come l’accrescimento e la lattazione. In particolare riveste importanza nella vacca da latte a causa dell’ingente quantitativo richiesto dalla mammella per la produzione del latte; il glucosio infatti è il
precursore per la sintesi del lattosio, che controlla il volume di latte fungendo da agente osmotico (Zhao and Keating, 2007).

In uno studio condotto da Annison et al. (1974) è emerso che il lattosio incide per il 69,4% sul glucosio assorbito dalla mammella. A partire da questo dato e assumendo che il contenuto di lattosio nel latte sia del 48% si può calcolare la richiesta di glucosio giornaliera per una bovina che produce al giorno 60 kg di latte, che risulterà essere di oltre 4 kg al giorno. Nelle vacche in lactazione la richiesta di glucosio varia a seconda della quantità di latte prodotto; secondo i dati forniti da Annison et al. (1974) all’aumentare della produzione di latte la mammella accresce la quantità di glucosio assorbito sul totale disponibile: nello studio effettuato si passò da un 20% del totale per una produzione giornaliera di 6 kg di latte ad un 90% per una produzione di 25 kg di latte.

Il glucosio ha quindi un ruolo fondamentale nella lactazione, ma anche nel mantenimento degli altri tessuti che lo utilizzano mediante ossidazione o per la produzione di trigliceridi nel tessuto adiposo.

Nei ruminanti la quantità di glucosio assorbita come tale nell’apparato gastroenterico è molto scarsa (Baird et al., 1983), poiché le fermentazioni batteriche ruminali determinano la demolizione immediata del glucosio che proviene dall’alimento; in questo modo quasi tutti i carboidrati non raggiungono l’intestino per la digestione ghiandolare e l’assorbimento sotto forma di glucosio. Ne deriva che tutto il glucosio disponibile, in queste specie, sia il risultato del processo di gluconeogenesi: i fabbisogni di glucosio nel bovino sono soddisfatti dalla sua sintesi operata principalmente a livello epatico a partire dagli acidi grassi volatili prodotti dalle fermentazioni ruminali (primo fra tutti il propionato), dagli amminoacidi gluconeogenici, dal lattato, dal glicerolo e da altri acidi grassi (Leng, 1970).

Su una base quantitativa è il propionato il precursore principale per la sintesi del glucosio, arrivando a fornire fino al 76% del glucosio sintetizzato dal fegato (Reynolds et al., 1994). Quasi tutto il propionato assorbito dal rumine giunge per via portale al fegato, senza mai entrare nel circolo sistemico; ciò fa sì che tutto il propionato venga utilizzato per la gluconeogenesi, entrando nel ciclo di Krebs come succinato e portando alla formazione di ossalacetato, il primo metabolita del processo gluconeogenico.
La quantità di propionato dipende dalla quantità di alimento ingerito, per cui in caso di bilancio energetico negativo la sintesi di glucosio avviene in maggior misura a carico di lattato, glicerolo, amminoacidi e acidi grassi provenienti dai tessuti.

La seconda fonte di glucosio, in ordine di importanza, è rappresentata dagli amminoacidi: quasi tutti possono concorrere alla sintesi di glucosio, ma è l’alanina a fornire il maggior contributo e ad essere assorbita in quantità maggiori a livello portale.

Per quanto riguarda il lattato, che riveste un ruolo di minor importanza, la captazione a livello epatico dipende dalla disponibilità degli altri precursori (Reynolds, 1995): all’aumentare della concentrazione portale di propionato e alanina aumenta la loro captazione e diminuisce quella del lattato. Ciò permette un maggior approvvigionamento di lattato ai tessuti periferici, dove può essere usato come fonte di energia o per la sintesi di riserve adipose (Benson et al., 2002).

3.1.2 Bilancio energetico negativo

Nel periodo del periparto è fondamentale che la bovina assuma una quantità di energia sufficiente per sostenere in maniera ottimale il proprio mantenimento, quello del feto e l’incombente produzione di latte.

L’energia giornaliera necessaria per una vacca da latte in asciutta del peso di 700 Kg è di 11,5 MCal di energia netta a 220 giorni di gestazione e arriva a 13 MCal intorno ai 270 giorni di gestazione, in quanto la richiesta di energia da parte del feto aumenta progressivamente all’avvicinarsi del parto. Il consumo metabolico del feto infatti, misurato come peso specifico del consumo di ossigeno, nell’ultimo periodo della gravidanza, è circa il doppio di quello della madre (Reynolds et al., 1986).

All’inizio della lattazione l’energia necessaria aumenta drasticamente a causa del repentino aumento della produzione di latte (Goff and Horst, 1997): solo pochi giorni dopo il parto il fabbisogno energetico della bovina è di 25 MCal al giorno, considerando una produzione media di 20 litri di latte, mentre in concomitanza del picco di lattazione, che avviene solitamente dalle 4 alle 8 settimane dopo il parto, l’energia giornaliera
richiesta aumenta fino a 45 MCal per una produzione media di 45 litri (National Research Council 2001).

Il bilancio energetico negativo è un problema legato all’alta produzione di energia a cui non corrisponde un’adeguata ingestione di sostanza secca; si riscontra nelle bovine nel primo periodo di lattazione, ma anche nelle ultime settimane di gestazione (Grummer et al., 2004). Verso la fine della gravidanza la DMI subisce infatti un calo dovuto prevalentemente all’ingombro fetale che va a ridurre il volume del rumine e quindi la capacità di ingestione della vacca.

L’animale si trova in bilancio energetico negativo anche durante il picco di lattazione, poiché in questo momento l’assunzione di sostanza secca, che raggiunge il suo apice solo intorno alle 10-22 settimane post-parto, è ancora insufficiente a garantire il dovuto apporto energetico (Beam and Butler, 1997; Butler, 2000).

Il BEN raggiunge il suo punto massimo negativo attorno ai 14 giorni di lattazione e dura fino ai 70 giorni di lattazione circa (Doepel et al., 2002).

Con l’inizio della lattazione, oltre al dispendio energetico, subisce un aumento anche la domanda di calcio, il principale minerale contenuto nel latte; pure in questo caso gli “input” non bastano a eguagliare gli “output” e infatti si sa che nei primi giorni dopo il parto le bovine manifestano uno stato di ipocalcemia da moderata a considerevole (Reinhardt et al., 2011), che va a complicare ulteriormente lo squilibrio metabolico che caratterizza questo periodo delicato.

Uno stato di bilancio energetico negativo ha un ruolo chiave nello sviluppo di patologie del periparto e nel calo delle performance produttive e riproduttive della bovina: in caso di deficit energetico la vacca mobilizza le proprie riserve di grasso e di proteine per assicurarsi l’energia necessaria a promuovere lo sviluppo del feto e la produzione di latte, dando origine alla formazione di NEFA (acidi grassi non esterificati) e BHB (Beta-lidrossibutirrato, uno dei principali corpi chetonici). Questi metaboliti vanno ad alterare le normali funzioni fisiologiche dell’organismo, intervenendo in modo negativo principalmente sul fegato, sulla riproduzione e sul sistema immunitario. Ospina et al. (2010) hanno dimostrato come alti livelli di NEFA e BHB siano associati ad un aumento
dell’ incidenza di dislocazioni di abomaso e chetosi clinica, e ad una diminuzione del tasso di gravidanza e della produzione di latte.

La misura della concentrazione di NEFA e BHB circolanti può essere utile come indicatore della capacità della bovina di far fronte ai cambiamenti metabolici del periodo di transizione: la concentrazione serica di NEFA e BHB ci dà un’indicazione, rispettivamente, del grado di mobilizzazione e di ossidazione dei lipidi e riflette il successo della vacca nell’adattarsi al bilancio energetico negativo (Herdt, 2000). Recentemente sono stati determinati i livelli soglia di questi metaboliti al fine di identificare i soggetti a rischio di patologie e disturbi riproduttivi (Chapinal et al., 2011, 2012), in modo tale da prevenire eventuali perdite economiche legate all’incapacità da parte della bovina di adattarsi al BEN.

La notevole attività catabolica, diretta conseguenza del BEN, è testimoniata dalla variazione in negativo della condizione corporea, a causa della imponente lipomobilizzazione, dovuta all’utilizzo delle riserve di tessuto adiposo come fonte di energia (Drakley et al., 2001). Questo cambiamento nell’utilizzo delle fonti disponibili di energia è il risultato di una serie di alterazioni nella concentrazione e nella risposta ad alcuni ormoni che influenzano il fegato, il tessuto adiposo, il muscolo scheletrico e la mammella. Queste alterazioni sono definite come “cambi omeoretici” (Bauman and Currie, 1980).

3.1.3 Meccanismi di adattamento al bilancio energetico negativo

Durante il periodo di asciutta il fabbisogno energetico è facilmente soddisfatto. Alti livelli di insulina permettono ai grassi e alla muscolatura striata di assorbire il glucosio circolante, inoltre inibiscono la lipolisi a livello epatico facendo sì che i NEFA vengano trasformati in VLDL (Very Low Density Lipoprotein), convertite poi in tessuto adiposo.

Nel periodo della gravidanza la bovina attua una serie di strategie metaboliche volte a fornire nutrienti ed energia al feto. Queste strategie includono cambiamenti del metabolismo non solo dei carboidrati e delle proteine, ma anche a livello lipidico. Si assiste infatti ad un aumento della gluconeogenesi epatica, ad una ridotta utilizzazione
del glucosio nei tessuti periferici, ad un moderato aumento della mobilizzazione di NEFA dal tessuto adiposo, associato a un aumento dell’utilizzazione periferica di NEFA e del loro metabolismo epatico (Bell, 1995).

L’aumento del metabolismo lipidico non permette al feto di ricavare direttamente energia dai substrati che ne derivano, ma favorisce il risparmio del glucosio materno a vantaggio del feto stesso.

Questi meccanismi di adattamento sono caratterizzati da una forte diminuzione della concentrazione basale dell’insulina e del rilascio dell’insulina pancreatica glucosio-indotta (Bell, 1995; Holtenius et al., 2003), oltre che da una moderata insulina-resistenza, che è stata osservata in diverse specie di mammiferi durante la gravidanza (Pére et al., 2000).

Ciò esita in una diminuita capacità dell’insulina di inibire la lipolisi e promuovere la lipogenesi, e favorisce così la mobilizzazione delle riserve di grasso materne. È stato dimostrato come all’inizio della lattazione la soppressione della lipogenesi sia associata a bassi livelli plasmatici di insulina (Hart et al., 1978).

La diminuzione della concentrazione basale di insulina assume un ruolo importante anche dopo il parto, nella prima fase di lattazione, avendo la finalità di permettere un maggior assorbimento di glucosio a livello della mammella, a discapito del tessuto adiposo e del muscolo scheletrico. Si sa infatti che nei muscoli striati e nel tessuto adiposo sono predominanti i canali di trasporto del glucosio GLUT4 insulino dipendenti, mentre nella mammella, nei tessuti fetali e nel fegato si trovano principalmente i GLUT1, 2 e 3 che agiscono in maniera indipendente dall’insulina (Zhao et al., 2006; Zhao and Keating, 2007).

Così una bassa concentrazione di insulina riduce fortemente l’azione dei GLUT4 e quindi l’assorbimento del glucosio nei muscoli scheletrici e nel tessuto adiposo, aumentando la disponibilità di glucosio per i tessuti insulino indipendenti.

L’assorbimento del glucosio è costante e la mammella può consumare il 97% di tutta l’energia disponibile fornita attraverso l’alimentazione (Drackley, 1999). La mammella può, inoltre, utilizzare l’85% di tutto il glucosio ematico (Knight et al, 1994).

Alla diminuzione dei livelli ematici di insulina si associa un aumento del glucagone, il quale attiva direttamente i meccanismi gluconeogenetici a livello epatico al fine di aumentare il livello di glucosio circolante.
Nelle prime settimane di lattazione la produzione di glucosio epatico aumenta più del doppio rispetto al periodo dell’asciutta (Reynolds et al., 2003); la piruvato carbossilasi e la fosfoenol piruvato carbossilasi, enzimi coinvolti nella gluconeogenesi, subiscono un importante incremento nella loro attività. Di conseguenza risulta fondamentale garantire alla bovina un’adeguata quantità di propionato tramite la dieta, essendo questo il maggior precursore per la sintesi epatica di glucosio.

Un altro fattore importante che interviene nell’ultimo periodo di gravidanza è l’ormone della crescita, anche conosciuto come somatotropina (GH), che ha un ruolo fondamentale nella crescita e nel metabolismo degli animali; la sua concentrazione aumenta durante la gravidanza fino ad arrivare a un picco al momento del parto. Nel complesso il GH contribuisce all’alterazione della risposta all’insulina da parte dei tessuti, che porta a una moderata produzione di glucosio, una diminuzione della gluconeogenesi e ad un aumento della lipolisi a discapito del processo di lipogenesi. E’ stato dimostrato che nel fegato il GH diminuisce la risposta insulino-media con inibizione degli enzimi della gluconeogenesi, aumentando la produzione di glucosio epatico (Dunshae et al., 1992).

In uno studio di Bauman and Vernon (1993) è stato dimostrato che le bovine trattate con somatotropina riducono il tasso di lipogenesi e l’attività degli enzimi coinvolti in essa nel tessuto adiposo, apparentemente tramite un meccanismo di inibizione della risposta all’insulina. Inoltre la somatotropina amplifica la risposta lipolitica alle catecolamine (Sechen et al., 1990).

Nel muscolo e nel tessuto adiposo il GH diminuisce l’azione dei GLUT4 (Zhao and Keating, 2007), fatto che porta ad una diminuzione dell’ossidazione del glucosio nei tessuti periferici in favore dell’assorbimento del glucosio a livello mammario.

L’ormone della crescita ha un ruolo importante anche come fattore galalattopoietico, in quanto stimola la produzione di latte, una volta che la lattazione è iniziata (Bauman and Vernon, 1993).

Durante il periodo di transizione nella bovina aumenta anche la risposta a fattori adrenergici quali le catecolamine, che vanno ad amplificare il processo della lipolisi a livello di tessuto adiposo. E’ stato infatti osservato che si verifica un incremento...

3.2 INSULINO RESISTENZA

Sappiamo che un certo grado di insulinor resistenza (IR) si manifesta nella vacca da latte verso fine gravidanza, quando il bilancio energetico incomincia ad essere negativo e il GH è basso (Rhoads et al., 2004) e causa un aumento della lipolisi mobilizzando le riserve materne.

L’insulino resistenza si può definire come una condizione in cui sono necessari livelli di insulina più alti del normale per ottenere risposte metaboliche normali (Kahn, 1978). Qualsiasi disturbo nella regolazione del metabolismo energetico da parte dell’insulina può essere associato allo sviluppo di disordini metabolici, tra cui steatosi epatica e chetosi.

Il meccanismo molecolare dell’insulino resistenza può essere localizzato a diversi livelli:
- prima dell’interazione dell’insulina con i recettori, per cui la causa è da riscontrarsi in una diminuita produzione di insulina o in una sua aumentata degradazione o in entrambi questi processi;
- a livello recettoriale, con un’alterata interazione dell’insulina con i suoi recettori, questo può essere dovuto a un diminuito numero di recettori o a una minor affinità di legame;
- a livello post-recettoriale per difetti associati a danneggiamento del segnale intracellulare.

Riassumendo: alterazioni a livello pre-recettoriale causano ipoinsulinemia, alterazioni a livello dei recettori causano una ridotta risposta insulinica e alterazioni a livello post-recettoriale riducono la sensibilità all’insulina (Kahn, 1978).

L’importanza che ha assunto l’insulino resistenza come fattore eziologico primario nella comparsa di disturbi metabolici ha reso necessario lo sviluppo di metodi per misurare la sensibilità all’insulina.
Vi sono diversi metodi per valutare la sensibilità all’insulina: è possibile misurarla tramite un’infusione di insulina e verificarne la risposta sistemica all’infusione oppure, per via indiretta senza somministrazione di insulina, si misura la sua concentrazione serica.

Per la complessità di svolgimento ed anche per la relativa scarsa sicurezza dei metodi che misurano la sensibilità all’insulina attraverso una sua infusione, in campo buiatrico sì è preferito usare test di tolleranza del glucosio (Glucose Tolerance Test, GTT) per indagini cliniche, nonostante nelle vacche da latte circa l’80% dell’assorbimento di glucosio avvenga indipendentemente dall’insulina (Rose et al., 1997), fatto che può ridurre l’efficienza dell’utilizzo di questi test.

Il GTT misura la velocità di clearance del glucosio dal flusso sanguigno, e quindi indirettamente anche l’azione dell’insulina; è un esame pratico e semplice per misurare l’insulino resistenza (cioè l’intolleranza al glucosio) e permette di valutare i parametri del glucosio quali le concentrazioni basali e di picco, la frequenza di scomparsa nel plasma, l’emivita, il tempo per raggiungere il livello basale e l’area sottostante la curva del glucosio (Chagas et al., 2009).

Nel corso del GTT, il rapporto moliare insulina:glucosio nel plasma può essere il miglior indicatore di IR (Hayirli, 2006).

Gli animali resistenti all’insulina hanno una permanenza prolungata di glucosio nel sangue, e mostrano un picco più elevato e prolungato di insulina dopo una somministrazione di glucosio in endovenosa (Hove, 1978). È stato dimostrato che nel terzo trimestre di gravidanza nella bovina la risposta insulinica al glucosio endovenoso è aumentata di 3-3.5 volte (Catalano et al., 1991), come tentativo iniziale di risposta a uno stato di insulino resistenza nel periodo del periparto.
3.3 DIABETE MELLITO

L’insulino-resistenza è un elemento caratteristico della maggior parte dei soggetti con diabete mellito e si riscontra quasi costantemente nei soggetti diabetici obesi; inoltre è il più importante fattore predittivo della successiva progressione a diabete.

L’insulino-resistenza comporta un minore assorbimento del glucosio nelle cellule muscolari e nel tessuto adiposo e aumenta la produzione epatica di glucosio (Kasper et al, 2005).

Per diabete mellito si intende un disordine metabolico ad eziologia multipla caratterizzato da iperglicemia cronica con disturbi del metabolismo di carboidrati, lipidi e proteine, conseguente ad una alterazione della secrezione o dell’azione dell’ insulina.

La presenza nel sangue di elevate concentrazioni di glucosio può esser dovuta a una carenza di insulina assoluta o relativa (Fedele, 1999).

Il diabete mellito di tipo 1A è causato da una distruzione autoimmunitaria delle cellule β del pancreas che porta a deficit insulinico; i soggetti affetti da diabete mellito di tipo 1B sviluppano deficit insulinico idiopatico; il diabete mellito di tipo 2, invece, è un gruppo eterogeneo di alterazioni caratterizzate da gradi variabili di insulino resistenza, alterata secrezione insulinica e aumentata produzione di glucosio (Kasper et al., 2005).

Nelle fasi precoci dello sviluppo del diabete di tipo 2, la tolleranza glucidica permane nella norma, nonostante la resistenza insulinica, poiché le cellule β del pancreas attuano un compensatorio aumento del rilascio di insulina. Questo stato iperinsulinemico è una iniziale compensazione alla resistenza periferica, ma alla lunga la compensazione delle cellule β diventa inadeguata e avviene la progressione verso il diabete conclamato (Kumar et al., 2006) con deterioramento delle isole pancreatiche e conseguente diminuzione della produzione di insulin.

Quando la secrezione insulinica è insufficiente a contrastare lo stato di insulino-resistenza indotto dalla gravidanza, si creano i presupposti per l’insorgenza di un diabete mellito gestazionale (Freinkel e Metzger, 1979). In seguito a uno studio effettuato da Gonzales et al. (2000), si pensa che la sensibilità dei tessuti all’insulina dipenda dall’azione svolta dall’estradiolo e dal progesterone, sui recettori insulinici: il ruolo del progesterone, la cui
concentrazione aumenta durante la gravidanza, sembra essere quello di ridurre la sensibilità all’insulina, e contrasta con l’azione del 17β-estradiolo.

3.4 DISORDINI METABOLICI LEGATI AI LIPIDI

Il processo della lipomobilizzazione, regolato principalmente dall’insulina, causa una diminuzione delle riserve corporee della bovina, ed è pertanto misurabile tramite il controllo del Body Condition Score (BCS). La perdita di BCS tra il parto e il picco di lattazione normalmente va da 0,5 a 1 punto, su una scala di 5 punti (Edmondson et al, 1989). La perdita di 1 punto di BCS si riferisce a una diminuzione del 7-8% del peso corporeo (circa 60 Kg) e fornisce approssimativamente 417 MCal di energia netta (Oikawa and Otzel, 2006).

La lipolisi causa un aumento del livello di acidi grassi liberi nel sangue che inizia ad aumentare prima del parto e raggiunge il suo picco subito dopo il parto proprio mentre i valori di glucosio e di insulina raggiungono i valori minimi (Grummer, 2008). I NEFA (acidi grassi non esterificati) possono anche raggiungere una concentrazione di 1000 µmol/l per diverse settimane (Holtenius et al, 2003).

Tramite il torrente circolatorio gli acidi grassi raggiungono il fegato, dove possono seguire due vie: subire un processo di ossidazione all’interno dei mitocondri, che porta alla produzione di energia, oppure essere trasformati in trigliceridi per essere depositati o ridistribuiti. I NEFA in eccesso a livello epatico che non rientrano nel processo dell’ossidazione vengono riesterificati a trigliceridi (Van den Top, et al 1995). Questi vengono coniugati con la apolipoproteine per formare le Very Low Density Lipoprotein (VLDL), che sono poi immesse nel torrente circolatorio. Avendo i ruminanti una ridotta capacità di sintesi della apolipoproteine epatiche, la produzione di VLDL risulta insufficiente per coniugare la grande quantità di acidi grassi messa in circolo dal processo di lipomobilizzazione. In questo modo gli acidi grassi vengono depositati nel fegato.

La steatosi epatica si sviluppa quando la captazione epatica dei lipidi supera la capacità di ossidazione e secrezione degli stessi da parte del fegato. I lipidi in eccesso vengono così immagazzinati nel fegato come triacilglicerolo (TAG) e sono associati a una ridotta
funzionalità epatica (Drackley, 1999). Nella bovina la steatosi epatica si riscontra principalmente nelle prime 4 settimane post-parto (Grummer, 1993), in corrispondenza del bilancio energetico negativo. L’accumulo di lipidi, che generalmente si misura come percentuale di peso dovuto ai TAG sul peso totale del fegato, è più marcato nelle vacche obese (BCS>4) (McNamara, 2000): in questi animali l’ingestione è maggiormente depressa in prossimità del parto, questo agrava ancora di più il bilancio energetico negativo e porta quindi a una più severa lipomobilizzazione (Stockdale, 2001).
L’aumento dei NEFA nel plasma è stato associato allo sviluppo di IR nelle bovine da latte in studi condotti mediante digiuno a breve termine (Oikawa and Oetzel, 2006) o infusione endovenosa di lipidi (Pires et al., 2007). In entrambi i casi, livelli di NEFA più elevati causarono IR e un trattamento per ridurre i NEFA ripristinò rapidamente la sensibilità all’insulina.
La diretta conseguenza dell’incapacità da parte del fegato di ossidare o redistribuire gli acidi grassi è lo sviluppo di una condizione di chetosi. Elevati livelli di NEFA aumentano la lipogenesi e la chetogenesi negli epatociti (Cadorniga-Valiñño et al., 1997).
In assenza di ossalacetato il ciclo di Krebs non può essere portato a termine e l’acetil coA, derivato dal metabolismo degli acidi grassi, viene convertito a livello epatico in acetato e betaidrossibutirrato, (corpi chetonici); l’ossalacetato, oltre ad essere un intermedio del ciclo di Krebs, è un metabolita dell’acido propionico, il quale si forma nel rumine a partire dai carboidrati fermentescibili presenti nella dieta. Pertanto per limitare il processo di lipomobilizzazione e di chetogenesi risulta di primaria importanza assicurare alla bovina sia una sufficiente ingestione di sostanza secca, che una dieta qualitativamente adeguata a soddisfare la richiesta di precursori gluconeogenici.
La chetosi è quindi un disordine nel metabolismo di carboidrati e lipidi caratterizzato da un aumento nella concentrazione di corpi chetonici (i principali sono il beta-idrossibutirrato, l’acetoacetato e l’acetone) nel sangue (chetonemia), nelle urine (chetonuria), nel latte e negli altri fluidi corporei.
Nel sangue la concentrazione normale di BHBA è <1 mmol/l (Filar, 1979). Da recenti studi il valore soglia per classificare animali in condizione di chetosi sub-clinica è stato identificato ad 1,4 mmol/l (Duffield, 1997; Geishauser et al., 2001); animali con...
concentrazioni di BHBA >2,6 mmol/l sono considerati in condizione di chetosi clinica (Duffield, 2000).
Da un punto di vista biochimico le bovine in chetosi presentano ipoinsulinemia, iperchetonemia, ipoglicemia, chetonuria e una diminuzione dei valori epatici di glicogeno. La chetosi causa perdite economiche dovute alla diminuzione della produzione di latte e dell’efficienza riproduttiva e all’aumento dei costi di trattamento, soprattutto se si manifesta in maniera subclinica e quindi più difficilmente diagnosticabile. Inoltre le bovine con concentrazioni di BHBA al di sopra di 1,0 o 1,4 mmol/l sono 3,2 e 4,3 volte più a rischio di malattie del periparto (Van Saun, 2004 a, b).

3.5 STATO INFIAMMATORIO E IMMUNODEPRESSIONE

Il periodo del puerperio nelle bovine da latte è spesso caratterizzato da stati infiammatori (Cappa et al., 1989). Questa condizione è probabilmente il risultato del rilascio di citochine pro infiammatorie (Grimble, 1990), prime fra tutte l’interluchina 6 (IL-6) e il tumor necrosis factor α (TNF-α); recentemente sono state messe in evidenza da Drackley et al. (2005) numerose cause di rilascio di tali citochine nel periodo del periparto, quali malattie infettive o metaboliche, parassitosi, traumi, endotossine e fattori stressanti.
Il potenziale effetto delle citochine pro infiammatorie nella bovine durante il periodo di transizione può variare in base alla durata del loro rilascio; comunque le conseguenze principali coinvolgono l’attività riproduttiva, la sintesi a livello epatico e l’anoressia.
Nel fegato stimolano la produzione delle proteine positive della fase acuta, come l’aptoglobina, e inibiscono la sintesi delle proteine negative della fase acuta, come l’albumina (Fleck, 1989). Inoltre inducono stress immunitario e peggiorano lo stato anoressico intorno al periodo del parto; interferiscono anche con il rilascio di LH, che può dare disturbi dell’attività riproduttiva (Braden et al., 1998).
Tutti questi effetti possono contribuire a una diminuzione della produzione lattea (Bionaz et al., 2007) e della fertilità (Calamari et al., 1997; Bertoni et al., 2000); in particolare i maggiori problemi di fertilità sono stati riscontrati nelle bovine che presentavano malattie del periparto e patologie infettive come la mastite (Schrick et al., 2001).
Le citochine possono esacerbare il bilancio energetico negativo (Pryce et al., 2001) e aumentare il rischio di steatosi epatica (Katoh, 2002) e in particolare il TNF-α ha dimostrato essere un fattore importante per il determinarsi dell’insulino resistenza in quanto causa una transiente inibizione del meccanismo di rilascio glucosio-dipendente dell’insulina (Kushibiki et al., 2000). Ametaj et al. (2002) hanno dimostrato infatti che l’accumulo epatico di lipidi (dovuto all’incremento della lipolisi per diminuita azione dell’insulina) può essere preceduto da un aumento della concentrazione di TNF-α.

I disturbi metabolici possono avere un effetto negativo sull’immunità dell’organismo, soprattutto nel periodo di transizione dove vi sono anche cambiamenti endocrini in atto. La steatosi epatica può interferire con la risposta immunitaria direttamente, alterando la capacità del fegato di sintetizzare e degradare i componenti del sistema immunitario (Katoh, 2002), oppure indirettamente intervenendo nei cambiamenti metabolicci e ormonali che influiscono sulle funzioni immunitarie (Breukink and Wensing, 1997).

Se si sviluppa una condizione di chetosi, che come già accennato spesso segue ad uno stato di steatosi epatica, anche l’azione linfocitaria è depressa (Sato et al., 1995).
4. MATERIALI E METODI

La raccolta dei dati analizzati in questo studio è stata effettuata da ottobre 2011 a febbraio 2012 in due aziende di bovine da latte di razza Frisona ad alta produzione (circa 100 quintali/capo per lattazione). Nel progetto sono state incluse 42 vacche pluripare equamente distribuite tra i due allevamenti. La prima azienda, denominata A, è situata nella provincia di Padova, e ha un numero medio di vacche in lattazione pari a 250; l’azienda B si trova invece nella provincia di Vicenza e ha mediamente 120 vacche in lattazione. Entrambi gli allevamenti effettuano un periodo di asciutta di 60 giorni e uno steaming-up di 15 giorni prima del parto.

4.1 PROCEDURA SPERIMENTALE

La scelta delle bovine oggetto di studio è stata effettuata valutandone lo stato di salute e l’assenza di sintomatologia clinica manifesta. Gli animali scelti sono stati sottoposti alle procedure sperimentali in due momenti: 7 giorni prima del parto e 7 giorni dopo il parto. Sia nel periodo pre-parto, che nel periodo post-parto sono stati effettuati:

- determinazione del Body Condition Score (BCS)
- un test da carico del glucosio in campo con successivi prelievi di sangue sequenziali per successive analisi di laboratorio
- determinazione della glicemia e della chetonemia di campo

Nel periodo post-parto sono stati rilevati anche i dati clinici e produttivi delle bovine.

4.1.1 Determinazione del Body Condition Score

Il BCS (Body Condition Score) è un metodo descritto da Edmonson et al. (1989) usato per valutare la condizione corporea delle bovine; in base allo stato di ingrasamento l’animale viene inserito in una scala che va da 1 a 5, dove un punteggio di 1 indica un animale emaciato, mentre ad un animale obeso viene assegnato il punteggio di 5; sono previsti
punteggi intermedi di un quarto di punto. Il BCS delle bovine è stato determinato sia prima che dopo il parto.

4.1.2. Test da carico del glucosio

Ogni bovina è stata sottoposta a due test da carico del glucosio: il primo effettuato 7 giorni prima del parto e il secondo 7 giorni dopo il parto.

La tecnica utilizzata per l’esecuzione del test è la seguente: il prelievo viene eseguito a livello della vena giugulare, dopo la cattura e il contenimento dell’animale, con un ago 22G e un vacutainer (BD Vacutainer Systems®, Preanalytical Solutions, Plymouth, UK) contenente Litio-eparina. Questo prelievo (T0) ha lo scopo di misurare la glicemia e la chetonemia basali prima dell’infusione di glucosio.

Si procede poi somministrando con un deflusore una soluzione di glucosio al 50% ad una dose di 0,25 g/kg p.v. per via endovenosa (vena giugulare opposta a quella del prelievo precedente).

Conclusa l’infusione si effettuano 13 prelievi seriali secondo tempistiche stabilite: T2, T5, T10, T15, T20, T30, T40, T60, T80, T100, T120, T140, T160, a seconda dei minuti che trascorrono dalla fine dell’infusione. I campioni, una volta raccolti, sono stati refrigerati e conservati per successive analisi di laboratorio.

4.1.3 Determinazione della glicemia e della chetonemia di campo

Chetonemia e glicemia sono state misurate in campo al primo prelievo (T0), 10 minuti dopo l’infusione di glucosio (T10) e a 80 minuti da questa (T80), tramite uno strumento in uso anche in medicina umana per valutare la glicemia nei pazienti diabetici: l’OPTIUM XCEED.

L’OPTIUM XCEED è uno strumento di facile utilizzo e il suo funzionamento si basa su un principio di misura di tipo elettrochimico. Il campione da analizzare consiste semplicemente in una goccia di sangue.
Si inserisce nel misuratore un’apposita striscia reattiva, diversa a seconda che si voglia ottenere il valore di glicemia o di chetonemia. All’applicazione del campione di sangue sulla striscia, il glucosio (o il BHB) reagisce con le sostanze chimiche presenti sulla stessa. Questa reazione sviluppa una piccola corrente elettrica che viene misurata; il risultato di tale misurazione viene quindi visualizzato sul display dopo qualche secondo.

Il livello di entità di corrente varia a seconda della quantità di glucosio (o BHB) presente nel campione di sangue. Il range di misura del glucosio è di 20-500 mg/dl (11-278 mmol/l), mentre quello del BHB è di 0,0-8,0 mmol/l.

4.1.4 Dati clinici e produttivi

Nel periodo post-parto sono state inoltre valutate per esame diretto l’assenza (0) o la presenza (1) di ritenzione placentare, metrite, distocia, mastite, collasso puerperale, zoppia. I dati relativi alla produzione giornaliera di latte, alla percentuale di grasso e di proteine e al numero di cellule somatiche sono stati ottenuti dai tabulati APA relativi ai controlli funzionali mensili, facendo riferimento ai primi 4 controlli funzionali del periodo oggetto di studio.

4.2 ANALISI DI LABORATORIO

I campioni di sangue sono stati centrifugati entro 10 ore dalla raccolta. È stata utilizzata la centrifuga Labofuge 400 ad una velocità di 3500 giri al minuto per 10 minuti e il plasma ottenuto è stato stoccatn in aliquote conservate poi ad una temperatura di -18°C.

I parametri ematici analizzati in questa prova sono stati: NEFA(mEq/L), glucosio (mmol/L), insulina (pmol/L), BHB (mmol/L). Le analisi sono state effettuate presso il Laboratorio di Analisi di Clinica Medica dell’Istituto Zooprofilattico Sperimentale delle Venezie.

Il dosaggio dell’insulina presso l’IZS è stato effettuato mediante analizzatore biochimico automatizzato Immulite ONE della Medical system la cui metodica consiste nel dosaggio immunometrico in fase solida in chemioluminescenza amplificata dall’enzima.
I valori ematici di NEFA, glucosio e BHB sono stati misurati tramite l’utilizzo dell’analizzatore biochimico COBAS 501 della Roche.

4.3 ANALISI STATISTICA

I dati ottenuti sono stati sottoposti ad analisi statistica mediante l’uso del software SIGMA STAT 3.7 con l’analisi della varianza (ANOVA) al fine di valutare l’effetto del periodo (pre-parto vs post-parto) e dell’azienda (azienda A vs azienda B) sui parametri ematici, clinici e produttivi rilevati.
Sono state calcolate le correlazioni di Pearson tra tutti i parametri presi in considerazione.
E’ stata inoltre calcolata l’AUC (area under curve), totale e unitaria per minuto, di glucosio (in mmol/l la prima e mmol/l al minuto la seconda), insulina (in pmol/l la prima e pmol/l al minuto la seconda), NEFA (in mEq/l la prima e mEq/l al minuto la seconda) e BHB (in mmol/l la prima e in mmol/l al minuto la seconda).
5. RISULTATI

La tabella 1 mostra i valori della glicemia rilevati nei 42 animali oggetto di studio secondo le tempistiche stabilite, distinti nel periodo pre-parto e nel periodo post-parto, indipendentemente dall’azienda di origine.

Tabella 1. Media ± deviazione standard dei valori della glicemia distinti nel periodo pre-parto e post-parto.

<table>
<thead>
<tr>
<th>GLUCOSIO (mmol/l)</th>
<th>PERIODO</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRE-PARTO</td>
<td>POST-PARTO</td>
</tr>
<tr>
<td>T0</td>
<td>3,79±0,59*</td>
<td>3,37±0,93**</td>
</tr>
<tr>
<td>T0 campo</td>
<td>2,90±0,37*</td>
<td>2,46±0,40**</td>
</tr>
<tr>
<td>T2</td>
<td>10,54±1,87</td>
<td>10,50±1,93</td>
</tr>
<tr>
<td>T5</td>
<td>9,60±1,63</td>
<td>9,34±1,63</td>
</tr>
<tr>
<td>T10</td>
<td>8,74±1,51</td>
<td>8,41±1,26</td>
</tr>
<tr>
<td>T10 campo</td>
<td>7,24±1,21</td>
<td>7,04±1,25</td>
</tr>
<tr>
<td>T15</td>
<td>7,80±1,32</td>
<td>7,40±1,27</td>
</tr>
<tr>
<td>T20</td>
<td>7,12±1,43</td>
<td>6,63±1,27</td>
</tr>
<tr>
<td>T30</td>
<td>6,22±1,48</td>
<td>5,85±1,37</td>
</tr>
<tr>
<td>T40</td>
<td>5,50±1,18</td>
<td>4,99±1,05</td>
</tr>
<tr>
<td>T60</td>
<td>4,57±1,03*</td>
<td>4,03±0,96**</td>
</tr>
<tr>
<td>T80</td>
<td>4,14±0,80*</td>
<td>3,58±0,66**</td>
</tr>
<tr>
<td>T80 campo</td>
<td>3,27±0,78*</td>
<td>2,57±0,47**</td>
</tr>
<tr>
<td>T100</td>
<td>3,91±0,76*</td>
<td>3,48±0,55**</td>
</tr>
<tr>
<td>T120</td>
<td>3,91±0,88*</td>
<td>3,43±0,50**</td>
</tr>
<tr>
<td>T140</td>
<td>3,89±0,48*</td>
<td>3,42±0,45**</td>
</tr>
<tr>
<td>T160</td>
<td>3,80±0,42*</td>
<td>3,44±0,46**</td>
</tr>
</tbody>
</table>

*,**: asterischi diversi nella stessa riga indicano differenze statisticamente significative (P<0,05) tra i due periodi (pre-parto vs post-parto).
Per tutte le tempistiche i valori riscontrati nel periodo pre-parto sono risultati essere maggiori rispetto a quelli riscontrati nel post-parto. In particolare per quanto concerne i prelievi effettuati a T0, T60, T80, T100, T120, T140 e T160, tale differenza è risultata essere statisticamente significativa (P<0,05).
Anche per quanto riguarda i valori di glicemia rilevata in campo (T0 campo, T10 campo e T80 campo) , sono risultati più alti quelli relativi al periodo pre-parto rispetto al post-parto e, nel caso di T0 e T80, è stata evidenziata una differenza statisticamente significativa (P<0,05).

Grafico 1. Andamento dei valori della glicemia nel periodo pre-parto (pre) e nel periodo post-parto (post) secondo le diverse tempistiche.

![Grafico 1](image)

*: l’asterisco indica differenze statisticamente significative (P<0,05) nella stessa tempistica tra i due periodi (pre-parto vs post-parto).

Nel grafico 1 è possibile osservare l’andamento della glicemia nei due distinti periodi (pre-parto e post-parto) secondo le varie tempistiche.

Al fine di valutare un eventuale effetto azienda in tabella 2 vengono riportati i valori medi della glicemia distinti tra i due periodi all’interno delle due aziende oggetto di studio.
Tabella 2. Media ± deviazione standard dei valori della glicemia nel periodo pre-parto e nel periodo post-parto distinti nelle due aziende (azienda A e azienda B).

<table>
<thead>
<tr>
<th>GLUCOSIO (mmol/l)</th>
<th>Azienda A</th>
<th></th>
<th>Azienda B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRE-PARTO</td>
<td>POST-PARTO</td>
<td>PRE-PARTO</td>
<td>POST-PARTO</td>
</tr>
<tr>
<td>T0</td>
<td>3,51±0,29b</td>
<td>3,41±1,09</td>
<td>4,07±0,94*a</td>
<td>3,34±0,37**</td>
</tr>
<tr>
<td>T0 campo</td>
<td>2,80±0,30*</td>
<td>2,40±0,41**</td>
<td>3,01±0,48*</td>
<td>2,53±0,38**</td>
</tr>
<tr>
<td>T2</td>
<td>10,58±1,51</td>
<td>10,02±1,90</td>
<td>10,51±2,63</td>
<td>10,97±1,95</td>
</tr>
<tr>
<td>T5</td>
<td>9,73±1,39</td>
<td>9,25±1,73</td>
<td>9,45±2,20</td>
<td>9,43±1,41</td>
</tr>
<tr>
<td>T10</td>
<td>8,74±1,34</td>
<td>8,20±1,26</td>
<td>8,82±1,93</td>
<td>8,63±1,25</td>
</tr>
<tr>
<td>T10 campo</td>
<td>7,31±1,04</td>
<td>6,00±1,23</td>
<td>7,18±1,62</td>
<td>7,08±1,37</td>
</tr>
<tr>
<td>T15</td>
<td>7,84±1,22</td>
<td>7,39±1,27</td>
<td>7,76±1,78</td>
<td>7,42±1,31</td>
</tr>
<tr>
<td>T20</td>
<td>7,05±1,35</td>
<td>6,74±1,22</td>
<td>7,19±1,66</td>
<td>6,52±1,45</td>
</tr>
<tr>
<td>T30</td>
<td>6,17±0,91</td>
<td>5,73±1,49</td>
<td>5,77±2,43</td>
<td>5,79±1,08</td>
</tr>
<tr>
<td>T40</td>
<td>5,36±0,95</td>
<td>5,04±1,04</td>
<td>5,63±1,64</td>
<td>4,95±1,14</td>
</tr>
<tr>
<td>T60</td>
<td>4,33±0,84</td>
<td>4,04±0,97</td>
<td>4,82±1,38</td>
<td>4,02±0,97</td>
</tr>
<tr>
<td>T80</td>
<td>3,86±0,67b</td>
<td>3,57±0,68</td>
<td>4,42±0,95a*</td>
<td>3,58±0,62**</td>
</tr>
<tr>
<td>T80 campo</td>
<td>2,99±0,66b*</td>
<td>2,56±0,47**</td>
<td>3,55±0,92*a</td>
<td>2,58±0,47**</td>
</tr>
<tr>
<td>T100</td>
<td>3,70±0,74b</td>
<td>3,53±0,60</td>
<td>4,11±0,64a*</td>
<td>3,44±0,42**</td>
</tr>
<tr>
<td>T120</td>
<td>3,67±0,91</td>
<td>3,48±0,53</td>
<td>4,16±0,73*</td>
<td>3,38±0,39**</td>
</tr>
<tr>
<td>T140</td>
<td>3,82±0,48*</td>
<td>3,42±0,48**</td>
<td>3,97±0,50*</td>
<td>3,42±0,36**</td>
</tr>
<tr>
<td>T160</td>
<td>3,68±0,38b</td>
<td>3,45±0,51</td>
<td>3,91±0,45a*</td>
<td>3,43±0,32**</td>
</tr>
</tbody>
</table>

*, **: asterischi diversi nella stessa riga indicano differenze statisticamente significative (P<0,05) tra i diversi periodi (pre-parto vs post-parto).
a, b: lettere diverse nella stessa riga indicano differenze statisticamente significative (P<0,05) tra le due aziende (azienda A vs azienda B) all’interno dello stesso periodo (pre).

Nell’azienda A sono emerse differenze statisticamente significative tra i due periodi (pre-parto e post-parto) per quanto riguarda i valori della glicemia di campo T0 e T80 e la glicemia al prelievo T140. Nell’azienda B invece differenze rilevanti tra i periodi sono state
riscontrate, oltre che nella glicemia di campo T0 e T80, anche nella glicemia a T0, T80, T100, T120, T140 e T160.

Le due aziende sono poi risultate differire in modo statisticamente significativo all’interno del periodo pre-parto per quanto riguarda i valori della glicemia a T0, T80, T80 campo, T100 e T160. In tutte queste tempistiche i valori dell’azienda B sono risultati essere maggiori di quelli dell’azienda A. Non sono emerse differenze rilevanti tra le due aziende per quanto concerne il periodo post-parto.

I grafici 2 e 3 mostrano i valori della glicemia rispettivamente nel periodo pre-parto e nel periodo post-parto, rilevati in corrispondenza delle diverse tempistiche, distinti tra l’azienda A e l’azienda B.

Grafico 2. Valori della glicemia nel periodo pre-parto distinti tra le due aziende (azienda A vs azienda B).

*: l’asterisco indica differenze statisticamente significative (P<0,05) nella stessa tempistica tra le due aziende (azienda A vs azienda B).
Grafico 3. Valori della glicemia nel periodo post-parto distinti tra le due aziende (azienda A vs azienda B).

La tabella 3 mostra i valori ematici dell’insulina secondo le diverse tempistiche distinti nel periodo pre-parto e nel periodo post-parto, indipendentemente dall’azienda.

I valori rilevati nel pre-parto sono risultati essere più elevati di quelli riscontrati nel post-parto per quanto riguarda quasi tutte le tempistiche a eccezione di quelli rilevati a T100 e a T160, in cui i valori nel post-parto sono risultati lievemente superiori a quelli del pre-parto. In nessuno dei casi, comunque, le differenze sono risultate essere statisticamente significative.

L’andamento dell’insulina nel corso dei diversi prelievi nei due periodi è rappresentato nel grafico 4.
Tabella 3. Media ± deviazione standard dei valori ematici dell’insulina distinti nel periodo pre-parto e nel periodo post-parto.

<table>
<thead>
<tr>
<th>INSULINA (pmol/l)</th>
<th>PERIODO</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRE-PARTO</td>
<td>POST-PARTO</td>
</tr>
<tr>
<td>T0</td>
<td><14,35</td>
<td><14,35</td>
</tr>
<tr>
<td>T2</td>
<td>329,94±433,32</td>
<td>183,20±255,80</td>
</tr>
<tr>
<td>T5</td>
<td>489,81±591,28</td>
<td>267,23±292,61</td>
</tr>
<tr>
<td>T10</td>
<td>575,82±687,50</td>
<td>312,98±309,38</td>
</tr>
<tr>
<td>T15</td>
<td>603,94±676,21</td>
<td>287,72±298,65</td>
</tr>
<tr>
<td>T20</td>
<td>560,47±659,36</td>
<td>241,14±223,22</td>
</tr>
<tr>
<td>T30</td>
<td>404,53±485,54</td>
<td>170,35±212,79</td>
</tr>
<tr>
<td>T40</td>
<td>261,12±335,34</td>
<td>88,16±169,09</td>
</tr>
<tr>
<td>T60</td>
<td>92,15±158,45</td>
<td>51,01±148,38</td>
</tr>
<tr>
<td>T80</td>
<td>51,66±117,91</td>
<td>42,33±98,40</td>
</tr>
<tr>
<td>T100</td>
<td>37,21±107,86</td>
<td>38,52±91,62</td>
</tr>
<tr>
<td>T120</td>
<td>36,49±103,82</td>
<td>37,92±96,49</td>
</tr>
<tr>
<td>T140</td>
<td>41,08±107,01</td>
<td>40,48±96,29</td>
</tr>
<tr>
<td>T160</td>
<td>37,78±107,55</td>
<td>39,16±91,85</td>
</tr>
</tbody>
</table>
Grafico 4. Andamento dei valori ematici dell’insulina nel periodo pre-parto (pre) e nel periodo post-parto (post) secondo le diverse tempistiche.

Nella tabella 4 sono riportati i valori ematici dell’insulina distinti nei due periodi all’interno delle singole aziende. Come si può evidenziare non sono emerse differenze statisticamente significative per nessuna delle tempistiche, né tra i diversi periodi all’interno della stessa azienda, né tra le due aziende oggetto di studio nello stesso periodo. A T0 i valori sono risultati <14,35 per entrambe le aziende e per entrambi i periodi, perché la metodica utilizzata in laboratorio per dosare l’insulina riesce a rilevare solo valori superiori a 14,35 pmol/l.

I grafici 5 e 6 mostrano rispettivamente nel periodo del pre-parto e nel periodo del post-parto i valori ematici dell’insulina distinti nelle due aziende.
Tabella 4. Media±deviazione standard dei valori ematici dell’insulina riscontrati nel periodo pre-parto e nel periodo post-parto distinti nelle due aziende (azienda A e azienda B).

<table>
<thead>
<tr>
<th>INSULINA (pmol/l)</th>
<th>AZIENDA A</th>
<th></th>
<th>AZIENDA B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRE-PARTO</td>
<td>POST-PARTO</td>
<td>PRE-PARTO</td>
<td>POST-PARTO</td>
</tr>
<tr>
<td>T0</td>
<td><14,35</td>
<td><14,35</td>
<td><14,35</td>
<td><14,35</td>
</tr>
<tr>
<td>T2</td>
<td>470,92±466,33</td>
<td>238,87±287,06</td>
<td>188,96±264,01</td>
<td>127,52±134,84</td>
</tr>
<tr>
<td>T5</td>
<td>707,80±631,36</td>
<td>308,87±321,45</td>
<td>271,82±335,95</td>
<td>225,60±208,56</td>
</tr>
<tr>
<td>T10</td>
<td>842,91±718,43</td>
<td>329,05±326,61</td>
<td>308,73±443,11</td>
<td>296,92±284,11</td>
</tr>
<tr>
<td>T15</td>
<td>848,79±705,40</td>
<td>299,97±313,02</td>
<td>359,08±477,06</td>
<td>275,47±283,05</td>
</tr>
<tr>
<td>T20</td>
<td>790,52±703,88</td>
<td>233,57±252,35</td>
<td>330,42±417,15</td>
<td>248,70±79,85</td>
</tr>
<tr>
<td>T30</td>
<td>523,64±523,38</td>
<td>152,30±194,12</td>
<td>285,41±356,06</td>
<td>188,40±275,53</td>
</tr>
<tr>
<td>T40</td>
<td>327,63±369,21</td>
<td>123,17±196,63</td>
<td>194,61±226,64</td>
<td>53,15±26,89</td>
</tr>
<tr>
<td>T60</td>
<td>117,69±184,68</td>
<td>66,51±171,78</td>
<td>66,60±31,48</td>
<td>35,52±33,45</td>
</tr>
<tr>
<td>T80</td>
<td>68,14±138,03</td>
<td>57,57±114,98</td>
<td>35,18±16,45</td>
<td>27,08±16,69</td>
</tr>
<tr>
<td>T100</td>
<td>55,78±125,90</td>
<td>55,29±106,96</td>
<td>18,64±4,85</td>
<td>21,77±13,67</td>
</tr>
<tr>
<td>T120</td>
<td>52,10±121,45</td>
<td>53,60±112,79</td>
<td>20,88±8,93</td>
<td>22,25±18,89</td>
</tr>
<tr>
<td>T140</td>
<td>63,62±123,97</td>
<td>53,46±111,88</td>
<td>18,55±8,70</td>
<td>27,51±32,23</td>
</tr>
<tr>
<td>T160</td>
<td>58,46±125,12</td>
<td>51,42±106,52</td>
<td>17,10±5,70</td>
<td>26,90±30,57</td>
</tr>
</tbody>
</table>
Grafico 5. Valori ematici dell’insulina nel periodo pre-parto distinti tra le due aziende (azienda A vs azienda B).

Grafico 6. Valori ematici dell’insulina nel periodo post-parto distinti tra le due aziende (azienda A vs azienda B).
La tabella 5 mostra i valori ematici degli acidi grassi non esterificati (NEFA) nel periodo pre-parto e nel periodo post-parto, indipendentemente dall’azienda di origine. I valori rilevati nel pre-parto sono risultati differire in modo statisticamente significativo da quelli riscontrati nel post-parto per quanto riguarda tutte le tempistiche. In particolare nel periodo post-parto tali valori si sono dimostrati essere più elevati rispetto al periodo pre-parto. Nel grafico 7 è possibile osservare l’andamento dei NEFA nei due distinti periodi secondo le diverse tempistiche.

Tabella 5. Media ± deviazione standard dei valori ematici dei NEFA distinti nel periodo pre-parto e nel periodo post-parto.

<table>
<thead>
<tr>
<th>PERIODO</th>
<th>NEFA (mEq/l)</th>
<th>PRE-PARTO</th>
<th>POST-PARTO</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>0,22±0,21*</td>
<td>0,79±0,56**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0,24±0,20*</td>
<td>0,85±0,40**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>0,25±0,20*</td>
<td>0,86±0,40**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T10</td>
<td>0,25±0,21*</td>
<td>0,82±0,43**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T15</td>
<td>0,22±0,21*</td>
<td>0,71±0,40**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T20</td>
<td>0,19±0,18*</td>
<td>0,65±0,39**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T30</td>
<td>0,16±0,16*</td>
<td>0,51±0,35**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T40</td>
<td>0,14±0,14*</td>
<td>0,45±0,30**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T60</td>
<td>0,15±0,15*</td>
<td>0,42±0,26**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T80</td>
<td>0,18±0,19*</td>
<td>0,54±0,27**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T100</td>
<td>0,20±0,17*</td>
<td>0,65±0,31**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T120</td>
<td>0,21±0,17*</td>
<td>0,71±0,34**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T140</td>
<td>0,22±0,26*</td>
<td>0,78±0,38**</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>T160</td>
<td>0,25±0,32*</td>
<td>0,81±0,41**</td>
<td><0,001</td>
<td></td>
</tr>
</tbody>
</table>

*,**: asterischi diversi nella stessa riga indicano differenze statisticamente significative (P<0,05) tra i due periodi (pre-parto vs post-parto).
Grafico 7. Andamento dei valori ematici dei NEFA nel periodo pre-parto (pre) e nel periodo post-parto (post) secondo le diverse tempistiche.

: l’asterisco indica differenze statisticamente significative (P<0,05) nella stessa tempistica tra i due periodi (pre-parto vs post-parto).

In tabella 6 sono riportati i valori ematici dei NEFA distinti nelle due aziende e nei due periodi. Per tutte le tempistiche prese in esame si sono evidenziate differenze statisticamente significative tra il periodo pre-parto e il periodo post-parto all’interno delle singole aziende. Per quanto concerne le aziende oggetto dello studio, dall’indagine non sono emerse differenze rilevanti tra l’azienda A e l’azienda B all’interno dello stesso periodo.

I grafici 8 e 9 mostrano i diversi andamenti dei valori dei NEFA tra le due aziende rispettivamente nel periodo pre-parto e post-parto.
Tabella 6. Media±deviazione standard dei valori ematici dei NEFA riscontrati nel periodo pre-parto e nel periodo post-parto distinti nelle due aziende (azienda A e azienda B).

<table>
<thead>
<tr>
<th>NEFA (mEq/l)</th>
<th>AZIENDA A</th>
<th></th>
<th>AZIENDA B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRE-PARTO</td>
<td>POST-PARTO</td>
<td>PRE-PARTO</td>
<td>POST-PARTO</td>
</tr>
<tr>
<td>T0</td>
<td>0,16±0,11*</td>
<td>0,81±0,40**</td>
<td>0,28±0,34*</td>
<td>0,77±0,86**</td>
</tr>
<tr>
<td>T2</td>
<td>0,20±0,13*</td>
<td>0,86±0,35**</td>
<td>0,29±0,31*</td>
<td>0,84±0,53**</td>
</tr>
<tr>
<td>T5</td>
<td>0,21±0,14*</td>
<td>0,87±0,35**</td>
<td>0,28±0,30*</td>
<td>0,85±0,52**</td>
</tr>
<tr>
<td>T10</td>
<td>0,20±0,14*</td>
<td>0,82±0,36**</td>
<td>0,30±0,34*</td>
<td>0,82±0,57**</td>
</tr>
<tr>
<td>T15</td>
<td>0,18±0,13*</td>
<td>0,72±0,34**</td>
<td>0,27±0,33*</td>
<td>0,70±0,54**</td>
</tr>
<tr>
<td>T20</td>
<td>0,16±0,11*</td>
<td>0,64±0,33**</td>
<td>0,22±0,28*</td>
<td>0,65±0,53**</td>
</tr>
<tr>
<td>T30</td>
<td>0,14±0,13*</td>
<td>0,55±0,33**</td>
<td>0,18±0,22*</td>
<td>0,47±0,39**</td>
</tr>
<tr>
<td>T40</td>
<td>0,13±0,12*</td>
<td>0,45±0,28**</td>
<td>0,16±0,20*</td>
<td>0,45±0,36**</td>
</tr>
<tr>
<td>T60</td>
<td>0,14±0,14*</td>
<td>0,46±0,25**</td>
<td>0,16±0,18*</td>
<td>0,39±0,30**</td>
</tr>
<tr>
<td>T80</td>
<td>0,17±0,19*</td>
<td>0,59±0,28**</td>
<td>0,18±0,20*</td>
<td>0,49±0,27**</td>
</tr>
<tr>
<td>T100</td>
<td>0,20±0,18*</td>
<td>0,70±0,31**</td>
<td>0,19±0,16*</td>
<td>0,61±0,32**</td>
</tr>
<tr>
<td>T120</td>
<td>0,22±0,17*</td>
<td>0,77±0,33**</td>
<td>0,21±0,17*</td>
<td>0,66±0,36**</td>
</tr>
<tr>
<td>T140</td>
<td>0,22±0,28*</td>
<td>0,84±0,35**</td>
<td>0,23±0,22*</td>
<td>0,72±0,46**</td>
</tr>
<tr>
<td>T160</td>
<td>0,23±0,18*</td>
<td>0,85±0,36**</td>
<td>0,26±0,53*</td>
<td>0,78±0,54**</td>
</tr>
</tbody>
</table>

* , **: asterischi diversi nella stessa riga indicano differenze statisticamente significative (P<0,05) tra i due diversi periodi (pre-parto vs post-parto).
Grafico 8. Valori ematici dei NEFA nel periodo pre-parto distinti tra le due aziende (azienda A vs azienda B).

Per quanto riguarda il BHB, i valori medi all’interno dei due periodi sono riportati in tabella 7. Come è possibile osservare, in tutte le tempistiche i valori nel post-parto sono risultati maggiori dei valori nel pre-parto e, ad eccezione di quelli rilevati a T0 in campo e a T60, questa differenza tra i periodi è risultata essere statisticamente significativa. Il grafico 10 mostra l’andamento dei valori di BHB nei due periodi.

Tabella 7. Media ± deviazione standard dei valori ematici del BHB distinti nel periodo pre-parto e nel periodo post-parto.

<table>
<thead>
<tr>
<th>PERIODO</th>
<th>BHB (mmol/l)</th>
<th>PERIODO</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRE-PARTO</td>
<td>POST-PARTO</td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>0,60±0,19*</td>
<td>0,79±0,40**</td>
<td>0,019</td>
</tr>
<tr>
<td>T0 campo</td>
<td>0,62±0,57</td>
<td>0,76±0,47</td>
<td>NS</td>
</tr>
<tr>
<td>T2</td>
<td>0,56±0,16*</td>
<td>0,83±0,39**</td>
<td><0,0001</td>
</tr>
<tr>
<td>T5</td>
<td>0,56±0,16*</td>
<td>0,85±0,40**</td>
<td><0,0001</td>
</tr>
<tr>
<td>T10</td>
<td>0,55±0,16*</td>
<td>0,84±0,41**</td>
<td><0,0001</td>
</tr>
<tr>
<td>T15</td>
<td>0,54±0,16*</td>
<td>0,80±0,38**</td>
<td><0,0001</td>
</tr>
<tr>
<td>T20</td>
<td>0,53±0,17*</td>
<td>0,77±0,37**</td>
<td>0,0001</td>
</tr>
<tr>
<td>T30</td>
<td>0,52±0,17*</td>
<td>0,75±0,39**</td>
<td>0,003</td>
</tr>
<tr>
<td>T40</td>
<td>0,51±0,17*</td>
<td>0,66±0,34**</td>
<td>0,026</td>
</tr>
<tr>
<td>T60</td>
<td>0,52±0,18</td>
<td>0,61±0,28</td>
<td>NS</td>
</tr>
<tr>
<td>T80</td>
<td>0,50±0,16*</td>
<td>0,61±0,27**</td>
<td>0,044</td>
</tr>
<tr>
<td>T100</td>
<td>0,50±0,14*</td>
<td>0,66±0,25**</td>
<td>0,003</td>
</tr>
<tr>
<td>T120</td>
<td>0,51±0,13*</td>
<td>0,66±0,26**</td>
<td>0,003</td>
</tr>
<tr>
<td>T140</td>
<td>0,52±0,15*</td>
<td>0,70±0,26**</td>
<td><0,001</td>
</tr>
<tr>
<td>T160</td>
<td>0,52±0,16*</td>
<td>0,71±0,26**</td>
<td><0,001</td>
</tr>
</tbody>
</table>

*,**: asterischi diversi nella stessa riga indicano differenze statisticamente significative (P<0,05) tra i due periodi (pre-parto vs post-parto).
Grafico 10. Andamento dei valori ematici del BHB nel periodo pre-parto (pre) e nel periodo post-parto (post) secondo le diverse tempistiche.

*: l’asterisco indica differenze statisticamente significative (P<0,05) nella stessa tempistica tra i due periodi (pre-parto vs post-parto).

Al fine di valutare eventuali differenze tra le due aziende, in tabella 8 sono riportati i valori ematici del BHB nel periodo pre-parto come nel post-parto, divisi nelle due aziende. Per quanto riguarda i valori rilevati all’interno dell’azienda A, per tutte le tempistiche si sono osservate differenze statisticamente significative, a parte in T0 di campo. Lo stesso non vale per l’azienda B, in cui solo per quanto concerne T5 e T10 sono emerse differenze statisticamente significative; per quanto riguarda le altre tempistiche, i valori non sono risultati differire in maniera rilevante. Tra l’azienda A e l’azienda B non sono state osservate differenze rilevanti né all’interno del periodo pre-parto, né per quanto riguarda il periodo post-parto.

Gli andamenti nel periodo pre-parto e nel periodo post-parto dei valori del BHB distinti nelle due aziende sono rappresentati rispettivamente nei grafici 11 e 12.
Tabella 8. Media±deviazione standard dei valori ematici del BHB riscontrati nel periodo pre-parto e nel periodo post-parto distinti nelle due aziende (azienda A e azienda B).

<table>
<thead>
<tr>
<th>BHB (mmol/l)</th>
<th>AZIENDA A</th>
<th>AZIENDA B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRE-PARTO</td>
<td>POST-PARTO</td>
</tr>
<tr>
<td>T0</td>
<td>0,57±0,12*</td>
<td>0,84±0,45**</td>
</tr>
<tr>
<td>T0 campo</td>
<td>0,65±0,65</td>
<td>0,81±0,52</td>
</tr>
<tr>
<td>T2</td>
<td>0,55±0,12*</td>
<td>0,86±0,43**</td>
</tr>
<tr>
<td>T5</td>
<td>0,56±0,11*</td>
<td>0,89±0,44**</td>
</tr>
<tr>
<td>T10</td>
<td>0,55±0,12*</td>
<td>0,88±0,44**</td>
</tr>
<tr>
<td>T15</td>
<td>0,54±0,12*</td>
<td>0,84±0,42**</td>
</tr>
<tr>
<td>T20</td>
<td>0,52±0,12*</td>
<td>0,81±0,40**</td>
</tr>
<tr>
<td>T30</td>
<td>0,51±0,13*</td>
<td>0,79±0,43**</td>
</tr>
<tr>
<td>T40</td>
<td>0,51±0,13*</td>
<td>0,68±0,36**</td>
</tr>
<tr>
<td>T60</td>
<td>0,52±0,14</td>
<td>0,63±0,31</td>
</tr>
<tr>
<td>T80</td>
<td>0,50±0,12*</td>
<td>0,62±0,30**</td>
</tr>
<tr>
<td>T100</td>
<td>0,51±0,11*</td>
<td>0,66±0,27**</td>
</tr>
<tr>
<td>T120</td>
<td>0,52±0,10*</td>
<td>0,70±0,29**</td>
</tr>
<tr>
<td>T140</td>
<td>0,51±0,09*</td>
<td>0,74±0,29**</td>
</tr>
<tr>
<td>T160</td>
<td>0,52±0,11*</td>
<td>0,73±0,28**</td>
</tr>
</tbody>
</table>

*, **: asterischi diversi nella stessa riga indicano differenze statisticamente significative (P<0,05) tra i due diversi periodi (pre-parto vs post-parto).
Grafico 11. Valori ematici del BHB nel periodo pre-parto distinti tra le due aziende (azienda A vs azienda B).

<table>
<thead>
<tr>
<th>Tempo</th>
<th>Azienda A</th>
<th>Azienda B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>0,7</td>
<td>0,8</td>
</tr>
<tr>
<td>T2</td>
<td>0,65</td>
<td>0,75</td>
</tr>
<tr>
<td>T5</td>
<td>0,6</td>
<td>0,7</td>
</tr>
<tr>
<td>T10</td>
<td>0,55</td>
<td>0,6</td>
</tr>
<tr>
<td>T15</td>
<td>0,5</td>
<td>0,55</td>
</tr>
<tr>
<td>T20</td>
<td>0,45</td>
<td>0,5</td>
</tr>
<tr>
<td>T30</td>
<td>0,4</td>
<td>0,45</td>
</tr>
<tr>
<td>T60</td>
<td>0,35</td>
<td>0,4</td>
</tr>
<tr>
<td>T120</td>
<td>0,3</td>
<td>0,35</td>
</tr>
<tr>
<td>T160</td>
<td>0,25</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Grafico 12. Valori ematici del BHB nel periodo post-parto distinti tra le due aziende (azienda A vs azienda B).

<table>
<thead>
<tr>
<th>Tempo</th>
<th>Azienda A</th>
<th>Azienda B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>0,7</td>
<td>0,8</td>
</tr>
<tr>
<td>T2</td>
<td>0,65</td>
<td>0,75</td>
</tr>
<tr>
<td>T5</td>
<td>0,6</td>
<td>0,7</td>
</tr>
<tr>
<td>T10</td>
<td>0,55</td>
<td>0,6</td>
</tr>
<tr>
<td>T15</td>
<td>0,5</td>
<td>0,55</td>
</tr>
<tr>
<td>T20</td>
<td>0,45</td>
<td>0,5</td>
</tr>
<tr>
<td>T30</td>
<td>0,4</td>
<td>0,45</td>
</tr>
<tr>
<td>T60</td>
<td>0,35</td>
<td>0,4</td>
</tr>
<tr>
<td>T120</td>
<td>0,3</td>
<td>0,35</td>
</tr>
<tr>
<td>T160</td>
<td>0,25</td>
<td>0,3</td>
</tr>
</tbody>
</table>
Per tutti i parametri (glucosio, insulina, NEFA e BHB) è stata calcolata l’AUC (Area Under Curve). La tabella 9 mostra i valori di AUC totale del glucosio, espressa in mmol/l, dell’insulina, espressa in pmol/l, dei NEFA, espressa in mEq/l e del BHB, espressa in mmol/l.

La tabella 10, invece, mostra i valori di AUC unitaria per minuto relativa agli stessi parametri.

Sia per quanto concerne l’AUC totale che unitaria, i valori relativi al glucosio e all’insulina sono risultati più elevati nel periodo pre-parto, mentre i valori relativi a NEFA e BHB si sono dimostrati essere maggiori nel periodo post-parto.

Tabella 9. Valori medi di AUC (Area Under Curve) totale±deviazione standard di glucosio, insulina, NEFA e BHB nel periodo pre-parto e nel periodo post-parto.

<table>
<thead>
<tr>
<th></th>
<th>AUC TOTALE GLUCOSIO (mmol/l)</th>
<th>AUC TOTALE INSULINA (pmol/l)</th>
<th>AUC TOTALE NEFA (mEq/l)</th>
<th>AUC TOTALE BHB (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-PARTO</td>
<td>795,74±76,68</td>
<td>26412,46±2532,21</td>
<td>30,99±2,79</td>
<td>82,71±9,31</td>
</tr>
<tr>
<td>POST-PARTO</td>
<td>752,06±80,22</td>
<td>13973,52±1381,47</td>
<td>102,47±8,63</td>
<td>109,54±11,57</td>
</tr>
</tbody>
</table>

Tabella 10. Valori medi di AUC (Area Under Curve) unitaria per minuto±deviazione standard di glucosio, insulina, NEFA e BHB nel periodo pre-parto e nel periodo post-parto.

<table>
<thead>
<tr>
<th></th>
<th>AUC UNITARIA GLUCOSIO ((mmol/l)/minuto)</th>
<th>AUC UNITARIA INSULINA ((pmol/l)/minuto)</th>
<th>AUC UNITARIA NEFA ((mEq/l)/minuto)</th>
<th>AUC UNITARIA BHB ((mmol/l)/minuto)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-PARTO</td>
<td>4,97±0,51</td>
<td>165,08±1,72</td>
<td>0,19±0,02</td>
<td>0,52±0,05</td>
</tr>
<tr>
<td>POST-PARTO</td>
<td>4,70±0,35</td>
<td>87,33±7,45</td>
<td>0,64±0,08</td>
<td>0,68±0,07</td>
</tr>
</tbody>
</table>

Al fine di evidenziare una corrispondenza tra la comparsa di patologie nel post-parto e alcuni dei parametri ematici nel periodo pre-parto, in tabella 11 sono riportati gli indici di correlazione tra glucosio, NEFA e BHB a varie tempistiche (T0, T80 e T160) e l’incidenza di mastite, metrite, collasso puerperale e zoppia. Tutte le correlazioni riportate sono risultate essere statisticamente significative. Inoltre sono risultate tutte positive, a eccezione della correlazione tra metrite e glucosio a T160, che si è mostrata essere negativa.
Tabella 11. Correlazioni di Pearson statisticamente significative (P<0,05) tra alcuni dei parametri ematici nel pre-parto a diverse tempistiche e l’incidenza di alcune delle patologie del periparto rilevate nel periodo post-parto.

<table>
<thead>
<tr>
<th>TEMPISTICA</th>
<th>PARAMETRO</th>
<th>PATOLOGIA</th>
<th>INDICE DI CORRELAZIONE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>glucosio campo</td>
<td>mastite</td>
<td>+0,556</td>
<td><0,001</td>
</tr>
<tr>
<td></td>
<td>glucosio</td>
<td>zoppia</td>
<td>+0,595</td>
<td><0,001</td>
</tr>
<tr>
<td>T80</td>
<td>NEFA</td>
<td>collasso puerperale</td>
<td>+0,312</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>glucosio campo</td>
<td>mastite</td>
<td>+0,556</td>
<td><0,001</td>
</tr>
<tr>
<td>T160</td>
<td>glucosio</td>
<td>metrite</td>
<td>-0,362</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>BHB</td>
<td>mastite</td>
<td>+0,536</td>
<td><0,001</td>
</tr>
</tbody>
</table>

Tabella 12. Media±deviazione standard dei dati clinici e produttivi riscontrati nel periodo del post-parto e media±deviazione standard del valore di BCS riscontrati nel pre-parto e nel post-parto nell’azienda A e nell’azienda B.

<table>
<thead>
<tr>
<th>PARAMETRI</th>
<th>AZIENDA A</th>
<th>AZIENDA B</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE-PARTO</td>
<td>3,32±0,07</td>
<td>3,29±0,12</td>
</tr>
<tr>
<td>POST-PARTO</td>
<td>3,03±0,43</td>
<td>3,06±0,28</td>
</tr>
<tr>
<td>RITENZIONE PLACENTA</td>
<td>0,27±0,45a</td>
<td>0,001±0,01b</td>
</tr>
<tr>
<td>METRITI</td>
<td>0,07±0,25</td>
<td>0,08±0,29</td>
</tr>
<tr>
<td>DISTOCIA</td>
<td>0,13±0,05</td>
<td>0,001±0,01</td>
</tr>
<tr>
<td>MASTITE</td>
<td>0</td>
<td>0,08±0,29</td>
</tr>
<tr>
<td>COLLASSO PUERPERALE</td>
<td>0,07±0,25</td>
<td>0,001±0,01</td>
</tr>
<tr>
<td>ZOPPIA</td>
<td>0</td>
<td>0,08±0,29</td>
</tr>
<tr>
<td>PRODUZIONE (kg/giorno)</td>
<td>35,29±2,21</td>
<td>32,47±3,02</td>
</tr>
<tr>
<td>CELL SOMATICHE (*1000/ml)</td>
<td>581,267±1156,50</td>
<td>323,167±697,931</td>
</tr>
<tr>
<td>GRASSO %</td>
<td>3,38±0,54b</td>
<td>4,22±0,70a</td>
</tr>
<tr>
<td>PROTEINE %</td>
<td>3,41±0,49</td>
<td>3,37±0,33</td>
</tr>
</tbody>
</table>

a,b: lettere diverse sulla stessa riga indicano differenze statisticamente significative (P<0,05).
I dati clinici e produttivi rilevati dopo il parto sono riportati in tabella 12 distinti all’interno delle due aziende, così come anche il valore del BCS determinato sia nel periodo del pre-parto che in quello del post-parto.

Prendendo in considerazione le patologie, solo per quanto riguarda la ritenzione della placenta è stata riscontrata una differenza significativa tra l’azienda A (0,27±0,45) e l’azienda B (0,001±0,01), anche se si sono evidenziate comunque differenze anche nella comparsa di distocia, mastite, collasso puerperale, metrite e zoppia, se pur non significative.

Il BCS ha mostrato valori più alti nel periodo del pre-parto rispetto a quello del post-parto, all’interno di entrambe le aziende.

Per quanto concerne i dati produttivi a livello di percentuale di grasso del latte è stata riscontrata una differenza statisticamente significativa tra le due aziende. La media per capo di produzione lattea, la percentuale di proteine e il numero di cellule somatiche non hanno mostrato differenze rilevanti.
6. DISCUSSIONE

Il “transition period” è un momento cruciale nella vita produttiva della vacca da latte ed è proprio in questo periodo che si decide la carriera produttiva e riproduttiva dell’animale.

Lo scopo di questa tesi è stato quello di monitorare l’andamento di parametri ematici quali glicemia, NEFA, BHB e insulina in risposta al test da carico di glucosio durante il periodo di transizione. La prova è stata effettuata su 42 bovine da latte di razza Frisona ad alta produzione sia prima del parto, che dopo il parto. La procedura prevista per l’effettuazione del test da carico, già descritta in precedenza, ha presentato degli svantaggi quali la durata dell’intervento e il numero dei prelievi. Per ovviare almeno in parte a questo problema, è risultato utile slegare l’animale, mantenerlo comunque in cattura ed effettuare di volta in volta il contenimento, almeno quando il tempo tra un prelievo e l’altro lo ha permesso.

Sulla base dei risultati ottenuti possiamo affermare che negli animali esaminati vi è stata una variazione nel profilo del metabolismo energetico in seguito a somministrazione del carico di glucosio e che questa alterazione ha presentato differenze tra i due periodi oggetto dello studio (pre-parto e post-parto).

Per quanto concerne la glicemia, i valori basali misurati prima della somministrazione di glucosio sia in campo (T0 campo) che con successive analisi di laboratorio (T0) sono risultati essere più elevati nel pre-parto (2,90±0,37 per T0 campo e 3,79±0,59 per T0) che non nel post-parto (2,46±0,40 per T0 campo e 3,37±0,93 per T0). La differenza è risultata essere statisticamente significativa (P<0,05). I valori di glucosio riscontrati nelle diverse tempistiche successivamente al test da carico si sono mantenuti più elevati nel periodo del pre-parto rispetto a quello del post-parto, come è possibile notare dalla tabella 9, in cui l’area sotto la curva nel periodo del pre-parto (795,74±76,68) è risultata maggiore rispetto a quella relativa al periodo del post-parto (752,06±80,22); in particolare, com’è possibile osservare in tabella 1, per alcune delle tempistiche (T60, T80, T100, T120, T140, T160) le differenze sono risultate statisticamente significative (P<0,05). Questi dati riflettono quanto già confermato da altri studi (Drackley, 1999; Zhao and Keating, 2007), per cui nel periodo del periparto e soprattutto nei primi giorni dopo il parto, in cui le richieste energetiche subiscono un aumento consistente,
l’utilizzo del glucosio come fonte di energia viene deviato principalmente verso tessuti non insulino dipendenti, quali la ghiandola mammaria per la produzione di latte. L’insulina sappiamo avere un ruolo chiave nel metabolismo energetico, essendo uno dei principali ormoni coinvolti nella regolazione della glicemia. I valori ematici di insulina a T0 non mostrano differenze tra i periodi: sia nel pre-parto che nel post-parto sono risultati essere <14,35 e questo è dovuto al fatto che la metodica utilizzata per il dosaggio dell’insulina, rileva valori solo al di sotto di tale soglia. I valori dell’insulina in risposta al carico di glucosio, invece, sono risultati più bassi nel post-parto, a conferma di ciò che era emerso da altri studi: dal momento del parto la bovina, come avviene anche negli altri mammiferi, sviluppa un certo grado di insulino resistenza e la sua concentrazione ematica tende a diminuire (Holtenius 2003; Pére et al., 2000). Questo meccanismo inibisce l’utilizzo del glucosio a livello dei tessuti insulino dipendenti, come muscolo e tessuto adiposo e ciò consente all’animale di risparmiare glucosio e di indirizzarlo alla mammella. In questa indagine è stato quindi evidenziato che, nel periodo che va da pochi giorni prima del parto a pochi giorni dopo il parto, diminuisce la capacità di risposta dell’insulina al glucosio, in accordo con ciò che è stato osservato in letteratura. La diminuzione della risposta dell’insulina alla somministrazione di glucosio osservata nel post-parto può essere spiegata come una diminuita capacità di risposta delle cellule β pancreatiche ad uno stato di iperglicemia, causata da fattori che inibiscono il rilascio di insulina, quali i NEFA o il GH, i cui valori sono più elevati nel post-parto. Anche l’area sotto la curva (AUC) totale dell’insulina risulta nettamente maggiore per quanto riguarda il periodo del pre-parto (26412,46±2532,21) rispetto al valore riscontrato per il post-parto (13973,52±1381,47). L’aumento nella richiesta di energia appena dopo il parto si accompagna a una diminuzione di assunzione di sostanza secca da parte della bovina, che quindi si trova a dover far fronte a uno stato di bilancio energetico negativo. Il bilancio energetico negativo costringe la bovina ad attingere alle proprie riserve corporee per la produzione di energia necessaria ai suoi fabbisogni; questo induce un processo di lipomobilizzazione, favorito anche da una minor concentrazione di insulin a plasmatica. L’utilizzo delle riserve adipose è mostrato dal fatto che il BCS (Body Condition Score) determinato nel periodo del pre-parto è risultato essere maggiore di quello determinato al momento del post-parto sia nell’azienda A (3,32±0,07 vs 3,03±0,43)
che nell’azienda B (3,29±0,12 vs 3,06±0,28). Questa variazione della condizione corporea dell’animale va a confermare quanto già riportato in letteratura (Drakley et al., 2001).

La conseguenza diretta del processo di lipomobilizzazione è l’aumento del livello ematico dei NEFA. I NEFA sono considerati l’indice più affidabile nella valutazione dello stato energetico dell’animale, in quanto ci forniscono un’indicazione del grado di mobilizzazione dei lipidi. In questa prova abbiamo riscontrato un aumento marcatamente significativo dei valori di NEFA al momento del post-parto rispetto a quelli rilevati nel pre-parto. Questo si è verificato per tutte le tempistiche prese in considerazione e per entrambe le aziende oggetto dello studio, il che può suggerire l’assenza di un eventuale effetto azienda. I valori di NEFA ottenuti sono risultati più elevati nel periodo successivo al parto, sia a livello basale (T0) che in risposta alla somministrazione di glucosio. Inoltre, in entrambi i periodi i valori di NEFA hanno subito un calo iniziale in risposta al carico di glucosio, calo che è risultato essere più marcato nel periodo del post-parto, in cui il valore più elevato è stato raggiunto a T5 (0,86±0,40) e quello minore a T60 (0,42±0,26); a tempistiche successive invece, si è riscontrato un progressivo innalzamento dei valori, che sono tornati a eguagliare quelli iniziali (0,81±0,41 a T160 e 0,79±0,56 a T0 nel post-parto), nello stesso tempo in cui parallelamente i valori della glicemia hanno subito un calo progressivo. Questo suggerisce l’esistenza di una correlazione negativa tra NEFA e glicemia e confermerebbe l’ipotesi che in condizioni di bilancio energetico positivo (instaurato dal bolo di glucosio fornito) diminuisce la mobilizzazione dal tessuto adiposo di acidi grassi. In altre parole, i risultati ottenuti propongono il ruolo chiave del bilancio energetico negativo come fattore importante nel favorire la lipomobilizzazione e si trovano in accordo con ciò che già Bell (1995) aveva dimostrato in uno studio, per cui a partire dall’ultimo periodo di gravidanza diminuisce l’utilizzo del glucosio da parte dei tessuti periferici, aumenta la mobilizzazione di NEFA dal tessuto adiposo e il loro metabolismo epatico.

Se i NEFA indicano il grado di mobilizzazione lipidica, il beta-Ldrossibutirrato (BHB) ci dà informazioni riguardo il grado di ossidazione dei lipidi e della capacità del fegato di ossidarli; entrambi questi parametri (NEFA e BHB) rispecchiano la capacità della bovina di adattarsi al bilancio energetico negativo. Come è possibile osservare in tabella 7, i valori di BHB ottenuti in questo studio, al pari dei NEFA, sono più elevati nel periodo successivo al parto, sia a livello basale (T0) che in risposta alla somministrazione del carico di glucosio. Questa differenza è
possibile osservarla anche in tabella 9, che riporta le AUC dei diversi parametri; per quanto concerne il BHB infatti il valore nel post-parto (109,54±11,57) è risultato più elevato di quello nel pre-parto (82,71±9,31). In particolare, a livello delle singole aziende, solo nell’azienda A la differenza tra i valori pre-parto e post-parto si è dimostrata statisticamente significativa per tutte le tempistiche. Nell’azienda B invece solo a T5 e T10 si sono riscontrate differenze significative tra i due periodi (rispettivamente 0,56±0,25 e 0,55±0,25 nel pre-parto mentre 0,81±0,30 e 0,81±0,31 nel post-parto). Questo potrebbe essere dovuto a una differenza tra i due allevamenti nella gestione delle bovine durante il periodo di transizione. Si sa infatti che per prevenire lo sviluppo della chetosi (ovvero di un aumento di BHB e di altri corpi chetonici nel sangue) è fondamentale una corretta gestione delle bovine dal punto di vista nutrizionale. In particolare risulta importante garantire alla bovina il giusto apporto di carboidrati fermentescibili che, attraverso la sintesi di propionato a livello ruminale, forniscono le molecole intermedi del ciclo di Krebs e permettono quindi la perpetuazione del ciclo stesso, evitando la formazione dei corpi chetonici, primo tra tutti il BHB. L’andamento del BHB è simile a quello dei NEFA, in quanto, come già è stato dimostrato, ad un aumento di questi ultimi consegue un aumento della chetogenesi negli epatociti (Cadorniga-Valiño et al., 1997).

Per quanto riguarda i dati clinici e produttivi rilevati nel periodo del post-parto, nella tabella 11 sono riportate alcune delle correlazioni individuate tra questi e alcuni valori relativi a parametri ematici riscontrati nel periodo del pre-parto. L’obiettivo è stato quello di valutare l’esistenza di un eventuale rapporto tra i dati ottenuti nel pre-parto circa i valori di glucosio, insulina, NEFA e BHB in risposta al test da carico e l’incidenza di alcune delle patologie più frequenti che si sviluppano nei primi giorni di lattazione. Il collasso puerperale si è dimostrato essere correlato in maniera positiva con i valori di NEFA (+0,312) riscontrati a T80. All’aumentare dei valori ematici di NEFA è stato osservato, quindi, un aumento della comparsa del collasso puerperale. Dato che la concentrazione di NEFA rispecchia la capacità della bovina di adattarsi alle esigenze che caratterizzano il momento del periparto, un aumento dei valori ematici di questo parametro indica uno stato di bilancio energetico negativo più marcato. Il disequilibrio nel metabolismo energetico che ne consegue favorisce quindi la comparsa delle patologie. A T160 l’indice di correlazione tra mastite e BHB è risultato positivo (+0,536). Si può supporre che negli animali che presentano la patologia sia presente un’alterazione del metabolismo che comporta
una più rapida lipomobilizzazione con accumulo di metaboliti intermedi o una ridotta funzionalità epatica di clearance che risulta in una iperchetonemia. Lo squilibrio che viene a crearsi nel metabolismo energetico prima del parto, di cui è espressione l’aumento dei valori di BHB, ha quindi delle ripercussioni sullo stato di salute della bovina dopo il parto. I risultati ottenuti concordano, del resto, con studi già effettuati, in quanto è stato comprovato che la più alta incidenza di patologia da produzione si concentra nei primi 10 giorni dopo il parto (Ingvartsen et al., 2003) e che bovine con concentrazioni di BHB al di sopra di 1,0 o 1,4 mmol/l sono 3,2 e 4,3 volte più a rischio di malattie del periparto (Van Saun, 2004). Anche la correlazione negativa tra la comparsa di metrite e i valori di glucosio a T160 portano alla stessa conclusione, in quanto valori minori di glicemia sono indicativi di un maggior deficit energetico. Questo però contrasta con il dato ottenuto analizzando la correlazione tra l’incidenza di zoppie e i valori della glicemia a T0; l’indice di correlazione in questo caso è risultato positivo (+0,595) e questo potrebbe essere dovuto al fatto che un animale con zoppia è descritto in letteratura come un animale tendente “all’appetito capriccioso”.

Per quanto concerne l’incidenza di patologie nelle due aziende oggetto di studio, nella tabella 12 si può notare come la comparsa di metrite, mastite, collasso puerperale, zoppia, distocia e ritenzione placentare sia risultata diversa tra l’azienda A e l’azienda B. In particolare la differenza per quanto riguarda la ritenzione placentare è risultata statisticamente significativa (0,27±0,45 per l’azienda A e 0,001±0,01 per l’azienda B). Questi dati possono essere giustificati dal fatto che nell’eziologia di queste malattie rivestono un ruolo importante i fattori ambientali oltre che gestionali e manageriali adottati all’interno del singolo allevamento. Si può quindi affermare l’esistenza di un effetto azienda nel caso dell’incidenza di patologie del periparto.

Prendendo in considerazione i dati produttivi riportati sempre in tabella 12, l’unica differenza rilevante che è stata evidenziata tra le aziende riguarda la percentuale di grasso del latte che è risultata maggiore per l’azienda B (4,22±0,70) rispetto all’azienda A (3,38±0,64). Questo può essere spiegato in parte prendendo in esame la produzione media per capo, che è risultata essere minore per l’azienda B (32,47±3,02) rispetto all’azienda A (35,29±2,21); probabilmente la minor quantità di latte prodotto per capo nell’azienda B può essere la causa di una concentrazione di grasso più elevata.
7. CONCLUSIONI

Questa indagine ha permesso di constatare che i parametri del metabolismo energetico delle bovine da latte, oggetto dello studio, hanno subito variazioni in seguito alla somministrazione del carico di glucosio e che tali variazioni sono risultate differenti tra i due momenti presi in considerazione (pre-parto e post-parto).

Il test da carico del glucosio ha permesso di evidenziare il ridotto rilascio di insulina nel periodo del post-parto rispetto al pre-parto e quindi una diminuzione della risposta dell’insulina in seguito ad una condizione di iperglicemia. Dopo il parto la bovina sviluppa infatti un grado variabile di insulino resistenza per garantire la deviazione delle fonti di energia (glucosio) dal muscolo e dal tessuto adiposo verso la ghiandola mammaria, che aumenta drasticamente le richieste energetiche per l’inizio della lattazione. A conferma di questo, anche i valori della glicemia sono risultati inferiori nel post-parto. È’ probabile inoltre che la minore insulinemia dei soggetti gestanti, dopo la somministrazione del bolo di glucosio, sia conseguenza di un’inibizione del rilascio di insulina da parte di NEFA e GH, i cui valori aumentano dopo il parto. Anche gli altri parametri ematici hanno subito delle variazioni dopo il test da carico. In particolare NEFA e β-idrossibutirrato (BHB) hanno subito un calo probabilmente perché, dopo la somministrazione del glucosio, viene sfruttato questo come fonte energetica principale, permettendo la riduzione dei processi di lipomobilizzazione e di produzione di corpi chetonic che erano in atto. Dopo poche ore dal test, però, i valori di questi metaboliti ritornano al livello iniziale. Il calo di NEFA e BHB dopo il carico di glucosio è più marcatò nel post-parto e questo può significare che, dopo il parto, il deficit di glucosio risulta più elevato. In condizioni di deficit più marcato la bovina sfrutta in maniera più pronunciata il glucosio somministrato e questo si riflette in un calo più elevato di NEFA e BHB.

Questo studio ha evidenziato inoltre alcune correlazioni tra parametri ematici riscontrati nel pre-parto e lo sviluppo di patologie nel post-parto, quali zoppia, ritenzione placentare, mastite, metrite, distocia e collasso puerperale. Il collasso puerperale è risultato essere correlato positivamente con i valori di NEFA nel pre-parto, così come la mastite ha mostrato una correlazione positiva con il BHB, mentre tra l’incidenza di metrite e i valori di glicemia registrati nel pre-parto si è osservato un indice di correlazione negativo. L’aumento dei valori di NEFA e
BHB e il calo della glicemia sono indici della difficoltà della bovina nel far fronte all’aumento delle richieste energetiche che caratterizza il periodo di fine gravidanza e inizio della lattazione e sono diretta conseguenza del bilancio energetico negativo. Questi squilibri metabolici propri del periodo del periparto favoriscono quindi lo sviluppo di patologie nel momento successivo al parto. Ad ogni modo la comparsa di tali patologie nel post-parto è risultata variabile tra le due aziende oggetto di studio, suggerendo l’importanza di fattori gestionali e manageriali nella loro eziologia.
8. BIBLIOGRAFIA

Hayirli A., 2006. The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle. Veterinary Research Communications 30: 749-774

Ospina P. A., Nydam D. V., Stokol T., Overton T. R., 2010. Association between the proportion of sampled transition cows with increased nonesterified fatty acids and β-hydroxybutyrate and

Van Saun J. R., 2004a. Health status and time relative to calving effects on blood metabolite concentrations, in Proc 23rd World Buiatrics Congress (Poster Abstracts), Quebec, Canada, July 11-16 pg 87.
