Applicazione dell’analisi del movimento allo studio della biomeccanica della battuta nella pallavolo

Relatore: Prof.ssa Chiara Dalla Man
Correlatore: Dott.ssa Zimi Sawacha

Laureanda: Pitteri Giorgia

Anno Accademico 2012-2013
Indice

Indici ... 3
Sommario ... 5
Capitolo 1 Introduzione ... 7
Capitolo 2 Analisi del movimento ... 11
 2.1 Motion Capture .. 11
 2.1.1 Stereofotogrammetria .. 13
 2.1.2 Video Motion Capture ... 14
 2.2 Calibrazione .. 15
 2.2.1 Calibration Toolbox .. 21
 2.3 Triangolazione ... 24
 2.4 Tracking ... 25
 2.4.1 Algoritmo di Tomasi e Kanade ... 25
Capitolo 3 Studio della biomeccanica della battuta nella pallavolo 31
 3.1 Set up per l’ acquisizione di dati .. 31
 3.1.1 Protocollo di acquisizione ... 33
 3.2 Preprocessing .. 34
 3.3 Calibrazione delle telecamere .. 37
 3.4 Tracking ... 40
 3.5 Elaborazione ... 43
 3.5.1 Elaborazione Matlab ... 43
 3.5.2 Elaborazione Analyzer ... 45
Capitolo 4 Risultati .. 47
 4.1 Velocità e accelerazione .. 47
 4.2 Altezza del salto .. 50
 4.3 Angoli .. 50
 4.4 Rincorsa .. 52
Conclusioni .. 55
Bibliografia .. 57
Ringraziamenti ... 58
Indice delle figure

Figura 2.1 Posizionamento di marker neri sulla pelle di un atleta .. 14
Figura 2.2 Marker disegnati sulla pelle del soggetto da studiare .. 15
Figura 2.3 Modello della camera oscura (pinhole model) .. 16
Figura 2.4 Schematizzazione del modello della camera oscura .. 17
Figura 2.5 Trasformazioni consentite dai parametri di calibrazione 17
Figura 2.6 Finestra per la selezione manuale dei quattro vertici 22
Figura 2.7 Esempio di finestra per la selezione dei punti di controllo 23
Figura 2.8 Ricostruzione 3D tramite triangolazione .. 24
Figura 3.1 Disposizione delle telecamere per l'acquisizione di dati 32
Figura 3.2 Marker attaccati, tramite biadesivo, sul corpo dell'atleta 34
Figura 3.3 Finestra d'uso di AVSConverter ... 35
Figura 3.4 Finestra d'uso di AVSConverter: visualizzati i parametri di conversione 35
Figura 3.5 video acquisiti dalle Cam 1 e 3 sincronizzati attraverso l'evento di sync 37
Figura 3.6 Finestra di creazione di una nuova calibrazione .. 39
Figura 3.7 Dimensioni e posizione della scacchiera usata per calibrare 39
Figura 3.8 Screenshot di FeatureTracker .. 40
Figura 3.9 Modello utilizzato .. 44
Figura 3.10 TDF generato tramite un'applicazione Matlab .. 44
Figura 3.11 schermata principale del software Analyzer .. 45
Figura 4.1 Velocità lungo le tre direzioni dei marker: L5 (blu), RCA (rossa), LCA (verde) 48
Figura 4.2 Accelerazione lungo le tre direzioni dei marker: L5 (blu), RCA (rossa), LCA (verde) 49
Figura 4.3 Altezza del salto: a sx con riferimento ai marker RCA e LCA a dx al marker L5 .. 50
Figura 4.4 Angoli di flesso-estensione ... 50
Figura 4.5 Angoli di flesso-estensione convenzione Grood e Suntay 51
Figura 4.6 Angoli di torsione .. 51
Figura 4.7 Velocità della rincorsa lungo le tre direzioni ... 52
Figura 4.8 Accelerazione della rincorsa lungo le tre direzioni ... 53

Indice delle tabelle

Tabella 3.1 Marca e modello delle telecamere commerciali usate per acquisire i dati 32
Tabella 3.2 Caratteristiche dei soggetti studiati ... 33
Tabella 3.3 Indice e posizione dei marker utilizzati .. 42
Sommario

Introduzione
Capitolo 1

Introduzione

La società italiana è caratterizzata dalla presenza di un movimento sportivo che coinvolge oltre dodici milioni di persone. La crescita del fenomeno “sport” si è manifestata con la parallela evoluzione delle modalità di sviluppo delle capacità fisiologiche, tecniche e strategiche. L’atleta agonista, così come lo sportivo amatoriale, deve prestare attenzione ai carichi a cui sottopone il proprio corpo, poiché errori nei programmi di allenamento possono aumentare il rischio di infortuni.

Lo studio del movimento nello sport si basa sull’analisi degli aspetti cinematici, dinamici e dell’attività muscolare. Vengono usate diverse tecniche di misura: cinematografia, videografia, accelerometria, dinamometria e elettrogoniometria. Molte di queste tecniche sono a basso costo, facili da usare e accessibili a una vasta utenza; altre invece hanno un costo elevato, sono difficili da usare e richiedono molto tempo per essere applicate. Quest’ultime trovano impiego generalmente solo in laboratorio.

Per l’analisi di molti sport si possono condurre degli studi in laboratorio simulando la situazione di campo. Per altri, tuttavia, bisogna studiare la performance dell’atleta direttamente sul campo.

L’analisi del movimento eseguita sul campo è generalmente condotta con la post elaborazione, frequentemente semi automatica, di immagini televisive che, nel caso di descrizioni 3D, deve essere ripetuta sulle registrazioni effettuate da almeno due punti di osservazione. Recentemente, grazie alla diffusione di videocamere digitali ad alta risoluzione, la qualità delle misure è migliorata. Questo dipende però anche dall’abilità e dall’attenzione
dell’operatore nel riconoscere e localizzare i punti di repere del modello anatomico o, in caso di procedure automatiche, dalla robustezza dell’algoritmo di riconoscimento.

La precisione raggiungibile in questa fase, può essere migliorata facendo in modo che l’immagine del soggetto che si muove interessi il massimo numero di pixel del quadro immagine. Per ottenere tale risultato, si fa uso di telecamere libere di muoversi nello spazio, dotate di lenti ad ottica variabile. Un abile operatore è così in grado di seguire con l’inquadatura l’atleta e di massimizzarne la dimensione utilizzando al meglio lo zoom dell’obiettivo.

In qualunque analisi per immagini, è necessario affrontare il problema della calibrazione delle telecamere, che permette di passare dalle coordinate del sistema ottico alle coordinate del sistema di riferimento inerziale. Tuttavia, la calibrazione degli ampi volumi di spazio in cui generalmente evolvono i movimenti sportivi, spesso richiede lunghi tempi di esecuzione che finiscono per influenzare pesantemente i costi di un esperimento.

L’abilità dell’atleta nell’eseguire il gesto tecnico della sua disciplina è il fattore determinante per ottenere risultati di rilievo. Per l’allenatore invece è necessario conoscere a fondo il paradigma motorio del gesto ma anche possedere la panoramica delle sue possibili alterazioni, in modo da applicare individualmente gli opportuni strumenti correttivi. L’analisi quantitativa del movimento è lo strumento che, nonostante la sua oggettiva complessità, può supportare l’identificazione degli errori e fornire una valutazione localizzata dell’efficacia di un intervento.

In sintesi l’analisi del movimento in ambito sportivo è uno strumento utile alla prevenzione di infortuni, al recupero funzionale, al monitoraggio dell’evoluzione del soggetto ed all’ottimizzazione dell’allenamento.

Tuttavia bisogna riscontrare anche alcune problematiche legate all’applicazione di queste tecniche in ambito sportivo, quali per esempio l’eterogeneità del gesto sportivo, l’utilizzo di attrezzature specifiche e la difficoltà di reclutare atleti.

Il presente lavoro di tesi si inserisce in un progetto di ricerca che coinvolge l’Università degli Studi di Padova e la S.S.C.D Pallavolo Padova, società che partecipa al Campionato Serie A2 di volley. Il progetto ha l’obiettivo di studiare la biomeccanica della battuta tramite l’analisi del movimento, per fornire agli allenatori importanti informazioni per l’allenamento e la prevenzione degli infortuni degli atleti.
Introduzione

A tal fine, sono stati analizzati i gesti motori (battuta e salto al vertec) di quattro soggetti della squadra acquisendo le immagini tramite telecamere commerciali direttamente sul campo ovvero presso l’impianto sportivo Palafabris di Padova, abituale sede di allenamento degli atleti. Le successive elaborazioni effettuate con particolari piattaforme software sono state eseguite presso il Laboratorio di Bioingegneria del Movimento dell’Università di Padova (Dipartimento di Ingegneria dell’Informazione).

L’obiettivo generale del progetto è estrarre dalle registrazioni video le variabili biomeccaniche di interesse.

Il lavoro di tesi qui presentato si focalizza, in particolare, sulla tecnica per l’acquisizione del movimento nota come video motion capture.

Nel capitolo 2 vengono prima studiati i vari passi che stanno alla base dell’acquisizione del gesto motorio e della successiva elaborazione delle immagini dal punto di vista teorico, fornendo una descrizione degli algoritmi che stanno alla base dei software utilizzati. Nel capitolo 3 viene mostrata un’applicazione di questa tecnica in ambito sportivo, utilizzandola nel progetto di ricerca in questione.

Nel capitolo 4 vengono riportati i risultati ottenuti con la video motion analysis.
Capitolo 2

Analisi del movimento

Lo studio del movimento umano prevede la misura di variabili che descrivono la cinematica e la dinamica dei segmenti anatomici.
L’analisi del movimento ha lo scopo di fornire quindi un metodo oggettivo (non basato su sensazioni soggettive) per descrivere, quantificare e valutare il movimento umano.
L’obiettivo è, quindi, raccogliere informazioni riguardanti sia la cinematica sia la dinamica del gesto motorio, in particolare il movimento assoluto del centro di massa del corpo, il movimento assoluto di segmenti ossei o segmenti corporei, la cinematica articolare (ovvero il movimento relativo tra ossa o segmenti corporei adiacenti), le forze e le coppie scambiate con l’ambiente, le variazioni di energia di segmenti corporei, lavoro e la potenza muscolari.
 Questa analisi può essere applicata a vari ambiti, quali l’ambito clinico, l’ambito sportivo e in ergometria.
L’analisi del movimento si basa su particolari sistemi di motion capture.

2.1 Motion Capture

La disciplina nota come Motion Capture studia le tecniche di acquisizione e il processo stesso di acquisizione del movimento.
Lo scopo della Motion Capture è quindi quello di “digitalizzare” il movimento di un soggetto fornendone una rappresentazione matematica quantitativa che renda il movimento stesso facilmente utilizzabile come input per successivi studi ed elaborazioni. I sistemi di Motion Capture sono caratterizzati da tecnologie eterogenee ciascuna con i propri vantaggi e svantaggi:
• elettrogoniometri e accelerometri consentono di ottenere misure dirette di alcune variabili di interesse ma presentano lo svantaggio di richiedere il contatto tra la superficie del corpo e dispositivi elettrici. Inoltre, sono ingombranti e rischiano di ridurre la naturalità del movimento;

• i sistemi basati su sensori elettromagnetici forniscono misure dirette della cinematica sfruttando un generatore esterno di campo magnetico. I sensori elettromagnetici vengono attaccati alla superficie di un segmento corporeo e dal segnale che essi emettono si ricava posizione e orientamento di tale segmento. Questo sistema è, però, poco affidabile poiché ci possono essere interferenze dovute ad oggetti ferromagnetici situati nell’ambiente;

• i sistemi basati su sensori acustici presentano delle sorgenti poste sul soggetto e dei ricevitori di onde acustiche situati nel laboratorio. La stima delle variabili cinematiche è indiretta poiché si basa sulla conoscenza della velocità del suono nell’aria. Questi sistemi sono poco utilizzabili a causa di problemi di interferenza, incostanza della velocità del suono nell’aria e di eco;

• i sistemi optoelettronici utilizzano telecamere operanti nella gamma del visibile e del vicino infrarosso. Presentano un’elevata accuratezza, tuttavia, le variabili cinematiche vengono stimate e non misurate. Il principio base è lo sfruttamento di caratteristiche geometriche localizzate sulla superficie corporea del soggetto; le immagini di tali parti vengono acquisite da più telecamere e ricostruite in tre dimensioni. Si può, ad esempio, analizzare l’evoluzione nel tempo della posizione dei bordi dei segmenti anatomici che si muovono nello spazio oppure dei vertici. Il limite della prima possibilità consiste nell’impossibilità di misurare la velocità del bordo dell’oggetto in movimento in una direzione diversa da quella ortogonale al bordo stesso, mentre con la seconda possibilità si può conoscere lo spostamento dell’oggetto in tutte le direzioni. Lo svantaggio dell’analisi dei vertici deriva dal fatto che i vertici del corpo umano possono modificare la loro configurazione durante il movimento, per cui l’accuratezza del sistema peggiora.
La soluzione consiste nell’utilizzo di marcatori passivi o attivi. I primi sono formati da dei supporti in materiale plastico ricoperti di materiale catarifrangente, mentre i secondi sono dei LED. I primi necessitano di un dispositivo per l’illuminazione e un sofisticato sistema di pre-elaborazione per identificare e classificare i marcatori, mentre i LED generano automaticamente il segnale luminoso ma necessitano di alimentazione e sincronizzazione via cavo, che elimina il problema dell’identificazione dei marcatori, ma ne riduce l’impiego a particolari applicazioni.

2.1.1 Stereofotogrammetria

L’analisi del movimento svolta in laboratorio viene, generalmente, eseguita tramite stereofotogrammetria optoelettronica a marcatori passivi, che consente la ricostruzione della cinematica dei segmenti corporei. Vengono utilizzate telecamere operanti nella gamma dell’infrarosso le quali rilevano le onde riflesse dai marker posti sul soggetto all’interno del volume illuminato per stimare le variabili cinematiche. Come già sottolineato, per quanto questo metodo sia tra i più accurati ed usati, le variabili cinematiche vengono stimate ma non misurate.

Un sistema di motion capture optoelettronico multi-camera a marcatori passivi è composto da: una struttura di acquisizione (telecamere, illuminatori, schede di acquisizione) e una infrastruttura software di elaborazione.

La piattaforma software ha il compito di assistere l’operatore nelle fasi di acquisizione, di calibrazione delle telecamere, di sincronizzazione, di ricostruzione dei dati e di tracking.

Per calibrazione si intende quella procedura che permette di definire il volume di lavoro, il sistema di riferimento globale e la posizione relativa delle telecamere. Dopo aver effettuato questa procedura, il sistema è pronto per acquisire le immagini.

Dopo aver sincronizzato il sistema (procedure fondamentale per la seguente operazione), un ulteriore software permette poi la ricostruzione dei dati 2D acquisiti dalle telecamere, al fine di ottenere un’immagine tridimensionale delle traiettorie di ogni singolo marker.

2.1.2 Video Motion Capture

La ricostruzione del movimento umano a partire unicamente da sequenze di immagini sta avendo sempre più successo, soprattutto grazie alle innumerevoli applicazioni in vari ambiti, quali la robotica, la Computer vision, i sistemi di sorveglianza intelligente, i sistemi di identificazione e controllo, le interfacce percettive e l’analisi del movimento.

In particolare, i campi della computer vision, dove l’analisi del movimento umano da parte del computer sta sviluppando un interesse sempre crescente, hanno permesso lo sviluppo di vari sistemi vision-based per la ricostruzione del movimento umano.

In questo modo viene rimossa qualsiasi apparecchiatura applicata al corpo, annullando così totalmente l’ingombro sul soggetto, eliminando eventuali stimoli indesiderati al sistema neuro-sensoriale e permettendo l’acquisizione di movimenti naturali, liberi da costrizioni e appartenenti quindi ad un pattern fisiologico. Inoltre viene ridotto il tempo di preparazione del soggetto da studiare.

L’analisi video, senza stereocamere, si può applicare per l’analisi cinematica del gesto motorio preso in considerazione mediante tre tipi di marker passivi in tre modi:

- applicando dei marker sferici o rettangolari, di colore diverso dalla sfondo sottostante, per es: marker bianchi su tuta nera, marker neri sulla pelle ecc. (Figura 2.1);

![Figura 2.1](image-url)

Figura 2.1 Posizionamento di marker neri sulla pelle di un atleta

- disegnando i marker direttamente sulla pelle in corrispondenza di punti di repere anatomico (prominenze ossee) o in punti tecnici (Figura 2.2);

![Figura 2.2](image-url)

Figura 2.2 Posizionamento di marker neri sulla pelle di un atleta
Figura 2.2 Marker disegnati sulla pelle del soggetto da studiare

- senza disegnare marker sulla pelle ma digitalizzando direttamente a video i punti di interesse per la ricostruzione della cinematica del gesto.

Per l’acquisizione delle immagini ci si avvale di telecamere commerciali TVC [8] o programmabili (Basler).

Per la sincronizzazione delle TVC ci sono varie possibilità:

1) acquisire dati sincroni tramite il collegamento di tutte le telecamere ad un HUB, cioè un dispositivo che permette connessioni di più apparati;
2) sincronizzare i dati tramite l’invio di un “Trigger” che comanda la sincronizzazione di ogni telecamera;
3) sincronizzare i dati in post-processing tramite l’identificazione di un evento comune nei dati provenienti da ogni telecamera.

La soluzione 3) genera dati meno precisi per cui si privilegiano le soluzioni 1) e 2).

Esistono numerosi software in commercio che provvedono ad applicare i due metodi 1) e 2), sopra descritti, oppure ci sono vari algoritmi disponibili nelle librerie Microsoft Open CV.

2.2 Calibrazione

Per effettuare la ricostruzione della posizione tridimensionale di un marker, la posizione e l’orientamento delle telecamere devono essere noti. Inoltre, i parametri che descrivono il processo di proiezione su ogni telecamera sono indispensabili per la ricostruzione tridimensionale e vengono calcolati nella fase di calibrazione del sistema.

La stima di questi parametri è detta calibrazione.
Infatti, la calibrazione delle telecamere consiste nella determinazione dei loro parametri geometrici, operazione necessaria per la ricostruzione della scena tridimensionale. I parametri geometrici si dividono in parametri interni quali la lunghezza focale, le coordinate del punto principale, i coefficienti di distorsione, e i parametri esterni ovvero la posizione del sistema di riferimento della telecamera rispetto il sistema di riferimento assoluto.

Noti i parametri di calibrazione è possibile:
- eseguire una trasformazione di coordinate dal sistema assoluto al sistema di coordinate della camera localizzato nel suo centro di prospettiva e viceversa;
- eseguire una trasformazione prospettica dallo spazio 3D allo spazio 2D della camera e viceversa;
- eseguire una trasformazione 2D dal sistema di coordinate del piano immagine al sistema di riferimento del sensore e viceversa. (Figura 2.5)

Per realizzare la calibrazione è necessario definire un modello del sistema. Il più usato in letteratura è il modello della telecamera a foro stenopeico (pin-hole).

Il modello si basa essenzialmente sul principio della camera oscura. Si modella l’ottica come un foro di diametro infinitesimo posto nel centro di prospettiva (Figura 2.3).
Si indichi con F il piano in cui è presente il foro, detto piano focale. Un raggio di luce proveniente da un punto P dello spazio attraversa il foro e incide sul piano I, detto piano immagine, in un punto p. La distanza tra i piani F e I è la distanza focale f. Il punto dove è stato praticato il foro si indica come centro ottico, mentre la retta normale al piano focale passante per il foro è detto asse ottico.

Figura 2.4 Schematizzazione del modello della camera oscura

Figura 2.5 Trasformazioni consentite dai parametri di calibrazione
Scegliamo una terna cartesiana con origine nel centro ottico C e l’asse Z coincidente con l’asse ottico. Troviamo la relazione tra le coordinate (x_p, y_p) di p nel piano immagine e le coordinate (X_p, Y_p, Z_p) di P nel sistema di riferimento della camera (X_C, Y_C, Z_C) di centro C.

Poiché, per similitudine, vale:

$$\frac{x_p}{z_p} = \frac{x_p}{z_p}$$ \hspace{1cm} (2.1)

$$\frac{y_p}{z_p} = \frac{y_p}{z_p}$$ \hspace{1cm} (2.2)

$$z_p = f$$ \hspace{1cm} (2.3)

allora:

$$\begin{pmatrix} x_p \\ y_p \end{pmatrix} = -f \begin{pmatrix} \frac{1}{z_p} & 0 \\ 0 & \frac{1}{z_p} \end{pmatrix} \begin{pmatrix} X_p \\ Y_p \end{pmatrix}$$ \hspace{1cm} (2.4)

Ricorrendo all’uso delle coordinate omogenee, per cui il punto di coordinate (x_p, y_p) corrisponde alla retta $(\lambda x_p, \lambda y_p, \lambda)$ la formula può essere riscritta come:

$$\lambda \begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix} = \begin{pmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X_p \\ Y_p \\ Z_p \\ 1 \end{pmatrix} = MP_p$$ \hspace{1cm} (2.5)

Il piano del sensore ha un proprio sistema di riferimento centrato sull’angolo inferiore destro del piano immagine, nel quale sono espresse le coordinate in 2D in uscita dalla camera. Siano (k_u, k_v) le dimensioni orizzontale e verticale del pixel e (u_0, v_0) le coordinate del punto principale. Allora le coordinate del punto p nel sistema di riferimento del sensore sono:

$$p = \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{k_u} & 0 & u_0 \\ 0 & \frac{1}{k_v} & v_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_p \\ Y_p \\ Z_p \end{pmatrix} = Hp$$ \hspace{1cm} (2.6)

Il punto P è originariamente espresso rispetto al sistema di riferimento assoluto (O, X, Y, Z):
Analisi del movimento

\[P_p = \begin{pmatrix} X_p \\ Y_p \\ Z_p \\ 1 \end{pmatrix} = \begin{pmatrix} R & T \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X_a \\ Y_a \\ Z_a \\ 1 \end{pmatrix} = DP \]

(2.7)

in cui il vettore \(T \) e la matrice \(R \) esprimono rispettivamente la traslazione e l’orientamento del sistema di riferimento della camera rispetto il sistema di riferimento assoluto. \(P_p \) è il punto \(P \) espresso nel sistema di riferimento della camera.

Quindi il modello della telecamera pin-hole può essere rappresentato come una matrice \(A \) di dimensioni 3x4:

\[
A = HMD = \begin{pmatrix}
\frac{1}{k_u} & 0 & u_0 \\
0 & \frac{1}{k_v} & v_0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-f & 0 & 0 & 0 \\
0 & -f & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
R & T \\
0 & 1
\end{pmatrix}
\]

(2.8)

con \(\lambda P = AP \), formula in coordinate omogenee delle equazioni di collinearità.

(2.9)

La limitazione principale di questo approccio è che, se il foro fosse veramente infinitesimo, l’intensità della luce che attraversa il foro e che giunge sugli elementi fotosensibili del piano immagine, sarebbe insufficiente per essere rilevata, per cui è necessario allargare il foro (diaframma) e ricorrere ad un’ottica per mettere a fuoco l’immagine. Questo strumento introduce ulteriori fattori di deviazione dal modello ideale di proiezione, per cui l’immagine viene deformata a causa di distorsioni cromatiche (che degradano la qualità o il dettaglio dell’immagine) e di distorsioni geometriche (che causano lo spostamento del contenuto dell’immagine).

E’ necessario quindi stimare anche un modello per le distorsioni.

In generale, ci sono due possibili modi per rappresentare le distorsioni geometriche: il primo, attraverso un semplice modello radiale che assume che i punti vengano allontanati o avvicinati al centro dell’immagine in accordo ad una funzione polinomiale della distanza fra il centro di distorsione e il punto, la seconda attraverso un modello tangenziale secondo il quale i punti subiscono uno spostamento in direzione tangente alla direzione radiale.

Per la stima delle distorsioni si possono utilizzare due approcci differenti:

- stima a priori dei parametri di distorsione, indipendente dalla calibrazione dei parametri esterni della camera, utilizzando un oggetto di geometria nota (struttura planare);
Analisi del movimento

- calcolo delle distorsioni in parallelo con i parametri geometrici durante la fase di calibrazione delle telecamere.

Il primo approccio implica la stima di un operatore di trasformazione G tale che:

$$m_c = G(m_d)$$

Dove $m_c = \{(x_c, y_c)\}$ e $m_d = \{(x_d, y_d)\}$ sono rispettivamente le coordinate dei punti (in 2D) corretti e distorti.

La relazione in eq. (2.10) è detta modello diretto poiché mappa coordinate distorte in corrette e non può essere definita a meno della conoscenza di un numero minimo di coppie di punti (punti distorti della griglia di calibrazione acquisita $\{(x_d, y_d)\}$ e nominali $\{(x_n, y_n)\}$), qualsiasi sia il numero dei parametri utilizzati nel calcolo di G. Dato un punto di coordinate distorte, tale modello, fornisce la stima del corrispondente punto corretto, quindi data la regione di pixel distorta che rappresenta il marcatore, ne calcola prima il baricentro per poi correggerlo tramite la funzione G.

Il modello diretto però non può essere considerato adatto alla correzione dell’immagine in caso di forte distorsione ai bordi. In questo caso fornisce, infatti, risultati poco accurati.

Una soluzione a questo tipo di problema, sebbene più lenta, è rappresentata dalla correzione dell’intera immagine anziché dei soli baricentri dei marcatori: si tratta dunque di correggere le distorsioni sull’immagine originale prima dell’identificazione.

Per il calcolo della funzione di correzione, l’approccio a funzione globale (Gronenschild, 1997) non necessita di un modello predefinito di distorsione ma prevede l’utilizzo di un polinomio come il seguente:

$$G(p, m_p) = \begin{bmatrix}
 a_{0x} + a_{1x}x_d + a_{2x}y_d + a_{3x}x_dy_d + a_{4x}x_d^2 + a_{5x}y_d^2 +
 a_{0y} + a_{1y}x_d + a_{2y}y_d + a_{3y}x_dy_d + a_{4y}x_d^2 + a_{5y}y_d^2 +
 \ldots
\end{bmatrix}$$

Dove il vettore p contiene i due insiemi di parametri $\{a_x\}$ e $\{a_y\}$.

Il secondo approccio alla stima dei parametri di distorsione, invece, prevede che essi siano determinati insieme ai parametri geometrici delle telecamere durante la fase di calibrazione 3D.

Il passo successivo, nel processo di calibrazione delle telecamere, prevede la determinazione dei parametri geometrici delle telecamere che implica l’utilizzo di un insieme di punti di controllo distribuiti internamente al volume di calibrazione. Normalmente, per la determinazione dei parametri, vengono utilizzati metodi di soluzione in forma chiusa delle equazioni di collinearità come la DLT (direct linear transformation), basata sulla soluzione di
una sistema lineare assumendo note le coordinate dei punti di controllo. In alternativa, sono stati proposti metodi basati sulla geometria epipolare (Luong e Faugeras, 1996) che utilizzano soluzioni lineari ricavabili, però, a prescindere dalla conoscenza delle coordinate dei punti di controllo nello spazio tridimensionale (Hartley, 1992; Hartley, 1997; Cerveri et al., 1998).

Per le soluzioni che utilizzano telecamere commerciali, solitamente, i punti di controllo o equivalentemente punti di calibrazione, sono punti 3D di cui si conoscono le coordinate di proiezione. Esistono diversi metodi di calibrazione, la maggior parte dei quali, utilizza un oggetto (target di calibrazione) sul quale sono tracciati i punti di calibrazione costituiti da N elementi che nell’immagine devono essere riconosciuti senza ambiguità ed avere coordinate note con precisione. Gli N elementi in genere sono quadrati disposti a scacchiera o dischi circolari, solitamente di colore nero su sfondo bianco.

2.2.1 Calibration Toolbox

Un possibile modo per calibrare un sistema è stato sviluppato in linguaggio Matlab da Jean-Yves Bouguet, membro della Computer Vision Research Group del California Institute of Technology.

Il metodo si articola in diversi punti, illustrati di seguito, e si basa sull’utilizzo di un particolare tool costituito da una scacchiera classica a quadri neri e bianchi.

Per prima cosa si procede con l’acquisizione di diverse immagini da tutte le telecamere che si intendono calibrare mentre nell’area di lavoro è presente il pattern di identificazione. Tali immagini devono essere salvate in un folder specifico e caricate in Matlab per l’elaborazione. Successivamente è necessario fornire in input all’algoritmo il numero di tasselli per riga (wintx) o per colonna (winty) presenti nella scacchiera (per default il valore di wintx = winty è uguale a 5). Il tool mette a disposizione dell’utente un meccanismo automatico di conteggio e assegnazione dei valori di wintx e winty. Questo strumento è vantaggioso quando il numero di immagini con cui si lavora è significativo. L’utente, infatti, non deve inserire manualmente il numero di quadrati in entrambe le direzioni x e y del modello. Tuttavia, bisogna tener presente che, in alcuni casi, soprattutto in presenza di obiettivi caratterizzati da distorsioni molto elevate, l’algoritmo può conteggiare un valore errato di tasselli presenti causando un errore nel processo di calibrazione.
A questo punto all’utente si presenta la schermata mostrata in Figura 2.6, dove viene richiesto di procedere alla selezione manuale dei quattro vertici della scacchiera.

![Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1](image)

Figura 2.6 Finestra per la selezione manuale dei quattro vertici

L’ordine di selezione dei quattro vertici non è casuale. Il primo punto cliccato, infatti, viene associato al punto di origine del sistema di riferimento collegato alla singola immagine. Gli altri tre, invece, possono essere selezionati in qualsiasi ordine in quanto il software è in grado di ricostruire la terna di riferimento locale basandosi solo sulla posizione dell’origine e sull’identificazione del piano della scacchiera, definito dai quattro punti totali (figura 2.5). Quindi la prima selezione è estremamente importante in quanto è quella che permette di associare ad ogni pattern il proprio sistema di riferimento e di identificare quindi in un secondo momento punti corrispondenti in immagine successive. Se si eseguisse una selezione poco accurata o si scegliesse un ordine errato nella scelta dei punti si introdurrebbe un errore nella stima dei parametri di calibrazione.
Analisi del movimento

All’utente viene quindi richiesto di riportare la dimensione reale dei tasselli nella scacchiera in modo tale che l’algoritmo possa stimare la posizione dei vertici di ogni casella nell’immagine fornendo in output una rappresentazione consistente dei risultati. Attraverso un’ispezione visiva si controlla la bontà dei risultati che, se non sono sufficientemente accurati, possono essere ricalcolati introducendo fattori di correzione. Questa procedura viene ripetuta per tutte le immagini acquisite.

Dopo questa fase si può passare alla stima dei parametri intrinseci ed estrinseci delle camere. La calibrazione viene effettuata in due fasi:

- Inizializzazione dei dati
- Ottimizzazione non lineare

La fase di inizializzazione calcola una soluzione in forma chiusa per i parametri di calibrazione escludendo la presenza di qualsiasi distorsione della lente. Questa viene invece considerata nello step successivo di ottimizzazione non lineare dove si minimizza l’errore totale di retroproiezione su tutti i parametri di calibrazione, ovvero nove parametri intrinseci (focale, punto principale, coefficienti di distorsione) e $6 \times n$ parametri estrinseci, con $n =$ numero delle telecamere. L’ottimizzazione viene effettuata in modo iterativo diminuendo via via il gradiente della matrice Jacobiana della trasformazione.

L’utente può supervisionare alla bontà dei vari step grazie al feedback fornito dall’interfaccia.
2.3 Triangolazione

Dopo aver concluso la parte di calibrazione delle telecamere è possibile ricostruire la posizione dei *marker* nello spazio. Per la ricostruzione 3D sono necessari almeno due punti 2D e i parametri esterni (posizione e orientamento delle telecamere rispetto il sistema di riferimento assoluto) e interni, ottenuti come descritto precedentemente. Il punto di partenza sono le coordinate delle proiezioni nei sistemi di riferimento del piano immagine \((x,y)\), il punto di arrivo le coordinate dei *marker* nello spazio 3D \((X,Y,Z)\).

Il *marker* deve essere quindi inquadrato da almeno due telecamere. Per ogni telecamera è possibile tracciare la retta che passa per il centro ottico dell’obiettivo (punto in cui passano tutti i raggi di luce) e per il punto del sensore dove il *marker* è proiettato: esso si troverà all’intersezione fra le due rette, come mostrato in Figura 2.8.

A causa del rumore le rette sono sghembe quindi la proiezione del punto si ottiene per soluzione ai minimi quadrati del sistema di equazioni:

\[
\begin{align*}
 a_{111}X + a_{121}Y + a_{131}Z &= a_{141} \\
 a_{211}X + a_{221}Y + a_{231}Z &= a_{241} \\
 a_{112}X + a_{122}Y + a_{132}Z &= a_{142} \\
 a_{212}X + a_{222}Y + a_{232}Z &= a_{242} \\

 a_{11k}X + a_{12k}Y + a_{13k}Z &= a_{14k} \\
 a_{21k}X + a_{22k}Y + a_{23k}Z &= a_{24k} \\
 \vdots
\end{align*}
\]

(2.12)
dove gli indici a_{ijk} si ottengono dall’equazione di collinearità per ogni camera k.

2.4 Tracking

Una volta ricostruita ad ogni istante di tempo la posizione 3D di ciascun marker, il problema successivo è calcolarne la traiettoria. Questo rappresenta uno dei problemi più complessi di tutta l’analisi del movimento.

Si possono utilizzare due tipi di informazioni a priori per risolvere il problema:

1. la regolarità della traiettoria;
2. informazioni a priori sulla forma e sul tipo di moto del soggetto.

Per sfruttare la regolarità della traiettoria viene utilizzato ad esempio il filtro di Kalman, uno stimatore ricorsivo relativo allo stato di sistemi dinamici. Questa tipologia di algoritmi eseguono in genere un passo di predizione e uno, successivo, di aggiornamento.

Nel primo viene calcolata la posizione attesa del marker sulla base di posizioni precedenti, modello dinamico, varianza della predizione. Nel secondo vengono registrate le modifiche calcolate.

Tali algoritmi sono tuttavia computazionalmente pesanti e quindi spesso si ricorre a soluzioni subottime che, nella maggior parte dei casi, risultano sufficientemente adeguate.

Il secondo tipo di informazione, per la sua variabilità richiede lo sviluppo di algoritmi diversi e generalmente complessi che non rientrano nello studio effettuato.

2.4.1 Algoritmo di Tomasi e Kanade

Alla base degli algoritmi per il tracking c’è l’obiettivo di selezionare delle buone features e seguirne l’evoluzione temporale. L’algoritmo sviluppato da Tomasi e Kanade riprende la soluzione di Lucas e Kanade stesso elaborata precedentemente.

Il loro approccio si basava sulla minimizzazione della somma dei quadrati delle differenze di intensità tra la finestra corrente e quella precedente assumendo la prima come una traslazione della seconda. Per lo stesso motivo anche l’intensità dell’immagine nella finestra traslata può essere scritta come l’intensità dell’immagine nella finestra passata più un residuo che dipende dal vettore di traslazione. Tutto ciò poteva essere scritto in un sistema lineare 2×2 la cui incognita è il vettore spostamento. Questa approssimazione introduce un certo errore, ma con alcune iterazioni della soluzione converge ad un buon risultato.
L’algoritmo parte dalla rappresentazione di una sequenza di immagine come una funzione a tre variabili (due spaziali e una temporale): \(I(x, y, t) \).

Immagini prese a istanti temporali vicini, tuttavia, sono tra loro correlate, poiché si riferiscono alla stessa scena vista da punti di vista poco differenti. Questa correlazione viene espressa dicendo che esistono pattern all’interno della sequenza di immagini. Quindi la funzione \(I(x, y, t) \) non è arbitraria ma soddisfa la seguente relazione:

\[
I(x, y, t+\tau) = I(x-\xi(x,y,t,\tau), y-\eta(x,y,t,\tau))
\]

La successiva immagine al tempo \(t+\tau \) può essere ottenuta muovendo ogni punto dell’immagine corrente al tempo \(t \) di una quantità adatta pari a \(d = (\xi, \eta) \), detta displacement (spostamento, dislocazione) del punto \(x = (x,y) \) ed è funzione di \(x, y, t, \tau \).

Tuttavia, anche nell’ambiente in cui la luce è costante questa proprietà può essere violata. I punti potrebbero non muoversi con l’immagine in quanto, a causa di occlusioni, potrebbero apparire e scomparire e inoltre l’aspetto fotometrico di una regione su una superficie visibile potrebbe cambiare se la riflettività è funzione del punto di vista. Tuttavia se ci poniamo su punti di superficie marcati e lontani da occlusioni possiamo assumere questa proprietà invariante. Nella realtà questi marcatori superficiali abbondano, quindi possiamo considerare questa ipotesi di lavoro non troppo restrittiva.

Un problema nel trovare il vettore \(d \) da un frame al successivo è che un pixel non può essere marcato senza che abbia una distintiva luminosità rispetto i suoi vicini. Infatti il valore di un pixel può cambiare a causa del rumore ed essere confuso con pixel adiacenti. Quindi, è spesso impossibile determinare se un pixel è presente nel frame successivo, basandosi solo su informazioni locali.

Per questo motivo non vengono inseguiti singoli pixel ma finestre di pixel con sufficiente texture. Sfortunatamente, i vari punti all’interno della stessa finestra possono avere comportamenti differenti; possono muoversi a velocità diverse, apparire e scomparire. Tutto ciò comporta due problemi: come essere sicuri di inseguire la stessa finestra e come ottenere il vettore \(d \) combinando differenti velocità.

Il primo problema è risolto monitorando i residui. Se l’aspetto della finestra non è cambiato molto, la finestra viene tenuta, altrimenti viene scartata.

Il secondo problema viene risolto descrivendo i cambiamenti di una finestra non più con un modello di pura traslazione ma con una trasformazione più complessa, ad esempio con una
mappa affine. In questo modo differenti velocità possono essere associate a differenti punti della finestra. Rappresentazione affine motion field:

$$\delta = D \mathbf{x} + \mathbf{d}$$ (2.14)

con $$D = \begin{bmatrix} d_{xx} & d_{xy} \\ d_{yx} & d_{yy} \end{bmatrix}$$ matrice di deformazione e $$\mathbf{d}$$ ora rappresentante il vettore di traslazione del centro della finestra della feature.

Per il tracking, è preferibile usare piccole finestre di pixel. I parametri della matrice $$D$$ sono difficili da stimare in questo caso, quindi si preferisce usare un modello di moto dell’immagine a traslazione pura, stimando solo i due parametri del vettore bidimensionale $$\mathbf{d}$$ e considerando come errore qualunque discrepanza tra finestre consecutive che non è possibile spiegare con una traslazione.

Formalmente, definendo l’immagine al tempo $$t+\tau$$ come

$$J(\mathbf{x}) = I(x, y, t+\tau) \quad \text{e} \quad I(\mathbf{x} - \mathbf{d}) = I(x - \xi, y - \eta, t)$$ (2.15)

il modello dell’immagine è:

$$J(\mathbf{x}) = I(\mathbf{x} - \mathbf{d}) + n(\mathbf{x})$$ (2.16)

dove $$n(\mathbf{x})$$ è il rumore.

Viene scelto il vettore $$\mathbf{d}$$ che minimizza il residuo

$$\varepsilon = \int \int_W [I(\mathbf{x} - \mathbf{d}) - J(\mathbf{x})]^2 w(\mathbf{x}) d\mathbf{x}$$ (2.17)

dove $$W$$ è la finestra e $$w(\mathbf{x})$$ è la funzione peso, assunta per semplicità pari a 1 (o alternativamente potrebbe essere una funzione gaussiana per enfatizzare l’area centrale della finestra).

Quando il vettore spostamento è piccolo la funzione intensità può essere approssimata usando lo sviluppo in serie di Taylor troncato al primo termine:

$$I(\mathbf{x} - \mathbf{d}) = I(\mathbf{x}) - \mathbf{g} \cdot \mathbf{d}$$ (2.18)

dove $$\mathbf{g}$$ è il vettore contenente le derivate prime di $$I$$ rispetto $$\mathbf{d}$$.
Analisi del movimento

Il residuo, quindi, diventa:

$$\varepsilon = \int \int_w [I(x) - g \cdot d - J(x)]^2 w(x) dx$$

(2.19)

Il residuo è quindi una funzione quadratica del vettore d. Per minimizzarlo, deriviamo il residuo rispetto al vettore spostamento e poniamo il risultato a zero ottenendo la seguente equazione vettoriale:

$$\int_w (I(x) - J(x) - g \cdot d) gdwA = 0$$

(2.20)

Ponendo $(g \cdot d)g = (gg^T)d$ e assumendo d costante sulla finestra W otteniamo

$$(\int_w gg^T dwA)d = \int_w (I(x) - J(x)) g dwA$$

(2.21)

Questo è un sistema scalare di due equazioni in due incognite che può essere riscritto come:

$$Gd = e$$

(2.22)

ponendo

$$G = \int_w gg^T dwA$$

(2.23)

$$e = \int_w (I(x) - J(x)) g dwA$$

(2.24)

Tuttavia non tutte le parti di un’immagine contengono informazioni sul moto. Inoltre, lungo un lato è possibile determinare solamente la componente del moto ortogonale al lato. Si cerca, quindi, di usare solo regioni con texture abbastanza ricca. Come soluzioni sono stati proposti gli angoli oppure regioni ad alta densità.

Tuttavia questa concezione di features inseguibili si basa su concetti e definizioni posti a priori e spesso indipendenti dal metodo usato per il tracking. L’algoritmo Tomasi e Kanade invece basa la definizione di buona feature sul metodo usato per il tracking: una finestra è buona se può essere inseguita bene. Con questo metodo si è certi che una finestra non sufficientemente buona per lo scopo viene omessa: il criterio di soluzione è ottimo per costruzione.

Formalizzando questo concetto si può dire che è possibile inseguire una finestra per ogni frame se il sistema
Analisi del movimento

\[Gd = e \quad (2.25) \]

rappresenta buone misure e può essere risolto in modo affidabile.

Questo vuol dire che la matrice \(2 \times 2 \) di coefficienti \(G \) del sistema deve essere sia sopra il livello di rumore dell’immagine e sia ben condizionata.

Per matrice ben condizionata si intende una matrice quadrata \(A \) in cui piccole perturbazioni negli elementi di \(A \), o piccole variazioni nel vettore \(b \), non producono grandi variazioni nelle soluzioni \(x \) del sistema lineare: \(Ax = b \).

Il vincolo imposto dal livello del rumore implica che entrambi gli autovalori della matrice \(G \) devono essere grandi, mentre il vincolo imposto dall’essere una matrice ben condizionata implica che i due autovalori non possano differire di molti ordini di grandezza.

Infatti, due autovalori piccoli significano un profilo di intensità all’interno delle finestra più o meno costante mentre un autovalore grande e uno piccolo corrispondono a un pattern unidirezionale. Due autovalori grandi, invece, possono rappresentare angoli, zone di chiaro e scuro, o altri pattern che possono essere tracciati in modo affidabile.

In pratica, quando i due autovalori sono sufficientemente grandi da soddisfare il criterio sul rumore, la matrice \(G \) è solitamente ben condizionata. Questo è dovuto al fatto che le variazioni di intensità all’interno della finestra sono legate al massimo valore di pixel consentito, quindi l’autovalore più grande non può essere arbitrariamente grande.

Quindi, se i due autovalori di \(G \) sono \(\lambda_1 \) e \(\lambda_2 \), la finestra viene accettata se

\[\min(\lambda_1, \lambda_2) > \lambda \quad (2.26) \]

con \(\lambda \) valore di soglia predefinito.

Per determinare \(\lambda \), per prima cosa si misurano gli autovalori dell’immagine di una regione di luminosità più o meno costante, riprese con la telecamera da usare durante il tracking. Questo fornisce il limite inferiore per \(\lambda \). Successivamente si selezionano alcuni tipi di features, come angoli e regioni ad alta texture per ottenere un limite superiore per \(\lambda \).

Il valore di \(\lambda \) è quindi ottenuto prendendo il valore intermedio tra il limite superiore ed il limite inferiore.
Analisi del movimento
Capitolo 3

Studio della biomeccanica della battuta nella pallavolo

Come descritto nel Capitolo 1 il lavoro di tesi svolto si inserisce in un progetto di ricerca il cui scopo è studiare la biomeccanica della battuta nella pallavolo al fine di fornire agli allenatori della squadra maschile della S.S.C.D Pallavolo Padova un metodo per migliorare la performance dei giocatori e prevenire eventuali infortuni.

3.1 Set up per l’ acquisizione di dati

L’acquisizione è stata fatta, in collaborazione con la S.S.C.D Pallavolo Padova, utilizzando prodotti di uso comune al fine di minimizzare i costi.

Le riprese si sono svolte presso l’impianto Sportivo PalaFabris di Padova, abituale sede di allenamento della squadra maschile, utilizzando quattro telecamere commerciali connesse a quattro Personal Computer (PC) collegati tra loro tramite DVApp.

Il sistema è stato sincronizzato automaticamente con una applicazione apposita che instradà i segnali innescati attraverso una LAN (rete locale) e memorizza i dati in ogni computer.

L’applicazione usa il protocollo denominato User Datagram Protocol per spedire il segnale a tutti i computer connessi in LAN. L’applicazione è scritta in C++ e usa le librerie Winsock 2.2. Il ritardo di sincronizzazione è minore della durata del singolo frame che in questo studio è configurata a 20 ms [8].
I PC e le relative telecamere assegnate sono stati posizionati per poter registrare i movimenti degli atleti durante le seguenti fasi:

- movimento di battuta completo: preparazione, salto, battuta vera e propria e atterraggio
- vertec: fase di preparazione e salto (senza palla) fino a toccare il vertec

In particolare le telecamere Cam1 e Cam3 permettevano una chiara visualizzazione degli atleti dal punto di vista laterale e frontale.
Lo schema utilizzato è descritto nella Figura 3.1.

![Figura 3.1 Disposizione delle telecamere per l’acquisizione di dati](image)

La seguente tabella riporta il modello e le caratteristiche tecniche delle quattro telecamere utilizzate:

<table>
<thead>
<tr>
<th>Telecamere</th>
<th>Marca e Modello</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cam 1</td>
<td>CanonLegriaFs200</td>
</tr>
<tr>
<td>Cam 2</td>
<td>SonyDcrSrxt21e</td>
</tr>
<tr>
<td>Cam 3</td>
<td>SonyDcrSr35</td>
</tr>
<tr>
<td>Cam 4</td>
<td>SonyDcrSr90</td>
</tr>
</tbody>
</table>

Tabella 3.1 Marca e modello delle telecamere commerciali usate per acquisire i dati

Questa fase permette la raccolta di file video generati in formato *.Avi, che hanno:
- dimensioni diverse
- risoluzioni diverse (scelte o permesse dalle telecamere)
- frequenza di campionamento diversa (scelte o permesse dalle telecamere)

Per questo motivo, al fine di avere un insieme omogeneo di filmati, è necessaria una fase di *preprocessing* dei video descritta al punto 3.2 prima di poterli elaborare negli step successivi.

3.1.1 Protocollo di acquisizione

Sono stati acquisiti tramite videocamere i dati di 4 soggetti di sesso maschile. I dati sono stati raccolti previa sottoscrizione di un consenso informato da parte degli atleti.

Le caratteristiche e i ruoli degli atleti sono riportati nella seguente tabella:

<table>
<thead>
<tr>
<th></th>
<th>Altezza [m]</th>
<th>Peso [kg]</th>
<th>Età [anni]</th>
<th>Ruolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primo soggetto</td>
<td>1,90</td>
<td>80,1</td>
<td>31</td>
<td>Libero</td>
</tr>
<tr>
<td>Secondo soggetto</td>
<td>1,98</td>
<td>94,1</td>
<td>24</td>
<td>Schiacciatore</td>
</tr>
<tr>
<td>Terzo soggetto</td>
<td>2,01</td>
<td>89,3</td>
<td>21</td>
<td>Schiacciatore</td>
</tr>
<tr>
<td>Quarto soggetto</td>
<td>1,86</td>
<td>80,1</td>
<td>21</td>
<td>Palleggiatore</td>
</tr>
</tbody>
</table>

Tabella 3.2 Caratteristiche dei soggetti studiati

Il protocollo ha previsto l’esecuzione di 3 salti consecutivi al vertec (allenamento pre-battuta) e 3 salti di battuta.

Sul corpo di ogni atleta sono stati posizionati dei *marker* in corrispondenza a dei punti di repere anatomici e a formare dei cluster tecnici. Questo al fine di rendere poi possibile la stima della cinematica dei segmenti corporei durante l’esecuzione del gesto.
3.2 Preprocessing

Come detto precedentemente lo scopo di questo step è rendere i video omogenei per estrarre da essi informazioni comuni. Questa operazione consta di due parti:

- deinterlacciamento
- sincronizzazione dei video (taglio dei video al fine di temporizzare le azioni degli atleti secondo le diverse viste)

Poiché le telecamere commerciali spesso comprimono i video, tali video devono quindi essere decompressi e/o deinterlacciati.

Il software utilizzato per deinterlacciare i video è AVSConverter, il quale riceve in input il percorso del file originario e restituisce in output il video deinterlacciato.

Il pannello d’uso del programma è visualizzato nelle figure seguenti:
Studio della biomeccanica della battuta nella pallavolo

Figura 3.3 Finestra d’uso di AVSConverter

Figura 3.4 Finestra d’uso di AVSConverter: visualizzati i parametri di conversione
Nella prima figura è visualizzato l’utilizzo base e ripetitivo per elaborare il singolo file. Nella seconda figura, poiché la trasformazione è da .AVI a .AVI, sono visualizzati i valori dei parametri di ogni file prodotto; in particolare questa trasformazione forza il codec uncompressed su ogni video.

Per quanto riguarda la sincronizzazione, questa è stata garantita, in termini di segnale d’inizio acquisizione, tramite un’applicazione sviluppata appositamente all’interno del laboratorio di analisi del movimento (Ceccon et al 2012). Avendo, però, utilizzato telecamere commerciali con caratteristiche diverse i video devono essere resi alla stessa frequenza di acquisizione.

Il software utilizzato per sincronizzare il video in termini di frequenza di acquisizione è VirtualDub, all’interno dei quali è possibile utilizzare dei “fili” per il ricampionamento dei segnali video, che forniscono in output il video alla frequenza desiderata.

Una volta modificata la frequenza del video oggetto dell’elaborazione, è necessario modificare la durata dei video in modo che inizino e finiscano con un evento particolare del gesto da analizzare. Questo al fine di snellire la procedura successiva di elaborazione dei dati. Si sono quindi determinati come eventi il punto più basso della mano dell’atleta prima della battuta e il punto in cui l’atleta tocca il vertec. Questi eventi devono coincidere (essere allo stesso frame) nella Cam1 e nella Cam3.

La figura seguente mostra i file della Cam1 e della Cam3 sincronizzati, nei video “tagliati”. Si può vedere come nell’evento di sync, il punto più basso della mano prima della battuta, coincida nei due video. Il frame è per entrambi il frame n° 225.
I video sono stati infine tagliati per diminuire le loro dimensioni e velocizzare le successive procedure.
Un’applicazione Matlab, precedentemente creata in laboratorio, ha poi lavorato sui video deinterlacciati usando procedure contenute in VirtualDub.
Sono stati così generati video deinterlacciati e sincronizzati pronti per essere usati per le calibrazioni delle telecamere e per essere elaborati.

3.3 Calibrazione delle telecamere

Le quattro telecamere sono state posizionate in modo da formare un volume di lavoro di dimensione 640 cm per l’asse X e 480 cm per l’asse Z. Questo volume è quello minimo necessario alle telecamere per la calibrazione.
Il software MMC, sviluppato in ambiente Microsoft Visual Studio (sviluppato all’interno del laboratorio), è stato usato per calibrare le telecamere, operazione necessaria per elaborare i dati del video. Dopo aver quindi avviato Microsoft Visual Studio è stata eseguita una nuova calibrazione.
Il software prevede l’inserimento dei *path* dei video di calibrazione:
- **video intrinseci**: poiché le telecamere sono diverse, ossia non condividono la stessa ottica, bisogna calibrare in modo specifico ogni telecamera separatamente. Selezionando la voce “*Multiple Camera Optics*”, nella schermata che viene visualizzata, si indicano i video per le calibrazioni intrinseche.
• **video estrinseci**: i video necessari per la calibrazione estrinseca vanno riportati nella sezione “**Grid**”.

Dopo aver selezionato il filtro giusto (contenente il codec necessario alla lettura dei video), ovvero Direct Show Filter si può iniziare a calibrare.

• **Calibrazione intrinseca**: implementa l’algoritmo di Bouguet e prevede di ricavare i parametri dell’ottica della camera attraverso la visualizzazione di una scacchiera con caratteristiche note quali righe, colonne e dimensioni relative in cm. Avviata la procedura di calibrazione viene visualizzata una finestra con il video relativo alla prima telecamera. A questo punto il video viene sequenziato per ogni frame. Ad ogni frame vengono riconosciuti i quadrati della griglia e vengono mostrati dei pallini di diverso colore in corrispondenza dei vertici formati dai quadrati bianchi e neri. Se nel frame visualizzato c’è un pallino per ogni vertice vengono accettati gli angoli trovati e una finestra si apre per mostrare il relativo errore di riproiezione. Se l’errore è accettabile il frame viene tenuto in considerazione ai fini della calibrazione, altrimenti il frame corrispondente viene scartato. La stessa operazione viene ripetuta per la seconda telecamera.

• **Calibrazione estrinseca** richiede di compilare una tabella con le misure reali della griglia filmata durante l’acquisizione estrinseca. La griglia usata ha dimensioni:

 lato corto = 46 cm
 lato lungo = 63 cm

Viene visualizzata la griglia e su di essa si indicano i vertici, numerandoli con i primi quattro numeri naturali, nell’ordine stabilito nella sequenza ordinata in precedenza.
La seguente figura mostra dove è stata posizionata sul piano del pavimento la scacchiera rispetto alla Cam1 e alla Cam3 e rispetto il sistema di riferimento scelto, durante la sessione di acquisizione:
Terminate le operazioni di calibrazione si registra la calibrazione inserendo luogo e data della taratura. Solo a questo punto si può passare alle fasi di *tracking* e di triangolazione.

3.4 Tracking

Per eseguire l’operazione di tracking si sono individuati a video dei marker posizionati sul corpo dei soggetti (Figura 3.2).

La digitalizzazione delle posizioni dei “marker virtuali” presi da ogni sequenza video, denominata *tracking*, è stata effettuata utilizzando un software ad hoc. Data una posizione del *marker* ipotizzata da un operatore esperto, il software di *tracking* automatico usa il gradiente di intensità spaziale per ottimizzare la ricerca del vettore che minimizza la differenza tra i contorni del *marker* nei frame adiacenti.

Grazie a questo step vengono ricostruite le traiettorie 2D dei punti di *marker* interpolando le posizioni di tali punti per ogni coppia di frame consecutivi.

Il software utilizzato è **FeatureTracker**, precedentemente sviluppato in ambiente Matlab presso il laboratorio, che consente di applicare gli algoritmi sviluppati da Lucas e Tomasi per il *tracking* dei vari *marker*.

![Figura 3.8 Screenshot di FeatureTracker](image-url)
Vengono richiesti come input: frame iniziale, frame finale e numero di marker da rilevare. La procedura viene eseguita manualmente lavorando sul video aperto in VirtualDub.

Il software propone ogni volta la posizione dei marker nel frame successivo. Si decide se accettarla, se cambiarla o se saltare quel frame.

Inoltre, questo software permette di saltare al più un frame durante il tracking, interpolandolo lo stesso.

Per la procedura di tracking è stato usato un modello biomeccanico per ricostruire la cinematica dell’arto superiore e dell’arto inferiore dei soggetti analizzati durante l’esecuzione del gesto motorio, secondo la seguente tabella:
<table>
<thead>
<tr>
<th>INDEX</th>
<th>NEW MARKER</th>
<th>INFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C7 (NaN)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>RA (NaN)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LA (NaN)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>L5 (NaN)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RPSIS</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LPSIS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RASIS</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>LASIS</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RGT (NaN)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>LGT (NaN)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>RLE</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>LLE</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>RME</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>LME</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>RHF</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>LHF</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>RTT</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>LTT</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>RLM</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>LLM</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>RMM</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>LMM</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>RCA</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>LCA</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>RVMH</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>LVMH</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>RIMH</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>LIMH</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>RIIT (NaN)</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>LIIT (NaN)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>RT1 (CR1)</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>RT2 (CR4)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>RT3 (CR2)</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>RT4 (CR3)</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>RS1 (GR1)</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>RS2 (GR4)</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>RS3 (GR2)</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>RS4 (GR3)</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>LT1 (CL1)</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>LT2 (CL2)</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>LT3 (CL4)</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>LT4 (CL3)</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>LS1 (GL1)</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>LS2 (GL2)</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>LS3 (GL4)</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>LS4 (GL3)</td>
<td></td>
</tr>
</tbody>
</table>

PARTE INFERIORE

<table>
<thead>
<tr>
<th>INDEX</th>
<th>NEW MARKER</th>
<th>INFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>IJ</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>PX</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>RRS</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>RUS</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>REL</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>REM</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>LRS</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>LUS</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>LEL</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>LEM</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>RH</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>LH</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>AVR1</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>AVR2</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>AVR3</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>AVR4</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>BR1</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>BR2</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>BR3</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>BR4</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>AVL1</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>AVL2</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>AVL3</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>AVL4</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>BL1</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>BL2</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>BL3</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>BL4</td>
<td></td>
</tr>
</tbody>
</table>

PARTE SUPERIORE

<table>
<thead>
<tr>
<th>INDEX</th>
<th>NEW MARKER</th>
<th>INFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>GIUGULARE</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>PROCESSO XIF.</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>POLSO DX</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>EPICONDILI</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>GOMITI DX</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>POLSO SX</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>EPICONDILI</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>GOMITI SX</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>MANO DX</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>MANO SX</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>CLUSTER</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>AVAMBRACCIO</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>SX</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>CLUSTER</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>BRACCIO SX</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>CAST</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>COSCIA</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>DESTRA (calibra RLE, RME)</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>GAMBA</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>DESTRA (calibra RLM, RMM, RTT, RHF)</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>SINISTRA (calibra LLM, LMM, LTT, LHF)</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>GAMBA</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>SINISTRA (calibra LLM, LMM, LTT, LHF)</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 3.3 Indice e posizione dei marker utilizzati

42
La procedura di tracking, in output, produce delle feature table che contengono le traiettorie dei singoli marker durante l’esecuzione di tutto il gesto motorio. Queste feature table saranno utilizzate per la successiva elaborazione.

3.5 Elaborazione

3.5.1 Elaborazione Matlab

Grazie ad un’applicazione Matlab, precedentemente sviluppata, vengono generati i file .*TDF (Track Definition Format) del gesto motorio di un soggetto. Il programma richiede come input:

1. nome e cognome del soggetto
2. destinazione degli elaborati
3. tipo di elaborazione con cui procedere
4. file di calibrazione
5. numero di telecamere utilizzate (corrisponenti ai file di calibrazione)
6. feature table di statica: nel caso fosse assente si indica la feature table di dinamica da cui prelevare il frame di statica
7. frame di statica all’interno della dinamica

Nel nostro caso la procedura è stata eseguita con un’elaborazione di tipo anatomico utilizzando i due file elaborati della Cam1 e della Cam3, quindi utilizzando due telecamere. Non essendo disponibili le feature table di statica è stato selezionato il primo frame della feature table di dinamica come frame di statica.

Questa applicazione consente di ricostruire la posizione tridimensionale di ogni marker (in quanto in essa è contenuta la procedura di triangolazione). Consente inoltre di poter applicare un modello che assegna un nome a ciascun marker (che può indicare direttamente un punto di repere anatomico o un punto necessario alla determinazione indiretta del punto di repere per mezzo di uno specifico protocollo di calcolo).

Il modello usato in questa procedura è il seguente:
Dopo aver creato il modello che soddisfa alle nostre esigenze, un’applicazione accoppia i singoli punti di tale schema ai marker rappresentati nel file di acquisizione (labelling). Viene così generato il seguente TDF, il quale contiene le traiettorie 3D dei marker e i parametri di calibrazione.

Da questo verranno studiati i parametri biomeccanici del gesto motorio con la successiva procedura di elaborazione Analyzer. Si passa così dalle traiettorie dei marker alla cinematica articolare.
3.5.2 Elaborazione Analyzer

Analyzer (BTS S.r.l, Padova, Italia) è un software progettato per elaborare i dati acquisiti da un sistema di motion capture e per effettuare l’analisi della biomeccanica del gesto motorio. Tra le operazioni che consente di sviluppare ci sono:

- il calcolo dei parametri necessari all’utente per una completa analisi biomeccanica del movimento da studiare;
- la creazione di protocolli di analisi, grazie ad un’interfaccia grafica a blocchi molto intuitiva;
- l’importazione e l’esportazione di dati acquisiti con altri sistemi o di elaborati con altri software;
- la visualizzazione degli spostamenti di ciascun marker lungo le tre dimensioni del sistema di riferimento;
- la creazione di report nei quali vengono schematizzati tramite grafici e tabelle i dati elaborati di maggior interesse. I report possono essere stampati o salvati in HTML o PDF, ed i singoli oggetti possono essere esportati in altre applicazioni (Word o PowerPoint).

![Figura 3.11 schermata principale del software Analyzer](image)
Sulla schermata principale del *software* si distinguono diverse aree:

- **Data Panel** sulla sinistra: la parte nella quale vengono raccolti, organizzati in cartelle, i dati iniziali e quelli creati durante lo sviluppo del protocollo (1);
- **Object Toolbar**, a destra del **Data Panel**: contiene tutti i pulsanti delle funzioni che possono essere utilizzate nello **SMARTAnalyzer** (2);
- **Protocol Panel** al centro della schermata: in questa sezione si lavora direttamente inserendo gli operatori necessari all’elaborazione dei dati acquisiti e al calcolo di nuovi elementi utili all’analisi. E’ possibile creare, qui, anche il *report* dei risultati ottenuti (3);
- **Editor Toolbar**, sul margine destro del Protocol Panel: è la barra degli strumenti che consente di modificare il layout e l’organizzazione grafica del protocollo (4);

Un’ulteriore area, posizionata a destra dell’**Editor Toolbar**, e denominata **Client Area**, visualizza i valori dei dati ed i grafici calcolati o creati nella **Protocol Area**.

Il protocollo creato contiene i parametri per eseguire i calcoli. Inoltre non dipende dai file di dati che sono stati utilizzati per crearlo. Il protocollo deve, però, essere utilizzato per eseguire gli stessi calcoli su file diversi.

Il protocollo creato è formato da un gruppo di blocchi chiamati operatori. Ogni operatore esegue una funzione matematica prendendo come input al massimo quattro oggetti e producendo in output un oggetto che può essere un tipo di dato diverso da quello degli input. Il nuovo oggetto viene poi inserito nel **Data Panel**. Selezionando ognuno di questi operatori si apre un menù in cui compaiono tutte le funzioni permesse per quel preciso tipo di dati.
Capitolo 4
Risultati

L’analisi del movimento dei soggetti acquisiti tramite video grazie alla loro elaborazione successiva, descritta nel capitolo 3, ha permesso di ottenere i seguenti report contenenti i parametri biomeccanici descrittivi del gesto motorio analizzato, ottenuti con il software Analyzer.
Di seguito vengono riportati, a titolo di esempio, alcuni report ottenuti.

4.1 Velocità e accelerazione

I primi tre grafici, rappresentati nella Figura 4.1, mostrano l’andamento della velocità di tre marker lungo le tre direzioni X, Y e Z. La curva blu rappresenta l’andamento della velocità del marker L5 (5° vertebra lombare), mentre le curve rossa e verde rappresentano, rispettivamente, l’andamento della velocità dei marker RCA (tallone destro) e LCA (tallone sinistro).
Risultati

Figura 4.1 Velocità lungo le tre direzioni dei marker: L5 (blu), RCA (rossa), LCA (verde)
Nella Figura 4.2 sono, invece, rappresentati gli andamenti delle accelerazioni lungo i tre assi del sistema di riferimento dei marker precedenti.

Figura 4.2 Accelerazione lungo le tre direzioni dei marker: L5 (blu), RCA (rossa), LCA (verde)
4.2 Altezza del salto

Il primo grafico prende come riferimento i due marker RCA e LCA (talloni) mentre il secondo il marker L5 (5° vertebra lombare). Le due linee verticali blu mostrano l’istante in cui l’atleta stacca e l’istante in cui l’atleta, in volo, raggiunge il punto più alto.

Figura 4.3 Altezza del salto: a sx con riferimento ai marker RCA e LCA a dx al marker L5

4.3 Angoli

Vengono riportati di seguito (Figura 4.4) gli angoli di flesso estensione delle articolazioni dell’arto inferiore:

Figura 4.4 Angoli di flesso-estensione
Nella Figura 4.5 vengono riportati gli angoli di flesso-estensione calcolati con la convenzione di Grood and Suntay:

Figura 4.5 Angoli di flesso-estensione convenzione Grood e Suntay

Angoli di torsione calcolati con la convenzione di Grood and Suntay (sul piano trasversale):

Figura 4.6 Angoli di torsione
4.4 Rincorsa

I seguenti report (Figure 4.7 e 4.8) mostrano la velocità e l’accelerazione del marker L5 (linea blu), del tallone destro (linea rossa) e del tallone sinistro (linea blu) durante la fase di rincorsa.

Figura 4.7 Velocità della rincorsa lungo le tre direzioni
Studiando questi grafici si ottengono informazioni sull’esecuzione del gesto motorio.
Da questi report si possono infatti estrarre picchi di velocità e accelerazione per capire come il movimento dell’atleta evolve nel tempo, come l’atleta dosa forze e energia durante il tempo di esecuzione del salto o come l’atleta si comporta durante particolari fasi, ad esempio il salto o la rincorsa.

Figura 4.8 Accelerazione della rincorsa lungo le tre direzioni
Conclusioni

Nel presente lavoro di tesi è stata discussa un'applicazione della video motion analysis per acquisire ed analizzare il gesto motorio della battuta nella pallavolo.
A tal fine sono stati registrati tre salti al vertice e tre battute di quattro atleti della la S.S.C.D Pallavolo Padova.
Sono stati attaccati, tramite biadesivo, dei marker color nero su punti di repere anatomico individuati sul corpo degli atleti.
Per le acquisizioni, svolte direttamente sul campo, sono state utilizzate quattro telecamere commerciali connesse a quattro Personal Computer (PC) collegati tra loro tramite DVApp. L’obiettivo è stato quindi “digitalizzare” il movimento dell’atleta fornendone una rappresentazione matematica quantitativa in modo che potesse essere utilizzato come input per alcuni software che hanno poi permesso lo svolgimento di un’analisi biomeccanica.
Per far ciò sono state eseguite alcune procedure presso il Laboratorio di Bioingegneria del Movimento dell’Università degli Studi di Padova.
Prima di aver acquisito le immagini, le telecamere sono state calibrate. Avendo utilizzato telecamere commerciali con caratteristiche diverse (frequenza di campionamento e risoluzione), è servita anche una fase di preprocessing dei video per decomprimerli e sincronizzarli (procedura fondamentale per la successiva ricostruzione delle posizioni 3D dei marker).
Grazie all’utilizzo del software FeatureTracker si sono ottenute le traiettorie 2D dei marker. Un’applicazione Matlab ha ricostruito queste traiettorie nello spazio 3D e grazie all’uso di un modello predefinito ha assegnato il nome di ogni marker a ciascun punto (labelling).
Sono stati così generati i file .*TDF contenenti le traiettorie (in 3D) dei punti di marker.
Da queste traiettorie il software Analyzer ha potuto estratte le variabili biomeccaniche di interesse (mediante la creazione di report).
Tuttavia questa analisi esula dagli scopi di questo lavoro di tesi.
Saranno, infatti, esperti ad analizzare le variabili biomeccaniche ottenute per raccogliere informazioni riguardanti il gesto motorio e poter quindi capire come prevenire gli infortuni e/o ottimizzare l’allenamento dell’atleta.
Bibliografia

Risultati
58
Ringraziamenti

Ringrazio la Prof.ssa Chiara Dalla Man per avermi accolto come tesista e per aver sempre risposto ad ogni mia domanda;

Ringrazio la Dott.ssa Zimi Sawacha per avermi permesso di fare questa tesi, per la sua disponibilità e per avermi fatto conoscere un ambiente che non conoscevo di ricerca e lavoro;

Ringrazio Martina Negretto per avermi aiutata in laboratorio ogni qualvolta ne avessi bisogno;

Infine, ringrazio i miei genitori per avermi sempre supportata e per aver creduto in me fin dall’inizio.