SVILUPPO DI UN TOOL CON SMART ANALYZER PER L’APPLICAZIONE DELLA CALIBRAZIONE MULTIPLA ALLA STIMA DELLA CINEMATICA DELL’ARTO SUPERIORE

Relatore:
Ch.mo Prof. Claudio Cobelli

Correlatori:
Ing. Zimi Sawacha
Diego Crovato, BTS

Laureando:
Nicola Ferdinando Tonellotto

Anno Accademico 2012-2013
Indice

INTRODUZIONE ... 1

Capitolo 1. L’AZIENDA BTS ... 3

1.1 Presentazione ... 3

1.2 Attività e prodotti .. 4

1.3 Aree di interesse ... 4

1.3.1 BTS nella Medicina .. 4

1.3.2 BTS nello Sport .. 5

1.3.3 BTS nella Ricerca .. 5

1.4 Il sistema Smart .. 5

1.4.1 Smart Capture .. 6

1.4.2 Smart Tracker .. 7

1.4.3 Smart Analyzer .. 8

Capitolo 2. ANALISI DEL MOVIMENTO ... 9

2.1 Introduzione ... 9

2.2 Sistemi optoelettronici ... 11

2.2.1 Telecamere/Sensori .. 11

2.2.2 Acquisizione immagine .. 13

2.3 Calibrazione ... 16

2.3.1 Correzione delle distorsioni .. 19

2.3.2 Calibrazione con Smart BTS ... 20

2.4 Cinematica articolare .. 21

2.4.1 Sistemi di riferimento anatomici .. 21

2.4.2 Angoli di Eulero e Cardano ... 24

2.5 Errori nei sistemi optoelettronici ... 25

2.5.1 Artefatti strumentali ... 25

2.5.2 Artefatti sperimentali ... 26
2.6 Protocolli per l’analisi del movimento .. 26
 2.6.1 Protocollo CAST ... 27
 2.6.2 La calibrazione multipla .. 30

Capitolo 3. BIOMECCANICA DELL’ARTO SUPERIORE 33
3.1 Definizione piani e assi anatomici ... 33
3.2 Struttura ossea dell’arto superiore .. 35
3.3. Articolazioni dell’arto superiore e movimenti 37
 3.3.1 Articolazione sternoclaveare ... 37
 3.3.2 Articolazione glenomerale .. 39
 3.3.3 Articolazione del gomito .. 41
3.4 Protocolli per l’analisi del movimento dell’arto superiore 43

Capitolo 4. MATERIALI E METODI ... 47
4.1 Introduzione ... 47
4.2 Protocollo di acquisizione ... 48
 4.2.1 Set-up di acquisizione .. 48
 4.2.2 Definizione dei sistemi di riferimento anatomici e degli angoli ... 51
4.3 Calibrazione anatomica ... 53
 4.3.1 Posizionamento cluster e calibrazione dei punti 53
 4.3.2 Doppia calibrazione .. 54

Capitolo 5. RISULTATI .. 59
5.1 Introduzione ... 59
5.2 Valutazione sperimentale della cinematica 59
 5.2.1 Traiettorie dei punti calibrati (MOV1) 60
 5.2.2 Angoli articolari (MOV1) ... 63
 5.2.3 Traiettorie dei punti calibrati (MOV2) 66
 5.2.4 Angoli articolari (MOV2) ... 69

DISCUSSIONE FINALE .. 73
Introduzione

Nel corso degli ultimi anni, nel settore della riabilitazione si sta avendo una considerevole crescita per quanto riguarda l’uso di sistemi avanzati e di innovazioni tecnologiche. La combinazione di tecniche innovative e strumenti all'avanguardia hanno permesso di arricchire ed integrare i tradizionali metodi di valutazione del movimento e, in molti casi, hanno fornito informazioni ed indici di grande utilità nella scelta dei percorsi terapeutici da seguire. Lo studio della alterazione posturale e motoria costituisce un settore biomedico in forte espansione e di grande interesse dal punto di vista clinico, in quanto la postura ed il movimento sono il risultato dell’interazione di tre principali sistemi fisiologici: il sistema nervoso, il sistema muscolo-scheletrico ed il sistema sensoriale. L'analisi fatta su pazienti con problemi motori può dare informazioni molto importanti per la diagnosi di una particolare patologia a carico di uno dei sistemi coinvolti e del suo evolversi nel tempo.

Il presente lavoro di tesi è stato svolto presso il centro R&D di BTS spa di Padova. Il progetto si inserisce nell’ambito dell’analisi cinematica del arto superiore attraverso l’implementazione tramite Smart Analyzer di modelli già esistenti per la comprensione dei meccanismi che stanno alla base del movimento. Questa analisi è stata effettuata tramite stereofotogrammetria optoelettronica che consente la ricostruzione cinematica dei segmenti corporei attraverso la rilevazione di opportuni markers da telecamere ad infrarossi.

Nelle pagine a seguire verrà fatta una breve descrizione dell’azienda BTS e delle attività che vengono svolte al suo interno; verrà poi fatta una piccola parentesi sulla terminologia usata nell’analisi del movimento e sull’anatomia dell’arto superiore, oggetto preso in esame in questo studio, per poi passare ad una descrizione generale di cosa si intende per analisi del movimento e come si svolge. Nella seconda parte della tesi si entra nello specifico del lavoro effettuato, ovvero l’implementazione di un protocollo per l’analisi cinematica dell’arto superiore, descrivendone le caratteristiche e le metodologie utilizzate per la sua elaborazione, tramite il software Smart Analyzer. Il protocollo è stato sviluppato utilizzando l’approccio CAST per ridurre gli artefatti da tessuto molle (ATM), sfruttando opportuni cluster formati da quattro marcatori disposti sulla cute in maniera solidale ai segmenti ossei sottostanti, di cui vogliamo conoscere la cinematica. Per migliorare ulteriormente i risultati ottenuti, riducendo quindi gli errori, si è sfruttata la
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore
tecnica della calibrazione multipla; dapprima utilizzando il tempo come funzione peso e successivamente gli angoli di spalla e gomito. Alla fine di questo studio, si sono discussi i risultati, verificando la bontà di ricostruzione del modello e confrontando i diversi approcci di calibrazione utilizzati.
Capitolo 1
L’Azienda BTS

1.1 Presentazione

BTS Spa viene fondata nel 1986 in seguito ad uno Spin-off del Centro di Bioingegneria della Fondazione Don Gnocchi e del Politecnico di Milano. Scopo della start-up era lo sfruttamento industriale delle innovative metodologie per l’analisi del movimento sviluppate dai ricercatori del Centro di Bioingegneria. Nel 2000 nasce a Padova, come Spin-off dell’Università di Padova e con l’aiuto di un paio imprenditori locali, un’azienda chiamata eMotion; anch’essa si occupa di innovazioni tecnologiche per l’analisi del movimento. Nel 1999 la BTS viene acquistata da TC Sistema Spa e nel 2000 TC Sistema acquista pure eMotion. Nel 2004, attraverso un’operazione di MBO la società BTS è stata acquistata da dodici dipendenti con la partecipazione di tre imprenditori esterni ed incorpora, nel 2005, la padovana eMotion che, nella sede di Padova, costituisce il gruppo di ricerca e sviluppo dell’azienda. Da oltre vent’anni porta innovazione e competenza in tutto il mondo per mettere nelle mani di ricercatori e medici strumenti e valutazioni che non esistevano prima. Importanti squadre sportive come AC Milan e Real Madrid si avvalgono dei suoi sistemi non solo per migliorare le prestazioni dei loro atleti, ma evitare infortuni e permettere di recuperare più velocemente quando questi accadono. Oggi oltre 1000 centri nel mondo utilizzano le sue tecnologie per fornire cure più efficaci ai loro pazienti.

[Figura 1.1 Logo azienda BTS (www.btsbioengineering.com)]
1.2 Attività e prodotti
BTS produce strumentazioni scientifiche innovative per l’analisi del movimento. I suoi sistemi supportano il lavoro di medici, ingegneri e ricercatori che hanno la necessità di ottenere informazioni oggettive ed accurate, utili per i loro scopi. Le soluzioni BTS si suddividono a seconda del loro ambito di applicazione in:

- Sistemi per l’analisi cinematica del movimento e per la valutazione funzionale delle problematiche posturali (BTS G-WALK, BTS POSEIDON, BTS G-SPORT, BTS SMART-DX)
- Sistemi per l’acquisizione e l’elaborazione di segnali elettromiografici (BTS FREEEMG, BTS TMJOIN);
- Sistemi terapeutici per la riabilitazione attraverso il coinvolgimento sensoriale (BTS NIRVANA);
- Sistemi optoelettronici per la misura e la ventilazione polmonare (BTS OEP System)
- Sistemi per l’analisi delle forze (BTS P-WALK, BTS P-6000);
- Ausili per la riabilitazione (BTS ANYMOV, REOGO).

1.3 Aree di interesse in cui opera BTS
1.3.1 BTS nella Medicina
Ospedali e Case di Cura, Centri Riabilitativi e Cliniche specializzate, utilizzano i sistemi di analisi del movimento BTS per valutare le disfunzioni del movimento e stabilire le migliori cure. Il personale medico ottiene in modo rapido, accurato e non invasivo una dettagliata analisi quantitativa dei parametri biomeccanici e neuromuscolari del paziente. Ogni anno, decine di migliaia di pazienti di tutto il mondo vengono assistiti nel loro percorso clinico dai nostri sistemi. L’analisi del cammino (o gait analysis) è l’applicazione più conosciuta, ma anche la valutazione dell’equilibrio posturale, le capacità di movimento dell’arto superiore e di altri distretti corporei sono esami entrati nella routine clinica quotidiana. BTS offre soluzioni complete per l’intero processo riabilitativo, che comprendono sia i sistemi per la valutazione funzionale che per
le terapie: robot per la riabilitazione del paziente allettato, sistemi di realtà virtuale che stimolano la partecipazione attiva del paziente, misurandone costantemente i progressi.

1.3.2 BTS nello Sport

I sistemi BTS sono impiegati da professionisti del mondo dello sport per migliorare le prestazioni degli atleti di qualsiasi livello. Sistemi wireless, piattaforme di forza e sistemi optoelettronici, tra loro sincronizzati, forniscono un’analisi multifattoriale accurata di qualsiasi gesto atletico. Grazie all’uso di queste tecnologie è possibile:

- definire nuove tecniche di allenamento
- ridurre drasticamente le probabilità di infortuni
- identificare il miglior percorso riabilitativo a seguito d’infortunio
- verificare il raggiungimento del pieno recupero dell’atleta.

1.3.3 BTS nella Ricerca

I più prestigiosi istituti scientifici e universitari utilizzano i sistemi BTS per compiere ricerche nei campi della Biomeccanica, Biometria, Diagnostica e Scienze Motorie. La tecnologia BTS è stata impiegata nei più importanti programmi spaziali con installazioni sulle stazioni Spacelab e MIR ed oggi impiegati da NASA, ESA, CNRS nei programmi di volo parabolico. Negli anni sono state condotte ricerche sull’uomo, al fine di ottenere protocolli clinici diventati patrimonio della divisione medica dell’azienda, ricerche su animali nell’ambito delle neuroscienze, e ricerche industriali nell’ambito dell’ergonomia e dell’interazione macchine-uomo.

1.4 Il sistema SMART

SMART è il sistema di analisi del movimento progettato da BTS con il quale ho potuto interagire nel corso del mio periodo in azienda per implementare il protocollo per l’analisi cinematica dell’arto superiore. Tale sistema si compone da una serie di telecamere digitali di nuova concezione che utilizzano sensori a elevata sensibilità e illuminatori dal design innovativo e funzionale, la cui alta potenza di irraggiamento, combinata all’alta risoluzione della telecamera (fino a 4 Megapixel), aumenta il volume di lavoro e consente la cattura di movimenti rapidi e impercettibili. Il sistema optoelettronico BTS SMART DX, si completa con una data station per l’integrazione, la sincronizzazione e la gestione
di tutte le informazioni cinematiche, cinetiche, elettromiografiche e video provenienti da dispositivi collegati (pedane di forza, elettromiografi, telecamere 2D). Per ottenere i dati cinematici il sistema optoelettronico è supportato da appositi software forniti da BTS stesso. I programmi sono essenzialmente tre:

- *Smart Capture*
- *Smart Tracker*
- *Smart Analyzer*

1.4.1 Smart Capture

E’ la parte software che permette l’acquisizione delle immagini per poi poterle analizzare; nel caso di più apparecchiature collegate al sistema, ne permette la loro sincronizzazione. Una volta avviato il programma, effettua una verifica delle telecamere collegate al calcolatore e permette di vedere il campo di acquisizione di ognuna. E’ quindi possibile migliorare la loro disposizione a seconda dell’acquisizione che si deve svolgere per poi passare alla calibrazione del sistema. Come si vedrà nei prossimi paragrafi, si fa uso di una terna destrorsa di dimensione nota posta nel mezzo dell’area di acquisizione per definire il sistema di riferimento globale del laboratorio e di una bacchetta per definire il volume di acquisizione.

![Immagine di acquisizione con telecamere a infrarossi](image.png)

Figura 1.2 Immagine di un’acquisizione con telecamere a infrarossi. I punti bianchi rappresentano i markers applicati sul corpo del soggetto
1.4.2 Smart Tracker

Permette la ricostruzione della posizione tridimensionale di ogni marker a partire dalle immagini bidimensionali di ogni telecamera. Attraverso un editor interno si può creare il proprio modello di interesse (vedi Fig. 1.3) che poi andrà associato ad ogni acquisizione. Definito il modello è possibile assegnare ad ogni acquisizione, sia statica che dinamica, il nome di ogni marker rilevato. Questa fase è definita *labelling*. A questa fase ne segue un’altra, quella di *tracking*, operazione che può essere fatta automaticamente dal software utilizzando degli algoritmi basati su stimatori ricorsivi dello stato di sistemi dinamici dalla posizione dei marker in frame successivi. Il tracking automatico può portare a diversi errori:
- fusione di markers in frame successivi,
- alcuni markers possono non essere rilevati,
- perdita delle informazioni dei markers e labelling con dei markers fantasma con successiva deformazione del modello.

Questo problema si risolve effettuando un tracking manuale, in cui si possono settare diversi parametri e procedendo a varie operazioni ‘taglia-cuci’.

![Figura 1.3 Modello costruito con Smart Tracker da applicare ai dati grezzi](image-url)
1.4.3 Smart Analyzer

E’ un sofware completo per l’analisi biomeccanica del movimento che permette di costruire uno schema di calcolo che genera tutti i dati necessari all’utente per una completa analisi del gesto motorio. Con una semplice interfaccia grafica a blocchi e semplici operazioni drag&drop è possibile generare tutti i dati biomeccanici di interesse come distanze, angoli velocità, accelerazioni, forze, momenti … I dati possono essere rappresentati per mezzo di visualizzatori tridimensionali, di grafici e di tabelle numeriche. Il software offre anche la possibilità di generare sistemi di riferimento anatomici diversi da quello del laboratorio, che permettono all’utente di analizzare e presentare i dati in diversi sistemi di coordinate.

![Screenshot di una schermata dello Smart Analyzer](image)

Figura 1.4 Screenshot di una schermata dello Smart Analyzer

Nel presente lavoro di tesi Smart Analyzer ha svolto il ruolo fondamentale di costruzione del protocollo per l’analisi cinematica dell’arto superiore.
Capitolo 2
Analisi del movimento

2.1 Introduzione

In passato la deambulazione o qualsiasi altro gesto motorio venivano registrati da un sistema a telecamere fornendo una misura qualitativa della locomozione del soggetto analizzato, che veniva interpretata in modo molto soggettivo dal clinico.

Il continuo evolversi delle tecniche per l’analisi del movimento hanno portato alla formazione di veri e propri laboratori che consentono di affiancare alle valutazioni qualitative bidimensionali, delle valutazioni quantitative tridimensionali relative sia alla cinematica che alla dinamica del movimento e all'attivazione muscolare.

Si possono quindi misurare diversi tipi di dati:

- dati cinematici: cioè i movimenti del corpo;
- dati dinamici: cioè le forze e i momenti angolari;
- altri tipi di segnali misurati per mezzo di elettrodi (EMG, ECG ...).

Nell’analisi del cammino, per esempio, le variabili dinamiche sono ricavate integrando la cinematica con le misure ottenute da piattaforme di forza; oltre a queste variabili possono essere acquisiti dei segnali elettromiografici (EMG), elettrocardiografici (ECG), di pressione arteriosa e quant’altro possa essere associato all’atto motorio.

A grandi linee quindi un laboratorio di analisi del movimento sarà costituito da un sistema di rilevazione della cinematica, delle piattaforme di forza e da una serie di apparecchiature per la rilevazione di altri segnali di interesse (vedi Fig. 2.1).

Per la misura delle grandezze cinematiche esistono diverse tipologie di strumentazione che si differenziano anche per il loro grado di invasività. Gli elettrogoniometri e gli accelerometri consentono di ottenere misure dirette ma presentano lo svantaggio di dover mantenere il contatto tra la superficie del corpo e i dispositivi elettrici. Inoltre sono ingombranti e possono disturbare il paziente durante il gesto motorio in esame. I sistemi basati su sensori elettromagnetici forniscono per ogni segmento anatomico posizione e orientamento attraverso tre rotazioni e un vettore traslazione. L’elevata sensibilità a interferenze di oggetti ferromagnetici presenti nell’area circostante rendono però tali sistemi poco affidabili. I sistemi optoelettronici che utilizzano telecamere operanti nella
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore

gamma dell’infrarosso rappresentano la soluzione più utilizzata per l’analisi del movimento. Essi garantiscono una buona accuratezza anche se forniscono una stima e non una misura delle variabili cinematiche, sfruttando delle caratteristiche geometriche localizzate sulla superficie corporea del soggetto e ricostruendo in 3D le immagini acquisite.

![Figura 2.1 Struttura generale di un laboratorio di analisi del movimento](www.btsbioengineering.com)

Tali sistemi permettono una dettagliata valutazione dell’efficacia del trattamento effettuato sul paziente. Avere la possibilità di monitorare il movimento del paziente dunque, porta alla possibilità di misurare quantitativamente gli effetti prodotti da una determinata tecnica farmacologica, chirurgica, riabilitativa e ancora alla possibilità di evidenziare l’efficacia dell’uso di particolare ortesi o meglio di valutare quanto una ortesi sia più adeguata per quello specifico paziente. La semplicità dell’esame e l’assoluta non invasività permette di effettuare l’acquisizione anche di pazienti poco collaboranti o caratterizzati da deambulazioni particolari.

I principali aspetti positivi di questa tecnologia possono quindi essere così elencati:
- tridimensionalità (3D);
- non invasività;
- possibilità di fornire informazioni quantitative con elevata precisione;
- possibilità di acquisire contemporaneamente dati relativi alla cinematica, alla dinamica ed all’attivazione muscolare;

10
Capitolo 2; Analisi del movimento

- facile utilizzo;
- definire il livello di limitazione funzionale e di disabilità conseguente alla patologia e il suo evolversi con la crescita e/o l’invecchiamento dell’individuo;
- valutare e quantificare gli effetti dei diversi trattamenti e monitorare tali effetti nel tempo;
- contribuire alla pianificazione del trattamento permettendo la stesura di un programma riabilitativo personalizzato che consente di verificare oggettivamente, con indici di misurabilità certi, lo stato clinico del paziente prima, durante e alla fine del trattamento.

Nell’ambito del mio tirocinio è stata presa in considerazione solamente la parte riguardante la cinematica, poiché l’obiettivo prefissato era quello di implementare un protocollo per lo studio del movimento dell’arto superiore e in particolare delle articolazioni che lo caratterizzano.

2.2 Sistemi optoelettronici

2.2.1 Telecamere / Sensori

L’analisi strumentale del moto o meglio, nel nostro caso, l’analisi della cinematica dell’arto superiore, è stata eseguita attraverso un set di otto telecamere (il sistema ne richiede almeno due) in grado di ricostruire nel tempo l’andamento di particolari marcatori (markers, vedi Fig.2.2). I sistemi optoelettronici lavorano nel campo dell’infrarosso catturando i riflessi generati dai markers, elementi di materiale catarifrangente che vengono apposti sul corpo del soggetto in particolari punti di repere.
Le fonti di illuminazione sono generalmente poste attorno agli obbiettivi di ciascuna telecamera e i riflessi vengono catturati dalle telecamere stesse attraverso dei sensori a fotodiodi che trasducono il segnale luminoso in segnale elettrico. Si possono distinguere due tipi di sensori:

CCD (Charge Coupled Device) consiste in un circuito integrato formato da una riga, o da una griglia, di elementi semiconduttori in grado di accumulare una carica elettrica proporzionale all'intensità della radiazione elettromagnetica che li colpisce. Questi elementi sono accoppiati in modo che ognuno di essi, sollecitato da un impulso elettrico, possa trasferire la propria carica ad un altro elemento adiacente. Inviando al dispositivo una sequenza temporizzata d'impulsi, si ottiene in uscita un segnale elettrico grazie al quale è possibile ricostruire la matrice dei pixel che compongono l'immagine proiettata sulla superficie del CCD stesso. Il segnale arriva all’esterno del chip attraverso un nodo d’uscita analogico. Tale sistema permette di dedicare tutta l’area del sensore alla cattura della luce, e in questo caso il filling factor (fattore determinante per la qualità dell’immagine) è elevato, ma ha bisogno, a monte della videocamera di un convertitore analogico-digitale.

CMOS (Complementary Metal Oxide) questi dispositivi, invece sono caratterizzati dal fatto che ogni pixel della matrice è dotato del proprio sistema di conversione da carica a tensione. Il circuito di digitalizzazione è solitamente integrato e ciò permette di realizzare sensori di minore dimensione. Tuttavia, queste funzionalità riducono l’area sensibile totale per la cattura della luce e il filling factor risulta inferiore. Ormai da una decina d’anni i sensori CMOS sono diventati commercialmente conveniente e con prestazioni paragonabili ai CCD.

Grazie quindi all’utilizzo combinato di illuminatori e markers riflettenti, è possibile generare immagini ad alto contrasto dove è facile identificare i markers. Lavorando le telecamere nell’ambito dell’infrarosso il sistema è assolutamente non invasivo. Naturalmente oltre alla struttura di acquisizione, un sistema di analisi del movimento deve essere supportato da dei software di elaborazione per la rilevazione dei marcatori e la ricostruzione della loro posizione. Solitamente oltre ad un applicativo per la calibrazione/acquisizione e associato anche un programma per il labelling e il tracking.
2.2.2 Acquisizione immagine

La formazione dell’immagine avviene attraverso una procedura che si articola in tre punti:
- rilevazione markers
- stima baricentri dei markers
- calcolo coordinate 3D dei markers

Prima di tutto, per ogni frame di acquisizione, è necessario distinguere i markers dalle tracce non significative; bisognerà quindi allontanare dal volume di acquisizione tutti quelli oggetti riflettenti che potrebbero portare disturbo ed errori nelle prove. Nell’immagine acquisita quindi ogni pixel viene classificato come appartenente allo sfondo o ad una parte di marker secondo algoritmi di probabilità. Per fare ciò occorre definire una soglia in base alla quale si classifica un pixel come appartenente allo sfondo o ad un marker. Tale soglia viene fissata dopo aver filtrato l’immagine ed analizzato le tonalità di grigio di ogni pixel delle videocamere. Questo metodo è detto sogliatura. Successivamente si stima il centro del marcatore calcolando il baricentro dei pixel sopra soglia che ne fanno parte o tramite il circle fitting che si basa sul calcolo di una circonferenza fittizia passante per i pixel del bordo dell’immagine del marcatore. Un metodo alternativo per il calcolo del baricentro dei markers è la cross-correlazione che mappa la forma attesa del marcatore con l’effettiva caratteristica sull’immagine tramite delle maschere bidimensionali. Specificando la dimensione della maschera e i valori di
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore

ampiezza di ciascun campione è possibile riconoscere i markers ed eliminare i pixel isolati ad alta intensità luminosa. Dei markers riconosciuti si calcola la posizione del baricentro e a questo punto i baricentri saranno espressi nei sistemi di riferimento del sensore di ciascuna telecamera, da una coppia di coordinate \((u,v)\). I dati disponibili sono le coordinate 2D delle proiezioni dei marcatori, nei sistemi di riferimento di ogni videocamera, per ogni frame di acquisizione. Occorre, quindi, stimare la posizione dei marcatori in termini delle coordinate 3D del sistema di riferimento del laboratorio. Questo è possibile solo se lo stesso marcatore è stato identificato da almeno 2 videocamere (vedi Fig. 2.4). La visione stereoscopica è una tecnica nella quale, le coordinate tridimensionali di un marker riflettente, sono calcolate mediante la misurazione fatta su due o più immagini provenienti da telecamere, che inquadrano lo stesso marker da due posizioni differenti.

Il principio alla base della visione stereoscopica, consiste in una operazione detta “triangolazione”, che mette in relazione la proiezione di un punto della scena “osservata”, sui piani immagine delle telecamere che compongono il sistema. Per ogni camera è possibile tracciare una retta che passa per il centro ottico dell’obiettivo e il punto del sensore dove il marker è proiettato; il marker si troverà nell’intersezione tra queste due rette. Molto spesso, però, a causa del rumore tali rette sono sghembe e per trovare il marker si dovrà risolvere un problema ai minimi quadrati del sistema di equazioni che descrivono la posizione rispetto a ciascuna telecamera (vedi equazione 2.1).

![Figura 2.4 Ricostruzione coordinate 3D dei markers tramite triangolazione (“bioingegneria della postura e del movimento” Cappozzo, Cappello, di Prampero)](image-url)
La soluzione di tale problema richiede la conoscenza di opportuni parametri del sistema, forniti dalla procedura di calibrazione: quelli “intrinseci” che includono la lunghezza focale e alcune informazioni sulle caratteristiche del sistema lente-sensore (distorsione delle lenti, forma dei pixels, ecc.) e quelli estrinseci, che rappresentano la posizione e l’orientamento delle telecamere nelle spazio, rispetto quindi ad un sistema di riferimento noto.

Note le coordinate tridimensionali dei markers è possibile quindi calcolare traiettorie, grandezze angolari (e quindi determinare angoli di flesso-estensione, abd-adduzione e extra-intra rotazione delle principali articolazioni), velocità, accelerazioni e conoscere quindi in dettaglio la cinematica del movimento del segmento corporeo sul quale sono stati posizionati i markers. Uno dei problemi più complessi dell’analisi del movimento è il calcolo delle traiettorie, detto anche tracking(vedi Fig. 2.5). E’ un problema simile alla corrispondenza fra misure su diversi piani immagine, solo che la corrispondenza è fra due istanti temporali. Per risolvere questa problema si possono utilizzare due escamotage: la regolarità della traiettoria e/o informazioni a priori sul tipo di gesto motorio che il soggetto compie. Nel primo caso si fa ricorso a degli stimatori ricorsivi dello stato come il filtro di Kalman. La posizione attesa del marker, viene calcolata da un algoritmo sulla base della posizione precedente e della varianza della predizione. Nel secondo caso l’informazione a priori può essere di diversi tipi e risulta difficile creare algoritmi adeguati per applicazioni diverse. In alcune immagini i markers possono essere disposti su segmenti rigidi quindi le distanze fra i marcatori e gli angoli sono invarianti del moto; nel caso di corpi articolati come può essere il corpo umano il problema risulta più difficile da risolvere. Si utilizza quindi un concetto statistico di forma tramite la densità di probabilità congiunta della posizione relativa dei marcatori e della loro velocità. Per utilizzare tale descrizione di forma si sfrutta il fatto che il corpo umano è una catena cinematica con una certa indipendenza nel moto.
2.3 Calibrazione

Come accennato nel paragrafo precedente per ricostruire la posizione dei marcatori nello spazio deve essere definito un sistema di riferimento globale del laboratorio, e il sistema ottico deve possedere le informazioni geometriche necessarie per procedere a tale calcolo. Queste informazioni che si suddividono in parametri interni (lunghezza focale, coordinate del punto principale e coefficienti di distorsione) ed esterni (posizione del sistema di riferimento delle telecamere rispetto al sistema di riferimento globale) sono raccolte durante un processo detto di calibrazione. I parametri di calibrazione stabiliscono una trasformazione di coordinate dal sistema globale al sistema delle telecamere, quindi una trasformazione dallo spazio 3D allo spazio 2D della camera, e una trasformazione 2D dal sistema di coordinate del piano immagine al sistema di riferimento del sensore (vedi Fig. 2.6). Per prima cosa bisogna definire un modello matematico del sistema e la maggior parte delle tecniche di calibrazione si basano su un modello della telecamera a foro stenopeico in cui si modella l’ottica come un foro di diametro infinitesimo posto nel centro di prospettiva. Un raggio di luce proveniente da un punto P nello spazio si proietta sul piano immagine in un punto p'. Considerando una terna di riferimento con l’origine nel centro di prospettiva della camera e l’asse Z coincidente con l’asse ottico si ottiene la...
Capitolo 2: Analisi del movimento

La seguente relazione tra le coordinate \(x_p, y_p\) del sistema di riferimento del piano immagine e le coordinate \(X_p, Y_p, Z_p\) del sistema di riferimento della camera dei punti \(p'\) e \(P\).

\[
\begin{bmatrix}
 x_p \\
 y_p
\end{bmatrix} = -f \begin{bmatrix}
 1/Z_p & 0 & X_p \\
 0 & 1/Z_p & Y_p
\end{bmatrix}
\]

(2.2)
dove \(f\) è la lunghezza focale, ovvero la distanza del centro di prospettiva della camera dal piano immagine. La formula 2.2 ricorrendo all’uso delle coordinate omogenee può essere riscritta come:

\[
\begin{bmatrix}
 X_p \\
 Y_p \\
 Z_p
\end{bmatrix} = \begin{bmatrix}
 -f & 0 & 0 & 0 \\
 0 & -f & 0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
 x_p \\
 y_p \\
 1
\end{bmatrix} = MP_p
\]

(2.3)

Il sensore della telecamera ha un proprio sistema di riferimento posto sull’angolo inferiore destro del piano immagine. Date le dimensioni orizzontale e verticale \((k_u, k_v)\) e le coordinate del punto principale \((u_0, v_0)\), le coordinate \((u, v)\) del punto \(p\) nel sistema di riferimento del sensore sono:

\[
p = \begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} = \begin{bmatrix}
 1/k_u & 0 & 0 & u_0 \\
 0 & 1/k_v & 0 & v_0 \\
 0 & 0 & 1 & 1
\end{bmatrix} \begin{bmatrix}
 x_p \\
 y_p \\
 1
\end{bmatrix} = H p'
\]

(2.4)

Infine si può definire il punto \(P\), generalmente espresso rispetto al riferimento globale, nel sistema di riferimento della telecamera:

\[
P_p = \begin{bmatrix}
 X_p \\
 Y_p \\
 Z_p
\end{bmatrix} = \begin{bmatrix}
 R & T \\
 0 & 1
\end{bmatrix} \begin{bmatrix}
 X_a \\
 Y_a \\
 Z_a
\end{bmatrix} = DP
\]

(2.5)
dove \(T\) e \(R\) rappresentano rispettivamente il vettore traslazione e l’orientamento del sistema di riferimento della camera rispetto al sistema di riferimento globale e \(P_p\) è il punto \(P\) espresso nel sistema di riferimento della telecamera. Il modello finale può quindi considerarsi come una matrice \(A\) di dimensioni 3X4 ottenuta attraverso le tre precedenti trasformazioni:
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinématica dell’arto superiore

\[\text{A= HMD} = \begin{pmatrix} 1/ku & 0 & u0 \\ 0 & 1/kv & v0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} R \\ T \end{pmatrix} \]

(2.6)

Il limite di questo modello è che l’intensità della luce che attraversa il foro e che arriva sul piano immagine è troppo piccola per essere rilevata, per cui bisogna allargare il foro e ricorrere ad un’ottica per mettere a fuoco l’immagine. Questo aggiunta fa sì che ogni punto dell’immagine si sposti dalla sua posizione nominale predetta dal modello secondo una funzione non nota a priori, introducendo delle distorsioni che degradano la qualità dell’immagine.

Figura 2.6 Proiezione sul piano immagine di un punto P nello spazio 3D (“bioingegneria della postura e del movimento” Cappozzo, Cappello, di Prampero)
2.3.1 Correzione delle distorsioni

Per la stima delle distorsioni geometriche appena accennate, si possono utilizzare diversi approcci:
- stima a priori dei parametri di distorsione, indipendentemente da parametri esterni di calibrazione, utilizzando un oggetto di geometria nota;
- calcolo delle distorsioni durante la calibrazione del sistema parallelamente ai parametri esterni.

Nel primo caso è necessario definire un operatore di trasformazione G tale che

$$m_c = Gm_d \quad (2.7)$$

dove m_c sono le coordinate dei punti 2D corretti e m_d quelle dei punti distorti. Tale tipo di approccio chiamato modello diretto, dato un punto di coordinate distorte, fornisce la stima del corrispondente punto corretto, calcolando il baricentro della regione di pixel distorta per poi correggerlo utilizzando la funzione G. Per definire G, a prescindere dal numero di parametri utilizzati è necessario avere un numero minimo di coppie distorte (x_d, y_d) e nominale (x_n, y_n). In caso di forti distorsioni, quindi soprattutto ai margini delle immagini, presenta diversi limiti. Un approccio migliore è quello globale che utilizza un polinomio di questo tipo:

$$G(p, m_d) = \left(\begin{array}{c} a_{0x} + a_{1x}x_d + a_{2x}y_d + a_{3x}x_d^2 + a_{4x}x_d^2 + a_{5x}y_d^2 + \cdots \\ a_{0y} + a_{1y}x_d + a_{2y}y_d + a_{3y}x_d^2 + a_{4y}x_d^2 + a_{5y}y_d^2 + \cdots \end{array} \right) \quad (2.8)$$

dove il vettore p contiene i due insiemi di parametri a_x e a_y.

Il secondo metodo di stima dei parametri di distorsioni, prevede che essi vengano determinati insieme ai parametri geometrici delle telecamere durante la fase di calibrazione 3D.

2.3.2 Calibrazione con Smart BTS

In generale, operativamente parlando, la calibrazione del sistema tramite l’applicativo Smart BTS si articola di due step:

1. nella prima parte viene posto, nell’area dove verranno acquisite le prove, un oggetto costituito da un insieme di aste, a formare una terna di assi coordinati, sui quali sono posizionati dei markers a distanze note (vedi Fig.2.7). Questa terna fisserà il sistema di riferimento del laboratorio rispetto al quale verranno calcolate le posizioni dei vari marcatori.

2. la seconda parte è caratterizzata da un’acquisizione dinamica che cattura i movimenti di un’asta (wand) avente due o più marker disposti a distanze note. Il sistema conosce il sistema di riferimento e la geometria di tale asta, viene calibrato in modo tale che la distanza dei marcatori misurata sia quella effettivamente conosciuta. Con tale acquisizione dunque si corregge il modello ottico delle videocamere che purtroppo sono affette da problemi di distorsione dell’immagine e si fissano le dimensioni del volume di acquisizione.

Una volta effettuata la calibrazione l’utente è in grado di visualizzare il movimento appena registrato. Bisognerà dunque attuare il riconoscimento dei marcatori attraverso l’operazione di labelling che dovrà essere completa dal tracking, ossia la ricostruzione vera e propria di tutte le traiettorie eliminando gli eventuali artefatti chiamati phantom.
Questi difetti possono essere provocati dalla sovrapposizione di tracce distinte o dal passaggio dei markers di fronte agli illuminatori che causano uno sfarfallio del segnale.

2.4 Cinematica articolare

Il corpo umano viene generalmente descritto come una catena cinematica di segmenti ossei. Il principio che sta alla base dello studio della cinematica è l’assunzione che tali segmenti siano rigidi; naturalmente questa è una semplificazione della realtà in quanto vengono completamente ignorati i tessuti molli circostanti e le deformazioni dell’osso stesso. Per la descrizione dell’orientamento di un segmento osseo e della sua posizione è necessaria l’implementazione di un protocollo.

Il protocollo è un procedimento che descrive primariamente il modello biomeccanico che meglio rappresenta la cinematica dei segmenti rigidi in gioco, le modalità attraverso le quali avviene l'acquisizione, gli algoritmi per ottenere dati riferibili all’anatomia del movimento piuttosto che ai dispositivi utilizzati per le acquisizioni, ed eventualmente l'ordine delle prove di acquisizione.

Questo, ed altri problemi, come possono essere quelli di affidabilità di modello, vengono trattati e, in parte, risolti, con lo sviluppo e l'implementazione di protocolli sperimentali.

2.4.1 Sistemi di riferimento anatomici

Una volta ottenute le coordinate 3D di tutti i markers e le loro traiettorie rispetto al sistema di riferimento globale del laboratorio, il prossimo passo sarà quello di determinare la posizione e orientazione dei segmenti ossei su cui essi sono posizionati.

Per descrivere la posizione del segmento si deve definire un sistema di riferimento locale (o anatomico) solidale con il segmento stesso. Tale sistema approssima i tre piani anatomici del movimento umano. Anche gli assi associati sono, naturalmente, un'approssimazione degli assi reali di rotazione delle articolazione che il segmento forma.

La cinematica del segmento rispetto al sistema globale (sistema di riferimento del laboratorio definito e utilizzato in fase di calibrazione) è completamente descritta tramite un vettore posizione e una matrice di rotazione.
La posizione dell’origine di un sistema rispetto ad un altro è identificata attraverso un vettore colonna 3x1:

\[\begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} \]

Per descrivere tutti i sei gradi di libertà del sistema, al vettore posizione (eq. 2.9), bisogna affiancare una matrice di rotazione che definisce l’orientazione di un sistema rispetto all’altro.

La matrice di rotazione è definita dal prodotto scalare fra gli assi dei due sistemi, ovvero dal coseno dell’angolo presente tra i versori.
Capitolo 2; Analisi del movimento

Per esempio l’asse x di un sistema di riferimento B sarà descritto rispetto al sistema A dalla matrice:

\[^AX_B = \begin{pmatrix} \cos (\alpha) \\ \cos (\beta) \\ \cos (\gamma) \end{pmatrix} \quad (2.10) \]

Lo stesso procedimento vale sia per l’asse y che per l’asse z. Combinando le tre matrici si avrà la matrice di rotazione \(^A\mathbf{R}_B\) 3x3 che descrive l’orientazione di B rispetto ad A.

Il vettore posizione e la matrice di rotazione possono essere combinati in una matrice 4x4 nota come matrice di trasformazione \(^AT_B\) (eq. 2.11). I primi 3x3 elementi della matrice sono la matrice di rotazione, i seguenti 3x1 sono il vettore posizione.

\[^AT_B = \begin{pmatrix} \mathbf{A}_B & \mathbf{A}_P \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad (2.11) \]

Questa matrice può essere utilizzata per descrivere una generale trasformazione di un punto o un vettore da un sistema di riferimento rispetto ad un altro.

Le colonne della matrice di rotazione 3x3 sono mutualmente ortogonali e il suo determinante è sempre +1; questo permette di applicare la formula di Cayley secondo la quale per ogni matrice \(R\) esiste una matrice \(S\) tale che:

\[R = (I - S)^{-1} (I + S) \quad (2.12) \]

dove \(I\) è la matrice identità 3x3.

La matrice \(S\) è descritta da tre parametri indipendenti ed è quindi possibile descrivere ogni matrice di rotazione con soli tre parametri invece dei nove fin’ora utilizzati. Esistono diversi metodi per la parametrizzazione di tale metodo, una dei più comuni utilizza gli angoli di Eulero.
2.4.2 Angoli di Eulero e Cardano

Il metodo più utilizzato per la descrizione dell’orientazione biomeccanica è quello che utilizza gli angoli di Eulero. Il sistema fisso A ed il sistema B inizialmente sono presi coincidenti, gli angoli di Eulero descrivono una prima rotazione di B attorno all’asse z_B di un angolo α, segue una rotazione attorno all’asse y_B di un angolo β e per finire una rotazione attorno a x_B di γ. Ogni rotazione avviene non attorno agli assi del sistema fisso A ma a quelli del sistema mobile B.

La sequenza di rotazioni Z,Y,X non porta allo stessa posizione finale del sistema B nel caso si utilizzi una sequenza del tipo X,Y,Z. La natura non commutativa delle rotazioni non sorprende visto che queste derivano da matrici di rotazione, il cui prodotto è appunto non commutativo. Per utilizzare la notazione di Eulero è necessario scomporre la matrice di rotazione A^R_B in tre singole rotazioni:

$$A^R_B = R_z(\alpha) R_y(\beta) R_x(\gamma) \quad (2.13)$$

Sono possibili dodici sequenze di Eulero, le sei classiche tra due sistemi di riferimento descrivono sequenze in cui la prima rotazione avviene attorno ad un asse iniziale, la seconda attorno ad un asse intermedio spostato e la terza sul primo asse due volte spostato, cioè Z, Y ′, Z ′′. Nelle altre sei, denominate come sequenze di Cardano-Bryant, le rotazioni avvengono attorno a tutti e tre gli assi Z, Y ′, X ′′. Quando si utilizzano sistemi di questo tipo, il verificarsi di ‘gimbal lock’ è un problema; per i primi può avvenire quando la seconda rotazione è nulla, per i secondi se la rotazione attorno al secondo asse è di 90°. La condizione di singolarità porta due assi a disporsi parallelamente, rendendo la matrice delle soluzioni introvabile.

Solitamente in ambito biomeccanico, si utilizza la convenzione cardanica secondo Grood&Suntay (vedi Fig.2.10), in cui gli assi di rotazione coincidono con gli assi articolari e che prevede:

- una rotazione di α attorno all’asse z del sistema di riferimento mobile (all’inizio coincidente con l’asse z del sistema mobile)
- una rotazione di β attorno all’asse x del sistema di riferimento mobile, dopo che la prima rotazione è stata eseguita
- una rotazione di γ attorno all’asse y del sistema di riferimento mobile, dopo che le prime due rotazioni sono state eseguite
Capitolo 2; Analisi del movimento

2.5 Errori nei sistemi optoelettronici

La stereofotogrammetria è lo strumento più diffuso e versatile per la ricostruzione della cinematica dei segmenti corporei; non per questo, essa è esente da errori o artefatti. I dati ottenuti da un sistema di questo tipo, infatti, possono presentare diversi tipi di errori:

- errori strumentali;
- errori dovuti alla dislocazione dei punti di repere anatomici;
- errori dovuti ad artefatti di tessuti molli (ATM).

2.5.1 Artefatti strumentali

Anche in condizioni statiche le coordinate ricostruite dei marcatori non risultano tempo invarianti a causa di errori intrinseci del sistema. Questi errori si suddividono in sistematici e casuali.

I primi sono causati da difetti dello strumento e dal modello applicato che non tiene conto della distorsione ottica delle telecamere ma possono essere minimizzati attraverso appunto la calibrazione; i secondi sono dovuti al rumore elettronico di fondo e gli approcci più importanti per ridurre tali errori implicano il filtraggio nel dominio del tempo e della frequenza. Tali errori sono comunque accettabili se comparati con gli artefatti sperimentali dovuti alla mislocazione dei punti di repere a agli artefatti da tessuti molli che non possono essere filtrati perché hanno lo stesso contenuto armonico del segnale utile.
2.5.2 Artefatti sperimentali

L’errore commesso nell’individuazione dei punti di repere sottocutanei sta nel fatto che alcuni di questi in realtà non sono punti ma superfici larghe e irregolari, inoltre essi sono ricoperti da uno strato di tessuto molle che può variare a seconda della zona in esame. Alcuni punti di repere sono interni e non rilevabili mediante palpazione, per esempio il centro dell’articolazione gleno-omerale nell’arto superiore. In letteratura sono presenti diversi metodi per la loro determinazione che è pur sempre una stima della loro esatta posizione.

Sta di fatto che una dislocazione dei punti di repere anatomici si propaga al calcolo della posa dei sistemi anatomici e quindi anche al calcolo della cinematica articolare.

Nei vari protocolli sperimentali il cluster di marcatori che viene posato sulla cute è definito solidale al segmento osseo sottostante, ma nella realtà, durante il movimento si ha uno spostamento relativo tra i markers e il segmento osseo. Tale spostamento è dovuto alla presenza di tessuti molli tra il punto dove è applicato il marker e l’osso. Come già accennato in precedenza tale errore è critico in quanto non può essere eliminato tramite tecniche di filtraggio. Per risolvere, o almeno ridurre questo artefatto sono state sviluppate diverse tecniche (per esempio protocollo CAST e la doppia calibrazione paragrafo 2.6) ma gli studi non si sono ancora fermati e continuano alla ricerca di una soluzione al problema.

2.6 Protocolli per l’analisi del movimento

Nel capitolo 2.4 si è già definito cosa si intende per protocollo, ovvero un procedimento che descrive primariamente il modello biomeccanico che meglio rappresenta la cinematica dei segmenti rigidi in gioco. I punti fondamentali per l’implementazione di un protocollo si possono trovare in quel che viene chiamato CAMAR-II (Computer Methods and Programs in Biomedicine 45, 1994 11-13). Tale progetto è nato con lo scopo di stabilire una rete Europea di laboratori clinici e di ricerca che praticassero l’analisi del movimento in maniera standard. Sulla base del CAMARC-II, per la determinazione di un opportuno marker set, nelle prove che si vogliono esaminare, devono essere garantiti i seguenti punti:

- 3dimensionalita`
- Minimo di 3 marker per segmento
- Visibilità` dei marcatori
Capitolo 2; Analisi del movimento

- Massima affidabilità nella definizione dei piani anatomici, per garantire un'interpretazione fisiologica e clinica oggettiva
- Punti di repere facilmente palpabili e identificabili

L’osservanza di queste piccole regole, se così le vogliamo chiamare, permette diversi vantaggi nello studio dell’analisi del movimento tra cui:

- Alta accuratezza
- Facile applicabilità dei marcatori
- Riduzione del tempo necessario per la preparazione del paziente
- Riduzione dell'ingombro dell'apparecchiatura sperimentale
- Riduzione del tempo per la raccolta dei dati
- Minima variabilità dei risultati inter-intraoperator e intersoggetto

Tra gli obbiettivi del progetto CAMARC-II, oltre a quelli già accennati precedentemente come la costruzione della rete Europea di laboratori e la definizione di protocolli per la cattura/elaborazione dei dati, c’è lo sviluppo di un interfaccia guida per i clinici che devono effettuare i test.

2.6.1 Protocollo CAST

La determinazione sperimentale della posizione e l’orientazione dei segmenti ossei nello spazio sta alla base dell’analisi cinematica. Come già visto nel paragrafo 2.4 ad ogni segmento è associato un sistema di riferimento locale che può essere completamente descritto da un vettore posizione e una matrice di rotazione. I sistemi locali sono definiti a partire da opportuni punti di repere in cui sono posizionati dei markers. Durante un qualsiasi movimento questi markers, essendo disposti sulla cute del soggetto, possono perdere la loro posizione originaria a causa del tessuto molle che si interpone tra l’osso e il marker. Per ridurre questi artefatti da tessuti molli (ATM) è stato sviluppato il protocollo CAST (Calibrated Anatomical System Technique, vedi Fig.2.11) che appunto facilita la stima della posizione dei punti anatomici necessari alla costruzione dei sistemi locali, utilizzando dei cluster tecnici maggiormente visibili e che risentono meno degli ATM. Il protocollo si articola in tre fasi:

1) Definizione del cluster tecnico: il cluster tecnico è definito da quattro markers non allineati posti sulla superficie del segmento osseo in analisi, con l’asse
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore

principale disposto lungo l’asse longitudinale del segmento e posizionato dove gli ATM sono minimi (Cappozzo et al. 1997). In realtà sono sufficienti tre markers per definire il sistema tecnico di riferimento, il quarto viene utilizzato se in qualche frame dell’acquisizione un marker viene perso dalle videocamere;

2) Calibrazione statica: per ogni segmento in cui è posizionato il cluster, si definisce un sistema di riferimento tecnico e rispetto a quest’ultimo si trovano le posizioni dei markers anatomici, posizionati sui punti di repere del segmento stesso. Si effettua dunque una calibrazione statica in cui tutti i markers, sia quelli anatomici che quelli tecnici, devono essere visti da almeno due videocamere. I markers utilizzati per l’identificazione dei punti anatomici vengono rimossi prima di effettuare la prova dinamica. Alcuni punti di repere, se più profondi, possono essere determinati utilizzando una bacchetta su cui sono montati due markers a una distanza nota. L’operatore punta l’apice della bacchetta sul punto di interesse che potrà successivamente essere ricostruito essendo note le distanze tra i markers e le sue estremità.

Figura 2.11 Calibrazione statica dell’epicondilo femorale utilizzando la bacchetta. I cerchi sono i markers del cluster che identificano il sistema tecnico della gamba (“Position and orientation in space of bones during movement: anatomical frame definition and determination” Cappozzo et al.1995)
3) Ricostruzione dei markers anatomici: per ogni prova dinamica, verranno ricostruiti i markers anatomici tenendo conto della posizione e dell’orientazione del cluster rispetto alla sua posizione in statica. Per ridurre gli errori dovuti al fatto che il cluster durante il movimento subisce delle deformazioni, sono stati messi a punto metodi avanzati, basati su una stima ai minimi quadrati. Minimizzare la somma delle distanze al quadrato tra le coppie ordinate di marcatori corrisponde a trovare un minimo per l’energia potenziale (elastica) immagazzinata nelle quattro molle (vedi Fig. 2.12), assumendo che queste abbiano la stessa rigidezza. Per la soluzione di questo problema di minimo viene solitamente utilizzato il metodo della scomposizione ai valori singolari (Singular Value Decomposition, Arun, Huang, Blostein, 1987). L’algoritmo SVD è implementato nella maggior parte dei pacchetti software e non richiede una stima iniziale dei parametri. Da questo calcolo e dalla calibrazione statica descritta al punto 2) è possibile ricostruire la posizione dei markers anatomici anche se questi non sono visibili dal sistema optoelettrico.

Figura 2.12 Interpretazione fisica del problema di stima ai minimi quadrati. I cerchi vuoti sono i marcatori del cluster, supposto rigido; quelli pieni sono le posizioni dei marcatori misurate in un certo frame. La posa ottima si ha minimizzando l’energia immagazzinata nelle molle (Cappello et al. 1996)
2.6.2 La calibrazione multipla

Uno degli obbiettivi base dell’analisi del movimento e anche del presente lavoro di tesi, è la ricostruzione del movimento delle ossa rispetto al sistema di riferimento globale del laboratorio. L’aspetto più critico è senz’altro il fatto che i markers posizionati sulla cute non restano solidali al segmento osseo sottostante a causa del tessuto molle interposto appunto tra osso e punto di applicazione del marker. L’uso dei sistemi tecnici e della calibrazione anatomica introdotta dal protocollo CAST (Cappozzo et al. 1995) rappresenta un primo passo per la risoluzione del problema sopra citato. Essa suggerisce una prova statica di rilevazione dei markers anatomici rispetto ai cluster nella posizione anatomica di riferimento, indipendentemente dall’esercizio fisico che si vuole analizzare. L’uso di cluster associati ai segmenti ossei di interesse presenta diversi vantaggi ma quando i cluster utilizzati sono direttamente applicati sulla cute la loro configurazione e la calibrazione dei parametri variano nel tempo. Risulta quindi ragionabile pensare che la ricostruzione delle traiettorie dei vari punti di repere deve essere costruita attraverso delle calibrazioni multiple. Bisogna, quindi, ripetere la calibrazione di tutti i punti anatomici di interesse in differenti pose, nel nostro caso, dell’arto superiore che compongono il movimento in esame. In questo caso, al contrario del CAST, la configurazione del cluster e la calibrazione dei parametri non sono considerati costanti ma dipendenti dal tempo. Per procedere alla doppia calibrazione si prendono in esame due posizioni: quella iniziale t_1 e quella finale t_2 del gesto motorio in esame. Le due configurazioni, quindi, presenteranno delle differenze dovute agli artefatti da tessuti molli che modificano le distanze tra i markers del cluster e quindi anche le traiettorie dei punti anatomici calibrati.

Figura 2.13 Cluster e punti anatomici nelle due configurazioni prese come riferimento per la doppia calibrazione (Cappello et al. 1997)
Tramite la tecnica SVD si trova il sistema di riferimento tecnico per ogni cluster di entrambe le pose e si calibramo i punti anatomici associati. Si avranno così, per ogni punto anatomico, due traiettorie, una rispetto al sistema tecnico iniziale al tempo t_1 e una rispetto a quello finale t_2. Gli istanti di riferimento t_1 e t_2 corrispondono alle pose di calibrazione negli estremi dell’esercizio fisico eseguito. In un dato istante intermedio ai questi due tempi, il modello del cluster ($\text{Mod}(t)$) e la posizione dei punti di repere anatomici ($\text{PRA}(t)$) sono dati da un’opportuna combinazione tra i due. Ad esempio, interpolando linearmente rispetto al tempo, assunto come variabile indipendente, all’istante t si avrà:

$$\text{Mod}(t) = \text{Mod}_1 + (\text{Mod}_2 - \text{Mod}_1) \frac{t - t_1}{t_2 - t_1}$$

$$\text{PRA}(t) = \text{PRA}_1 + (\text{PRA}_2 - \text{PRA}_1) \frac{t - t_1}{t_2 - t_1}$$

Il metodo della calibrazione multipla deve essere comunque adatto allo specifico gesto motorio a cui si intende applicarlo, scegliendo opportunamente le configurazioni di riferimento.
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore
Capitolo 3
Biomeccanica dell’arto superiore

3.1 Definizione piani e assi anatomici

Questo paragrafo ha lo scopo di apprendere un vocabolario che sia accettato e riconosciuto a livello internazionale e che permetta la comprensione tra i soggetti che approcciano all’anatomia umana. Bisogna innanzitutto identificare una posizione precisa del corpo umano chiamata “posizione anatomica”, che prevede il corpo in stazione eretta con gli arti superiori distesi, liberi sui fianchi, con il palmo delle mani rivolto in avanti e gli arti inferiori uniti con i piedi paralleli; rispetto a questa posizione ruota tutta la terminologia posizionale, qualunque sia il gesto motorio che il soggetto sta compiendo.

![Piani e assi anatomici](image)

Figura 3.1 Piani e assi anatomici

Per una semplice comprensione, per esempio, del movimento di un segmento corporeo rispetto ad un altro si fa riferimento a dei piani anatomici immaginari perpendicolari tra di loro (Fig. 3.1):

- piano sagittale o mediano che divide il corpo in due parti simmetriche (destra/sinistra);
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore

- piano frontale o coronale che attraversa il corpo dall’alto in basso ad angolo retto col piano sagittale e che divide il corpo in piani anteriori e superiori;

- piano trasversale o orizzontale perpendicolare agli altri due e che divide il corpo in piani superiori ed inferiori.

Di rado i movimenti di un segmento avvengono su di un solo piano, solitamente si verificano su due o tre piani contemporaneamente producendo un movimento complesso. Per ogni piano può essere identificato un’asse (vedi Fig. 3.1) di solito associato ad una particolare articolazione ed al suo movimento:
- asse orizzontale perpendicolare al piano sagittale;
- asse verticale perpendicolare al piano trasversale;
- asse antero-posteriore perpendicolare al piano frontale.

I movimenti che avvengono rispetto all’asse orizzontale sul piano sagittale si definiscono flessione ed estensione; quelli rispetto all’asse antero-posteriore sul piano frontale abduzione e adduzione e, infine quelli rispetto all’asse verticale sul piano trasversale si definiscono intrarotazione ed extrarotazione.

Flessione
piegamento di segmenti adiacenti nel piano sagittale in modo tale che le loro superfici siano avvicinate l’una all’altra.

Estensione
movimento che allontana due superfici opposte nel piano sagittale.

Abduzione
movimento di un segmento sul piano frontale che lo allontana dalla linea mediana del corpo.

Adduzione
movimento di un segmento sul piano frontale che lo avvicina alla linea mediana del corpo.

Intrarotazione
rotazione di un segmento di un arto attorno al suo asse longitudinale, in modo che la sua superficie anteriore ruoti verso la linea mediana del corpo.

Extrarotazione
rotazione di un segmento di un arto attorno al suo asse longitudinale, in modo che la sua superficie anteriore sia allontani da piano della linea mediana del corpo.
3.2 Struttura ossea dell’arto superiore

Andiamo a descrivere le ossa che compongono l’arto superiore e le loro interazioni che portano alla formazione delle articolazioni.

Le ossa che compongono l’arto superiore sono la clavicola e la scapola nel cingolo scapolare, l’omero nel braccio, il radio e l’ulna nell’avambraccio e la mano, costituita da innumerevoli ossicini, ma che nel nostro caso non analizzeremo (Fig. 3.2).

Figura 3.2 Regioni, ossa e articolazioni dell’arto superiore (“Determining upper limb kinematics and dynamic during everyday tasks” Ingram, Murray – 1999)
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore

CINGOLO SCAPOLARE
La clavicola e la scapola formano il cingolo scapolare che trasmette il peso dell’arto superiore allo scheletro assiale e rende possibile un ampio raggio di movimenti. La scapola è un osso piatto piano, largo, triangolare. La faccia costale, che guarda le coste, leggermente scavata; quella dorsale guarda indietro e in fuori ed è divisa dalla spina della scapola in due fosse. La spina della scapola ha due margini liberi, superiore e inferiore, che divergono lateralmente per includere l’acromion. La testa della scapola è una parte estesa dell’osso che si attacca all’osso piatto; in essa si trova la fossa glenoidea, una concavità che si articola con la testa dell’omero a formare l’articolazione della spalla (glenomerale).
La clavicola è un osso sottocutaneo che va, orizzontalmente, dallo sterno all’acromion. I due terzi mediali della clavicola sono convessi in avanti; il terzo laterale è concavo in avanti e appiattito dall’alto al basso. Si articola con il processo acromiale della scapola lateralmente (articolazione acromioclaveare) e con lo sterno medialmente (articolazione sternoclaveare).

OMERO
È’ l’osso più grande dell’arto superiore costituito da uno stelo e due estremi. Prossimalmente si articola con la cavità glenoidea della scapola nell’articolazione della spalla e distalmente con il radio e l’ulna, nell’articolazione del gomito. La struttura prossimale più importante è la testa dell’omero caratterizzata da una superficie liscia e arrotondata. Il corpo dell’omero è pressoché cilindrico in alto e diventa triangolare nella parte inferiore, espandendosi lateralmente. Presenta due superfici articolari separate da una cresta: la superficie articolare laterale, il capitello, che si articola con il radio, con il quale ha il massimo contatto quando il gomito è completamente flesso; la superficie articolare mediale, la troclea, che si articola con l’ulna. Queste due superfici aricolari vanno a formare l’articolazione del gomito. Medialmente alla troclea si trova il grande epicondilo mediale e lateralmente al capitello vi è l’epicondilo laterale.

RADIO e ULNA
Sono le due ossa dell’avambraccio, il radio lateralmente e l’ulna medialmente. In alto si articolano con l’omero al gomito mentre distalmente contribuiscono a formare il polso.
Capitolo 3: Biomeccanica dell’arto superiore

Il radio è posto lateralmente ed è più corto dell’ulna. Si articola in alto con il capitello dell’omero e in basso con lo scafoida e il semilunare della prima fila del carpo e ai due estremi con l’ulna. La testa è un disco spesso, con una superficie concava per l’articolazione con il capitello. Sotto la testa c’è il collo, ristretto, che devia medialmente mentre si avvicina la diafisi. La diafisi è cilindrica, ma diventa triangolare più in basso. La faccia articolare distale è concava e arriva fino all’apofisi stiloidea.

L’ulna è l’osso più lungo dell’avambraccio e si trova medialmente al radio. Ha una diafisi e due estremi: il superiore più grande e presenta una proiezione ad uncino per l’articolazione con la troclea omerale; il distale, più piccolo e arrotondato è la testa dell’ulna. Essa non si articola direttamente con il carpo ma lateralmente ai due estremi con il radio.

3.3 Articolazioni dell’arto superiore e movimenti

L’elevata mobilità dell’arto superiore è permessa dalla compartecipazione di tre articolazioni:
- articolazione sternoclavare che mette in rapporto la clavicola ed il torace;
- articolazione acromioclavare tra scapola e clavicola;
- articolazione glenomerale tra omero e scapola.

A queste articolazioni vanno naturalmente aggiunte quella intermedia del gomito e quella del polso. Quest’ultima non è una singola articolazione ma comprende le articolazioni tra le ossa del carpo e l’articolazione con l’avambraccio.

In questo studio sono stati presi in considerazione i movimenti di tre di queste articolazioni: quella sternoclavare, quella glenomerale e quella del gomito.

3.3.1 Articolazione sternoclavare

L’articolazione sternoclavare fornisce l’unico punto di connessione osseo tra arto superiore e tronco. Le superfici articolari sono una concava, l’altra convessa anche se non hanno gradi di curvatura uguali. Anche se le superfici non concordano con quelle di un’enartrosi, l’articolazione sternoclavare ha comunque tre gradi di libertà di movimento, elevazione e depressione, protazione e retrazione, rotazione assiale (vedi Fig. 3.3).
Elevazione e depressione
L’asse di rotazione per l’elevazione e la depressione è orizzontale e leggermente obliquo in avanti e in fuori attraverso il legamento costoclaveare. L’ampiezza di movimento dell’estremità laterale della clavicola è di circa 10 cm in elevazione e di 3 cm in depressione, con un’ampiezza angolare totale di circa 60°.

Protazione e retrazione
L’asse di movimento di protazione e di retrazione si trova su un piano verticale che passa obliquamente in basso e in fuori attraverso la porzione mediale del legamento costoclaveare. L’ampiezza di movimento dell’estremità laterale della clavicola è di circa 5 cm in protazione e di 2 cm in retrazione, con un angolo totale di circa 35°.

Rotazione assiale
Capitolo 3: Biomeccanica dell’arto superiore

Mentre tutti i movimenti appena citati sono tutti attivi, cioè prodotti da un’azione muscolare diretta, la rotazione assiale è prodotta dalla rotazione della scapola trasmessa alla clavicola dal legamento coracoclaveare. Una rotazione assiale della sola clavicola è impossibile in natura. L’asse passa per il centro della superficie articolare delle articolazioni sternoclaveare e acromclaveare. Il grado di rotazione assiale può variare dai 20° ai 40° a seconda della posizione della clavicola.

3.3.2 Articolazione glenomerale

L’articolazione della spalla è formata dalla testa dell’omero e dalla cavità glenoidea della scapola. La spalla è un’enartrosi sinoviale, con la testa dell’omero che forma una sfera che si incastra nella cavità glenoidea, in cui la libertà di movimento si è sviluppata a scapito della stabilità. La cavità glenoidea, infatti, è irregolare e meno profonda della convessità della testa dell’omero; solo un terzo della sua testa è in contatto costante con la cavità glenoidea. E’ essenzialmente la diversità della forma delle superfici articolari che conferisce all’articolazione la sua mobilità. La sua forma permette movimenti su infiniti assi che si intersecano nel centro della testa dell’omero. A scopi descrittivi i movimenti che l’articolazione della spalla può compiere sono: la flessione e l’estensione, l’abduzione e l’adduzione, l’intra e l’extrarotazione (vedi Fig. 3.4).

Flessione e Estensione

La flessione e l’estensione avvengono lungo un’asse perpendicolare al piano della cavità glenoidea; nella flessione l’arto si muove in avanti e medialmente a un angolo di 45° rispetto al piano sagittale, nell’estensione il braccio è portato indietro e lateralmente. L’ampiezza nella flessione è di circa 110°, quella dell’estensione 70°. Tali angoli possono aumentare grazie all’azione del cingolo scapolare passando rispettivamente a 180° per la flessione e 90° per l’estensione.

Abduzione e Adduzione

I movimento di abduzione e di adduzione si compiono su un’asse orizzontale obliquo disposto sullo stesso piano della cavità glenoidea. Nell’abduzione l’arto si allontana in direzione anterolaterale dal tronco, nell’adduzione, invece, si avvicina al tronco. L’ampiezza dell’abduzione è di circa 120°, di cui solo i primi 25° si compiono senza la rotazione della scapola, mentre tra i 30° e i 180° la rotazione di quest’ultima aumenta l’abduzione della spalla del rapporto 1:2.
L’adduzione oltre la posizione neutra dell’articolazione (posizione anatomica) non è possibile per la presenza del tronco.

Intra - ed Extrarotazione

Le rotazioni avvengono su un’asse longitudinale che passa lungo l’omero. Nell’extrarotazione, la superficie anteriore dell’omero viene portata lateralmente, nell’intrarotazione viene, invece portata verso il tronco. Per valutare l’intrarotazione massima che è di circa 90°, l’avambraccio è portato dietro il tronco perché quest’ultimo, anteriormente, ostacola tale movimento. L’ampiezza dell’extrarotazione è di circa 80°.

Figura 3.4 Movimenti dell’articolazione della spalla (a) flessione ed estensione, (b) abduzione e adduzione, (c) intra- extrarotazione (“Anatomia del movimento umano” Palastanga)
3.3.3 Articolazione del gomito

Il gomito è l’articolazione intermedia dell’arto superiore e si trova tra il braccio e l’avambraccio. L’articolazione è a cerniera e coinvolge tre ossa: l’estremo distale dell’omero e le estremità prossimali di radio e ulna. Gli assi maggiori di omero e ulna coincidono se visti lateralmente. Guardandoli frontalmente, l’asse ulnare devia lateralmente rispetto a quello omerale. Tale deviazione è detta valgismo fisiologico e varia dai 10° ai 15° per gli uomini e dai 20° ai 25° per le donne. I movimenti possibili dell’articolazione del gomito sono la flessione e l’estensione attorno ad un’asse trasversale che passa attraverso gli epicondili omerali (vedi Fig. 3.5). Questo asse non è perpendicolare all’asse principale dell’omero o dell’avambraccio ma biseca l’angolo di valgismo.

Flessione e Estensione

La flessione è il movimento che avviene anteriormente e porta l’avambraccio verso l’alto. L’ampiezza attiva della flessione è di 145°, quella passiva può raggiungere i 160°. L’estensione è quel movimento che riporta l’avambraccio nella sua posizione anatomicamente iniziale di flessione. In poche parole, l’ampiezza dell’estensione dell’articolazione è zero.

![Figura 3.5](image-url) (a) Assi e valgismo dell’articolazione del gomito, (b) Movimenti di flesso-estensione

("Anatomia del movimento umano" Palastanga)
L’avambraccio oltre ad un movimento di flesso-estensione, è caratterizzato dai movimenti di pronazione e supinazione (vedi Fig. 3.6). Questi movimenti sono dovuti al fatto che radio e ulna, oltre ad articolarsi indipendente a livello del gomito con l’omero, si articolano tra di loro sia a livello prossimale che distale. Il movimento principale è una rotazione del radio attorno all’ulna.

Pronazione e supinazione

Nella posizione supina, ovvero in posizione anatomica con il palmo della mano rivolto in avanti, radio e ulna sono parallele l’una all’altra. In posizione pronata, con il palmo rivolto indietro, le ossa dell’avambraccio si incrociano, con il radio che ruota davanti all’ulna. Tale movimento è detto pronazione, mentre quello che li riporta ad essere paralleli è detto supinazione.

L’asse della prono-supinazione passa per il centro della testa del radio ma a livello del polso può passare per qualunque punto tra il processo ulnare e la stiloide radiale. Solitamente l’asse tenderà a restare nella metà mediale di questa regione. L’avambraccio può essere pronato fino a quasi 180° senza l’intra-rotazione dell’omero; nel caso si lasci libero di ruotare l’omero, la mano può effettuare anche la rotazione completa di 360°.

Figura 3.6 Movimenti di prono-supinazione (”Anatomia del movimento umano” Palastanga)
3.4 Protocolli per l’analisi del movimento dell’arto superiore

Come già accennato nel Cap. 2.4 alla base dell’analisi del movimento, o più precisamente per la descrizione dell’orientamento e la posizione di un segmento osseo c’è l’implementazione di un protocollo. Il protocollo deve in primo luogo descrivere il modello biomeccanico che meglio approssima la cinematica dei vari segmenti ossei in esame. Per l’analisi dell’arto superiore ci viene in aiuto un modello segmentale proposto da Cutti et al. 2009 composto da quattro segmenti (torace, cingolo scapolare, omero e avambraccio) e nove gradi di libertà (vedi Fig.3.7).

![Figura 3.7 Esempio modello meccanico equivalente per l’arto superiore. In (a) i linkage(tratti neri) e le articolazioni (quadrati bianchi). In (b) sono descritti i gradi di libertà delle articolazioni.](image)

Nel modello, vengono innanzitutto identificate le articolazioni e i segmenti ossei di cui si vuole studiare la cinematica specificando il numero di segmenti (linkage) e il numero di gradi libertà di ogni articolazione. In particolare il cingolo scapolare è definito come il segmento che connette il punto medio tra l’incisura giugulare IJ e la settima vertebra cervicale C7 e il centro di rotazione glenorameale GH (vedi Fig.3.10). Il gomito è modellato come un’articolazione universale con due gradi di libertà: flesso-estensione e...
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore

prono-supinazione. Quando l’articolazione viene analizzata sul piano frontale essa presenta un particolare offset, formato tra l’asse lungo dell’avambraccio e l’asse lungo del braccio denominato carrying angle (Fig.3.8). Esso è universalmente riconosciuto come l’angolo formato per la diversa orientazione della diafisi omerale e di quella ulnare, maggiormente visibile quando l’arto superiore è in massima estensione.

Figura 3.8 Rappresentazione del carrying angle (“Studio cinematico dell’articolazione del gomito” Zampagni)

L’articolazione glenomerale è modellata con un giunto a sfera con tre gradi di libertà: flesso-estensione, abduzione-adduzione e rotazione interna-esterna. L’articolazione tra cingolo scapolare e torace (sterno claveare) è modellata con due gradi di libertà: elevazione-depressione e protrazione-retrazione (Fig.3.9).
Figura 3.9 Giunto universale e giunto a sfera rispettivamente modelli dell’articolazione del gomito e della spalla ("giunti meccanici" Wikipedia)

Uno dei problemi maggiori dell’analisi del movimento è stata la standardizzazione del linguaggio. Il punto di partenza, per creare una standard nell’analisi dell’arto superiore, è una pubblicazione di Van der Helm (1996), alla quale se ne sono susseguite altre fino all’entrata in gioco dell’International Shoulder Group (ISG) che nel 2005 ha proposto un set standard di punti di repere su cui apporre i markers (vedi Fig.3.10) e le linee guida per la creazione dei sistemi di riferimento anatomici solidali ai segmenti ossei che compongono l’arto.

Figura 3.10 Punti di repere anatomici sulla base dei quali vengono definiti i sistemi di riferimento anatomici (G. Wu et al. 2005)
Capitolo 4
Materiali e metodi

4.1 Introduzione

In questo lavoro di tesi è stato preso in considerazione l’arto superiore con l’obiettivo di implementare un protocollo per la sua analisi cinematica. La complessità dei suoi movimenti ci ha portato a definire un modello che rappresenta una semplificazione della realtà ma che comunque ben approssima i segmenti e le articolazioni che lo compongono.

Il modello implementato si riferisce agli studi sull’arto superiore, presenti in letteratura (Cutti et al., ISG… vedi Cap.3.4). Tutte le acquisizioni sono state effettuate nel laboratorio presente in BTS dove solitamente vengono testate le apparecchiature prima di procedere alla loro distribuzione. I dati ottenuti sono stati poi elaborati tramite opportuni software forniti sempre da BTS e descritti nel Cap. 1. Il laboratorio, solitamente sede di test e prove per la valutazione funzionale delle apparecchiature prodotte in BTS, è stato allestito con otto telecamere digitali con risoluzione 650x480 a 200 Hz, (vedi Fig.4.1) che utilizzano sensori a elevata sensibilità e illuminatori dal design innovativo e funzionale, la cui alta potenza di irraggiamento, combinata all’alta risoluzione della telecamera, aumenta il volume di lavoro e consente la cattura di movimenti rapidi e impercettibili.

Figura 4.1 Set-up delle telecamere e volume di acquisizione
Il sistema optoelettronico BTS SMART-DX 300, si completava con una data station per l’integrazione, la sincronizzazione e la gestione di tutte le informazioni cinematiche, cinetiche, elettromiografiche e video provenienti da dispositivi collegati. Nello studio in esame, essendo la stima cinematica l’oggetto di interesse, non sono state utilizzate né pedane di forza, né dispositivi elettromiografici. Il sistema quindi, attraverso la rilevazione di markers fluorescenti posti in determinati punti di repere, è in grado di calcolarne le coordinate 3D rispetto ad un sistema globale del laboratorio e da queste ricavare, mediante dei sistemi di riferimento locali, gli angoli di rotazione delle articolazioni che caratterizzano l’arto superiore.

4.2 Protocollo di acquisizione

4.2.1 Set-up di acquisizione

Nello studio in esame è stato utilizzato un set di 25 markers (Cutti et al. 2005) che sono stati posti direttamente sulla pelle del soggetto in esame. I markers hanno un diametro di 1 cm e sono attaccati tramite del semplice biadesivo. Si possono differenziare due tipi di markers: quelli anatomici e quelli tecnici. Gli anatomici sono stati posti in particolare posizioni, definite anche punti di repere, seguendo le indicazioni ISG (vedi Cap.3.4), attraverso palpazione:

C7: settimana vertebra cervicale
IJ: incisura giugulare
PX: processo xifoideo
T8: ottava vertebra toracica
L5: quinta vertebra lombare
RA: acromion destro
LA: acromion sinistro
Mk9: angolo inferiore della scapola
REL: epicondilo laterale dell’omero
REM: epicondilo mediale dell’omero
RRS: processo stiloideo del radio
RUS: processo stiloideo dell’ulna
RH: punto terminale della mano posto in punto a piacere
A questi, se ne aggiungono altri che vengono calcolati utilizzando le informazioni relative ai punti di repere anatomici sopra elencati:

- RE: punto intermedio ai due epicondili (RE=(REL+REM)/2);
- RF: punto intermedio tra i due processi stiloidei (RF=(RRS+RUS)/2);
- GH: centro di rotazione articolare calcolato mediante approccio geometrico

Per il calcolo del centro dell’articolazione glenomerale è stato utilizzato l’approccio geometrico (De Leva 1996) dove GH è definito ponendolo su un asse che va dal punto più craniale dell’articolazione del gomito (REL epicondilo laterale) all’acromion (RA), e ponendolo, da quest’ultimo, ad una coordinata longitudinale pari al 9.83% della distanza tra centro dell’articolazione del gomito (RE) e acromion.

Figura 4.2 Configurazione dei markers anatomici e dei cluster cutanei utilizzati per l’acquisizione delle prove
I markers tecnici, invece, sono utilizzati per definire il cluster tecnico di ogni segmento di interesse, necessario per l’applicazione del protocollo CAST:

- **BR1**
- **BR2** markers del cluster tecnico del braccio
- **BR3**
- **BR4**

- **AVR1**
- **AVR2** markers del cluster tecnico dell’avambraccio
- **AVR3**
- **AVR4**

- **cl1**
- **cl2** markers del cluster tecnico del torace
- **cl3**
- **cl4**

Questi cluster tecnici sono usati per stimare nelle acquisizioni dinamiche i punti di repere anatomici sopra citati.
4.2.2 Definizione dei sistemi di riferimento anatomici e degli angoli

Per definire gli angoli di rotazione di ogni articolazione, sono costruite delle terne di riferimento anatomiche prossimalmente e distalmente all’articolazione stessa. Queste terne sono identificate grazie ai punti di repere che costituiscono il modello e gli angoli definiti da opportune sequenze di rotazioni attorni ai tre assi che costituiscono la terna (sequenze di Eulero) in modo da portare le due terne da una posizione iniziale dove sono ipoteticamente allineate, alla posizione finale che è quella effettivamente presente durante il frame in esame. I sistemi di riferimento di torace, braccio e avambraccio sono costruiti utilizzando le convenzioni standard ISG. Per ogni segmento Y è l’asse longitudinale mentre X e Z sono rispettivamente l’asse medio-laterale e antero-posteriore.

Torace (Thorax)

Ot: l’origine coincidente a IJ;
Yt: lungo la linea che connette il punto medio tra PX e T8 e il punto medio tra IJ e C7, verso l’alto;
Xt: lungo la perpendicolare al piano formato da IJ, C7 e il punto medio tra PX e T8, verso destra;
Zt: perpendicolare a Yt e Xt.

Braccio (Humerus)

Oh: l’origine coincidente a GH;
Yh: lungo la linea che connette GH e il punto medio tra REL e REM, verso GH;
Zh: lungo la perpendicolare al piano formato da REL, REM e GH, con verso antero-posteriore;
Xh: perpendicolare a Yh e Zh.

Avambraccio (Forearm)

Of: l’origine in RE;
Yf: lungo la linea che connette RF ad RE, verso RE;
Zf: perpendicolare al piano formato dal versore Yf e dal vettore che va da RRS a RUS, antero-posteriore;
Xf: perpendicolare a Yf e Xf;
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore

Figura 4.3 Terne di riferimento anatomiche dei segmenti: torace, omero, avambraccio; in basso è rappresentata anche la terna globale di riferimento del laboratorio

La terne associata al cingolo scapolare non è definita nell’ISG e per lo studio in esame è presa in considerazione la definizione data in Cutti et al. 2009, dove è descritta come segue:

Osg: l’origine in IJ;

Xsg: lungo la direzione che va dal punto medio tra IJ e C7 a GH; verso destra;

Zsg: perpendicolare a Xsg e Yt del torace; verso antero-posteriore;

Ysg: perpendicolare a Xsg e Zsg.

Figura 4.4 Terna di riferimento anatomica del segmento cingolo scapolare
L’articolazione sterno-claveare presenta tre gradi di libertà (vedi Cap. 3), ma nel modello preso in esame essa è schematizzata con due gradi: elevazione-depressione e protrazione-retrazione. Per misurare l’orientazione relativo tra i due segmenti che compongono questa articolazione, ovvero tra cingolo scapolare e torace, si fa ricorso ad una decomposizione con una sequenza di Eulero del tipo YZ’X’’ tra le due terne di riferimento. La terza rotazione, naturalmente, per il motivo sopra citato sarà matematicamente nulla. Per misura gli angoli di flesso-estensione, abduzione-adduzione e rotazione interna-esterna della spalla (articolazione glenomerale) e quindi l’orientazione relativa tra omero e torace si utilizza una decomposizione con la sequenza di Eulero XZ’Y’’. L’orientazione tra avambraccio e omero che definisce gli angoli di flesso-estensione e prono-supinazione del gomito è anch’essa definita da una sequenza del tipo XZ’Y’’ dove la seconda rotazione si riferisce al carrying angle spiegato in precedenza.

4.3 Calibrazione anatomica

4.3.1 Posizionamento cluster e calibrazione dei punti

Il protocollo CAST prevede che tutti i punti di repere anatomici siano ricostruiti nelle prove dinamiche (gesto motorio compiuto dal soggetto) a partire dalla loro posizione nella prova statica rispetto a un gruppo di quattro markers, detto cluster (vedi Fig.4.5). Per quanto riguarda il torace, i suoi punti anatomici sono calibrati rispetto al cluster costituito dai markers posizionati in C7, RA, LA e L5. Durante un movimento alcuni di questi quattro markers che formano il cluster possono non essere ripresi dalle telecamere o occultati magari dal movimento dell’arto superiore. Per la calibrazione sono sufficienti tre dei quattro markers ma se il numero diminuisce ulteriormente non è più possibile risalire alla posizione dei punti di repere. Per questo motivo, in via precauzionale, sulla parte laterale del tronco è stato posizionato un altro cluster definito dai markers cl1, cl2, cl3, cl4 rispetto al quale sono calibrati tutti i punti di repere del tronco come per il cluster precedente. Nel braccio è posto un altro cluster identificato dai markers BR1, BR2, BR3, BR4 rispetto al quale vengono calibrati i due epicondili, laterale REL e mediale REM mentre nell’avambraccio è posizionato il cluster AVR1, AVR2, AVR3, AVR4 rispetto al quale sono ricostruiti i processi stiloidei di ulna RUS e radio RRS.
4.3.2 Doppia Calibrazione

Nello studio in esame per ridurre gli errori dovuti al tessuto molle interposto tra i markers e le ossa (artefatti ATM) si è fatto ricorso della calibrazione multipla (vedi Cap. 2.6.2). Come già visto tale approccio prevede l’acquisizione di due prove statiche: quella di partenza del gesto motorio che si vuole compiere e quella finale. Per ogni prova si è proceduto alla calibrazione di tutti i punti necessari alla costruzione dei riferimenti anatomici. A questo punto si avranno dunque per ogni punto due calibrazioni: quella riferita alla posa di partenza e quella riferita alla posa finale. Per le posizioni intermedie è stata utilizzata un’ interpolazione lineare. In un primo momento abbiamo scelto di utilizzare il tempo come variabile indipendente. In ambiente Smart Analyzer, tramite sono state costruite due rette di regressione (vedi Fig.4.6), attraverso le quali si sono pesati i parametri di calibrazione di entrambe le pose, per poi sommarli e ottenere un’unica traiettoria calibrata pesata per ogni punto anatomico. In questo caso ci siamo limitati allo studio di un gesto non ciclico, ovvero un passaggio da una posizione iniziale (braccio in posizione anatomica lungo il fianco) ad una posizione finale (alzata laterale del braccio fino a circa 90° sul piano frontale).
Figura 4.6 rette di regressione utilizzate come fattore peso rispettivamente per la posa iniziale e quella finale del gesto motorio analizzato

Successivamente si è pensato di migliorare il protocollo, estendendolo anche per un gesto che prevede il ritorno alla posizione di partenza, utilizzando come fattore peso non più il tempo ma un determinato angolo preso come riferimento. L’angolo in questione è stato trovato utilizzando i punti anatomici non calibrati, identificati dai markers posti sul soggetto in esame durante la prova statica. In assenza di questi, prima di procedere alla doppia calibrazione, è necessario definire un set di markers calibrati.

Sono stati presi in considerazione due gesti ciclici:

- alzata laterale (fino a circa i 90°) e ritorno del braccio alla posizione anatomicamente di riferimento (MOV1);
- estensione del gomito in pronazione partendo da gomito flesso e ritorno (MOV2).

Nel primo gesto motorio preso in esame, MOV1, l’articolazione che maggiormente lavora è quella della spalla. Per l’analisi cinematica di questo movimento sono state acquisite tre prove statiche: quella iniziale con braccio disteso lungo il corpo, quella finale con braccio...
alzato a circa 90° ed una posizione intermedia. Per ogni statica si è effettuato la calibrazione di tutti i punti anatomici descritti nel Cap. 4.2 ottenendo così per ogni punto tre serie di calibrazioni. Sfruttando il fatto che il gesto motorio in esame risulta principalmente costituito da una rotazione attorno all’asse di abdo-adduzione della spalla (vedi Fig. 4.7) si è deciso di prendere tale angolo come fattore peso. Attraverso quindi dei filtri binari si sono costruiti dei pesi normalizzati (vedi Fig. 4.9) che sono stati applicati alle tre calibrazioni per poi sommarne il risultato, ottenendo una calibrazione singola pesata per ogni punto anatomico.

Figura 4.7 Angolo di abdo-adduzione della spalla utilizzato come fattore peso nella calibrazione del primo gesto motorio in esame

Nel secondo gesto, MOV2, il principio utilizzato è stato pressoché lo stesso. Essendo il gesto caratterizzato prima da un’estensione e poi una flessione del gomito, come peso si è utilizzato in questo caso l’angolo di flesso-estensione del gomito (vedi Fig. 4.8).
Capitolo 4: Materiali e metodi

Figura 4.8 Angolo di flesso-estensione del gomito utilizzato come fattore peso nella calibrazione del secondo gesto motorio preso in esame

Come per il primo gesto motorio analizzato, l’angolo utilizzato come peso è stato normalizzato. L’unica differenza sta nel fatto che essendo il gesto abbastanza limitato, si è pensato fossero sufficienti solo due pose statiche per la calibrazione. Anziché avere quindi tre pesi come nel caso precedente, in tale prova si sono ricavate due curve peso (vedi Fig. 4.9).
Figura 4.9 Pesi normalizzati ricavati rispettivamente dall’angolo di abdo-adduzione della spalla (grafico in alto) e dall’angolo di flesso-estensione del gomito (grafico in basso)
Capitolo 5

Risultati

5.1 Introduzione

Nel capitolo precedente si è visto come sono state svolte le prove per l’analisi cinematica dei due gesti motori presi in esame, o meglio si sono distinti tre tipi diversi di calibrazione:

1) CAST calibrazione singola (vedi Cap. 3.1)
2) CAST calibrazione multipla con fattore peso tempo
3) CAST calibrazione multipla con fattore peso angolo

Con i dati relativi ad ognuna delle tre calibrazioni sono stati ricostruiti i sistemi di riferimento anatomici di ogni segmento corporeo e quindi calcolati, attraverso opportune sequenze di Eulero, gli angoli di rotazione delle articolazioni di spalla, gomito e dell’articolazione sternoclaveare (vedi Cap.4.2.2). Nella valutazione dei risultati, le traiettorie dei punti calibrati e gli angoli delle articolazioni per le tre calibrazioni sono stati messi a confronto per verificare la bontà dei diversi metodi utilizzati e discutere sulle eventuali differenze presenti. Per quanto riguarda la calibrazione con il fattore peso tempo, tutti i dati relativi ad essa vanno da un frame iniziale a circa il 50% del gesto che si vuole analizzare. Questo accade perché come peso è stato utilizzato una retta che nel tempo passava da valore zero a valore uno, non tenendo conto della seconda metà della prova in cui si il braccio viene riportato nella sua posizione di partenza. Nelle altre due calibrazioni, invece, i dati rappresentano il 100% del gesto motorio in esame.

5.2 Valutazione sperimentale della cinematica

Essendo noto che la valutazione degli angoli articolari è soltanto una conseguenza alla valutazione della calibrazione dei punti anatomici, sembra logico analizzare inizialmente le traiettorie dei punti calibrati nelle tre differenti calibrazioni. I punti che vengono solitamente calibrati nell’analisi cinematica dell’arto superiore, perché maggiormente affetti da artefatti ATM, sono i due processi stiloidei di ulna e radio (RUS,RRS), i due epicondili del gomito (REM,REL) e l’acromion (RA) relativo all’arto in movimento.
5.2.1 Traiettorie dei punti calibrati (MOV1)

A seguire sono riportati tutti i grafici relativi alle traiettorie, nello spazio, dei punti calibrati precedentemente accennati. Per ogni grafico sono riportate tre curve, relative alle tre differenti metodologie di calibrazione: le curve blu rappresentano le traiettorie ottenute con la calibrazione singola, ovvero con la ricostruzione dei punti calibrati attraverso un’unica prova statica definita dalla “posizione anatomica”; le curve verdi sono quelle relative ai punti ottenuti con doppia calibrazione utilizzando il tempo come fattore peso; le curve rosse, infine, sono le traiettorie derivanti sempre da una doppia calibrazione ma utilizzando l’angolo di abdo-adduzione della spalla. Per semplicità conviene identificare le posizioni in riferimento alla percentuale del gesto compiuto dall’arto superiore:

- posizione iniziale (0%): braccio disteso lungo il fianco
- posizione intermedia (50%): braccio alzato lateralmente a formare un angolo di circa 90° con il tronco
- posizione finale (100%): braccio disteso lungo il corpo (uguale alla posizione iniziale)

I grafici presentano sull’asse delle ascisse la percentuale del ciclo che caratterizza il gesto motorio mentre sull’asse delle ordinate, la distanza dei punti calibrati rispetto al sistema di riferimento globale del laboratorio, espressa in metri. Osservando i grafici che seguono si può notare come le tre calibrazioni portano a dei risultati molto simili, per non dire uguali nel caso dei due epicondili (vedi Fig.5.1) e dei processi stiloidei (vedi Fig 5.2). Risulta invece interessante la valutazione dei grafici relativi alle traiettorie dell’acromion RA (Fig. 5.3). Si può, infatti, notare che se nella parte iniziale e finale del gesto (0% e 100%) le calibrazioni portano ad uno stesso risultato; nella parte intermedia (50%), la calibrazione singola tende a sottostimare il movimento di RA in tutte e tre le direzioni. L’errore maggiore viene compiuto lungo l’asse y verticale, dove si presenta una differenza di circa 5 cm. Altra cosa che si può dire guardando il grafico è che la calibrazione pesata con il fattore tempo, com’era presumibile, tende a linearizzare l’andamento dei punti calibrati, sovrastimando quelle che sono le traiettorie tra lo 0% ed il 50% del ciclo.
Capitolo 5: Risultati

Figura 5.1 Traiettorie lungo i tre assi (x, y, z) dell’epicondilo mediale REM e di quello laterale REL.
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore

Figura 5.2 Traiettorie lungo i tre assi (x,y,z) del processo stiloideo dell’ulna RUS e del radio RRS
5.2.2 Angoli articolari (MOV1)

Dopo aver valutato gli andamenti delle traiettorie passiamo ad osservare i risultati ottenuti negli angoli relativi alle tre articolazioni prese in esame: articolazione glenomerale, sternoclaveare e articolazione del gomito. Naturalmente i risultati ottenuti non sono altro che una conseguenza delle traiettorie descritte nel paragrafo precedente, essendo gli angoli di fatto calcolati come rotazioni relative tra due sistemi di riferimento anatomici posti in posizione distale e prossimale all’articolazione stessa, definiti sulla base dei punti anatomici calibrati. Si è visto che, ad esclusione dell’acromion RA, gli altri punti calibrati sono pressoché identici nelle tre diverse tipologie di calibrazione, quindi si può pensare che le differenze presenti nei grafici che vengono di seguito proposti siano dovute quasi esclusivamente alle diverse traiettorie del punto RA.

Figura 5.3 Traiettorie lungo i tre assi (x,y,z) dell’acromio RA relativo al braccio che esegue il gesto motorio, nel caso in esame il destro
Per prima cosa in tutti i grafici si può notare come la calibrazione pesata con fattore tempo, tra 0% e 50%, sovrastimi l’andamento reale delle altre due curve. Detto questo, gli angoli relativi all’articolazione glenomerale (vedi Fig.5.4) risultano nel complesso molto simili nelle diverse tipologie di calibrazione. Nell’articolazione del gomito (Fig.5.5) l’unica nota che si può fare è che in entrambe le calibrazioni pesate, intorno al 50% del ciclo, viene rilevata una leggera pronazione, di circa 20°, che nella calibrazione singola non viene percepita. Alcune differenze vengono rilevate anche nell’articolazione sternoclaveare (Fig.5.6) dove senz’altro la più rilevante sta nel fatto che solo nelle calibrazioni pesate viene rilevata una leggera elevazione che fisiologicamente è presente.

Figura 5.4 Angoli relativi all’articolazione glenomerale
Capitolo 5: Risultati

Figura 5.5 Angoli relativi all’articolazione del gomito

Figura 5.6 Angoli relativi all’articolazione sternoclaveare
5.2.3 Traiettorie dei punti calibrati (MOV2)

Il secondo gesto motorio analizzato è una estensione del gomito partendo dalla posizione di gomito flesso in pronazione. Come nel paragrafo 5.2.1 vengono riportati tutti i grafici relativi alle traiettorie, nello spazio, dei punti calibrati e per ogni grafico sono riportate sempre le tre solite curve, relative alle tre differenti metodologie di calibrazione. Vengono quindi identificate le diverse posizioni come segue:

- posizione iniziale (0%): avambraccio sul piano trasversale con gomito flesso in pronazione
- posizione intermedia (50%): braccio sul piano trasversale con estensione del gomito
- posizione finale (100%): uguale alla posizione iniziale

I grafici presentano sull’asse delle ascisse la percentuale del ciclo che caratterizza il gesto analizzato e sull’asse delle ordinate la distanza dei punti calibrati rispetto al sistema di riferimento globale del laboratorio, espressa in metri. Come si può notare, è sempre per l’acromion RA che si distinguono le maggiori differenze (vedi Fig.5.7). Questo avviene perché per la calibrazione singola, la prova statica di rilevazione dei markers anatomici rispetto ai cluster avviene nella “posizione anatomicamente di riferimento” (braccio in estensione lungo il tronco), indipendentemente dall’esercizio fisico che si vuole analizzare. Nell’esercizio in questione (MOV2), la configurazione iniziale è molto differente dalla “posizione anatomicamente di riferimento” e questo si ripercuote sulla ricostruzione dei punti calibrati. Per quanto riguarda RA, le traiettorie che risentono maggiormente di tale problema sono quelle relative al movimento lungo l’asse x e l’asse y, dove la differenza tra calibrazione singola e le calibrazioni multiple pesate rimane più o meno costante intorno a 2-2,5 cm. Per gli altri punti calibrati le traiettorie risultano più o meno uguali, indifferentemente dalla calibrazione utilizzata (Fig.5.8-5.9-5.10-5.11).
Capitolo 5: Risultati

Figura 5.7 Traiettorie lungo i tre assi (x,y,z) dell’acromio RA relativo al braccio che esegue il gesto motorio, nel caso in esame il destro

Figura 5.8 Traiettorie lungo i tre assi (x,y,z) dell’epicondilo laterale REL
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore

Figura 5.9 Traiettorie lungo i tre assi \((x,y,z)\) dell’epicondilo mediale REM

Figura 5.10 Traiettorie lungo i tre assi \((x,y,z)\) del processo stiloideo del radio RRS
Capitolo 5: Risultati

Figura 5.11 Traiettorie lungo i tre assi (x,y,z) del processo stiloideo dell’ulna RUS e del radio RRS

5.2.4 Angoli articolari (MOV2)
Anche per il secondo movimento analizziamo la variazione degli angoli che caratterizzano le articolazioni. Entrando nell’analisi specifica dei dati, si può notare che nell’articolazione glenomerale (vedi Fig. 5.12) è presente una moderata differenza nel grafico relativo alla sua rotazione interna ed esterna. Innanzitutto l’articolazione, in posizione iniziale, nella calibrazione pesata con angolo è maggiormente intra-ruotata rispetto alla calibrazione singola; inoltre la calibrazione con angolo rileva una rotazione esterna della spalla nella fase intermedia del ciclo (20-50%) che nella singola non è così accentuata. Un’altra osservazione che possiamo fare, è che nelle rotazioni angolari ottenute con la calibrazione singola, la differenza è massima rispetto alla calibrazione pesata con angolo, all’inizio e alla fine del ciclo. La differenza tra le curve è invece minima nella fase intermedia tra il 30-50% quando il braccio è in estensione; questo avviene non a caso, infatti, tale posizione risulta essere molto più vicina alla configurazione anatomico di riferimento rispetto alla posizione di inizio e fine del gesto analizzato.
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore

Figura 5.12 Angoli relativi all’articolazione glenomerale

Figura 5.13 Angoli relativi all’articolazione del gomito
Capitolo 5: Risultati

Per quanto riguarda l’articolazione del gomito (Fig.5.13) non sono emerse particolari differenze, se non il solito fatto che le curve tendono ad avvicinarsi quando il braccio è in estensione (25-45%). Nell’articolazione sternoclavare (Fig.5.14), invece, le calibrazioni multiple pesate rispetto a quella singola, posizionano il cingolo scapolare in leggera protrazione e depressione; quest’ultima, soltanto nella calibrazione con fattore peso angolo, tra il 20 e il 50% aumenta di circa 4° mentre nelle altre due calibrazione tende a rimanere costante.

Figura 5.14 Angoli relativi all’articolazione sternoclavare
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore
Discussione finale

A conclusione di questo lavoro si possono fare diverse osservazioni a riguardo dell’analisi cinematica dell’arto superiore e ai metodi di calibrazione utilizzati. Come prima cosa bisogna chiarire il fatto che la scelta di utilizzare un applicativo come Smart Analyzer per lo sviluppo del tool in questione non è banale. L’utilizzo per esempio di altri applicativi, per esempio Matlab, avrebbe ristretto il campo degli utilizzatori finali; il linguaggio intuitivo che caratterizza Smart Analyzer permette anche a clinici, medici e non solo agli ingegneri di interfacciarsi al protocollo creato. Quello che è emerso dai dati grezzi riportati nei grafici del capitolo precedente, è che la calibrazione con fattore tempo rispetto a quella con peso angolare presenta senz’altro come limite il fatto di poter calibrare soltanto gesti non ciclici; inoltre il fatto di linearizzare il movimento tra la parte iniziale e finale può, come abbiamo visto, porta a delle sovra/sotto stime degli andamenti effettivi dei punti ricostruiti. Per quanto riguarda la calibrazione singola, nel complesso è un buon approccio. Tuttavia nella calibrazione dell’acromion, quando il gesto motorio si allontana di molto dalla “posizione anatomic” si vengono a creare delle incongruenze rispetto a quello che dovrebbe essere il movimento fisiologico della spalla; questo provoca calibrazioni errate e di conseguenza anche angoli di rotazione del cingolo scapolare diversi da quelli ottenuti con le calibrazioni pesate che dovrebbero meglio rappresentare la realtà. Bisogna quindi valutare bene, a seconda del movimento che si vuole analizzare, se è sufficiente utilizzare la calibrazione singola o un metodo più complesso, come può essere quello della calibrazione multipla con fattore peso angolo. Naturalmente i grafici ottenuti sono una buona base per fare delle considerazioni tra i diversi metodi utilizzati per la calibrazione e la ricostruzione degli angoli articolari, ma manca sicuramente un “gold standard” di riferimento rispetto al quale valutare quale dei metodi utilizzati sia il migliore. Una soluzione per effettuare la validazione del tool potrebbe essere quella di affiancare alle tre calibrazioni effettuate, una prova in fluoroscosopia così da capire se, come in effetti dovrebbe essere, la calibrazione multipla approssima i movimenti reali in modo migliore rispetto alle altre. Tutte le prove a cui sono riferiti i dati, sono ottenute dall’esame di un solo soggetto, risulta quindi necessario estendere questo lavoro ad un campione più ampio, in modo da aumentarne la sua valenza statistica.
Sviluppo di un tool con Smart Analyzer per l’applicazione della calibrazione multipla alla stima della cinematica dell’arto superiore

Ringraziamenti

Alla fine di un lavoro come questo i ringraziamenti diventano un piacere personale e una sezione alla quale non si può rinunciare. Ovviamente colgo l’occasione per ringraziare anche tutti coloro che hanno lasciato nella mia vita un segno della loro presenza. In primo luogo voglio ringraziare i miei genitori Giancarla e Pierluigi, per essermi sempre stati vicini, con discrezione, in ogni aspetto della mia vita, per avermi dato la possibilità di continuare gli studi e per tutto ciò che non si può esprimere a parole. Ringrazio Federica per essere, ormai da dieci anni, un punto fermo della mia vita e per riuscire a trasmettermi ogni giorno nuove emozioni. Se ho raggiunto questo traguardo lo devo anche alla sua continua presenza, per avermi fatto capire che potevo farcela, incoraggiandomi a non mollare mai. Grazie alle mie nonne, Maria e Giannina, per i loro numerosi consigli di vita che mi hanno aiutato a crescere. Grazie a mia sorella Naima e a Massimiliano, perché non danno mai per scontato il bene che voglio loro e per essere sempre pronti a darmi una mano quando ne ho bisogno. Grazie a Thomas che ogni giorno riesce a regalarmi un sorriso. Grazie a Gigi, Matteo e Riccardo per essermi amici sempre e comunque. Desidero ringraziare tutti gli amici dell’università, in particolare Matteo, Laura, Jessica e Elena, con cui ho iniziato e trascorso i miei studi, con cui ho scambiato qualche pensiero, qualche idea, qualche risata all’interno del dipartimento. Doverosi ringraziamenti a chi mi ha permesso di sperimentare il mio lavoro, ovvero BTS Bioengineering, dove ho trovato la serenità necessaria durante tutto il periodo di stage, grazie alla cordialità e disponibilità delle persone con cui ho collaborato o semplicemente conosciuto. In modo particolare desidero ringraziare il mio tutor aziendale Diego Crovato per avermi costantemente seguito e fatto conoscere più da vicino quella che è l’analisi del movimento. In ultimo, ma non di importanza, voglio ringraziare sentitamente il mio relatore, il Professor Claudio Cobelli, per la fiducia dimostratami nell’aver accettato questo argomento di tesi ed il mio correlatore, Ing. Zimi Sawacha, per avermi seguito durante lo svolgimento del lavoro con consigli e confronti che mi hanno aiutato ad intraprendere, ogni volta, le scelte più appropriate. Se ho scordato qualcuno, sappia che manca in questo elenco ma non nel mio cuore.