Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Dal Zilio, Luca (2014) Subduction-induced break-up and drifting of continental plates. [Magistrali biennali]

Full text disponibile come:

PDF (Tesi)


Since the early theory of Wegener, the break-up and drift of continents have been controversial and hotly debated topics. To assist the interpretation of the break-up and drift mechanisms and its relation with mantle circulation patterns, we carried out a 2-D numerical study that will provide insight into the dynamics of these processes. Different regimes of upper plate deformation are studied as consequence of stress coupling with mantle convection patterns. The most important results indicate that three different styles of subduction can be defined by increasing the viscosity contrast between upper and lower mantle: penetrating slab, slab avalanche and stagnant slab. Subduction of the oceanic plate induces mantle flow that, in turn, exerts basal tractions on the upper plate. These acting mantle drag forces (FMD) can be subdivided in two types: (1) active mantle drag occurring when the flow drives plate motion (FAD), and (2) passive mantle drag (FPD), when the asthenosphere resists plate motion. The active traction generated by the subduction-induced convective cell is counterbalanced by passive mantle viscous drag away from it and therefore tension is generated within the continental plate. The shear stress profiles indicate that break-up conditions are met where the gradient of the basal shear stress is maximized. However the break-up location varies largely depending on the convection style primarily controlled by slab stagnation on the transition zone or by slab penetration into the lower mantle. Our study, compared with real subduction settings, suggests that: (1) The stagnating slab models with break-up at about 250-350 km from the trench and drifting of small continental portions can be compared with the evolution of the Japan Arc and the opening of the Western Mediterranean, where stagnant slabs and microcontinents migrated following the retreat of the Pacific and Ionian slab, respectively. (2) The penetrating slab model with break-up at about 2800-3500 km from the trench and drifting of large continental plates could explain the opening of the Atlantic Ocean and westward drifting of the South and North American Plates following the retreat of the ⇠15000 km wide Farallon Plate. Good correspondences between our models and these convergent margins provide an alternative interpretation for their evolution and, more in general, for the break-up and drifting mechanisms of continents.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:Numerical Modelling, Subduction, Geodynamics, Break-Up
Subjects:Area 04 - Scienze della terra > GEO/07 Petrologia e petrografia
Area 04 - Scienze della terra > GEO/03 Geologia strutturale
Area 04 - Scienze della terra > GEO/10 Geofisica della terra solida
Codice ID:46896
Relatore:Faccenda, Manuele
Correlatore:Capitanio, Fabio A.
Data della tesi:10 October 2014
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Alvarez, Walter. 1974. Fragmentation of the Alpine orogenic belt by microplate dispersal. Nature, 248, 309–314. Cerca con Google

Anderson, Don L. 2010. Hawaii, boundary layers and ambient mantle—geophysical constraints. Journal of Petrology, egq068. Cerca con Google

Argand, Emile. 1924. La tectonique de l’Asie. Conference faite a Bruxelles,le 10 aout 1922. Compte-rendu du XIII + Congres geologique international (XIIIe session)-Belgique 1922, 171–372. Cerca con Google

Bercovici, David. 2003. The generation of plate tectonics from mantle convection. Earth and Planetary Science Letters, 205(3), 107–121. Cerca con Google

Birch, Francis. 1965. Energetics of core formation. Journal of Geophysical Research, 70(24), 6217–6221. Cerca con Google

Bird, Peter. 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). Cerca con Google

Burov, Evgene B, & Diament, Michel. 1995. The effective elastic thickness (T e) of continental lithosphere: What does it really mean? Journal of Geophysical Research: Solid Earth (1978–2012), 100(B3), 3905–3927. Cerca con Google

Carminati, Eugenio, Lustrino, Michele, & Doglioni, Carlo. 2012. Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. Tectonophysics, 579, 173–192. Cerca con Google

Carter, Neville L, & Tsenn, Michael C. 1987. Flow properties of continental lithosphere. Tectonophysics, 136(1), 27–63. Cerca con Google

Cavazza, William, & Barone, Mirko. 2010. Large-scale sedimentary recycling of tectonic m´elange in a forearc setting: The Ionian basin (Oligocene–Quaternary, southern Italy). Geological Society of America Bulletin, 122(11-12), 1932–1949. Cerca con Google

Chapple, William M, & Tullis, Terry E. 1977. Evaluation of the forces that drive the plates. Journal of geophysical research, 82(14), 1967–1984. Cerca con Google

Christensen, Ulrich. 1982. Phase boundaries in finite amplitude mantle convection. Geophysical Journal International, 68(2), 487–497. Cerca con Google

Cloetingh, Sierd, & Burov, Evgene B. 1996. Thermomechanical structure of European continental lithosphere: constraints from rheological profiles and EET estimates. Geophysical Journal International, 124(3), 695–723. Cerca con Google

Connolly, JAD. 2005. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236(1), 524–541. Cerca con Google

Crameri, F, Schmeling, H, Golabek, GJ, Duretz, T, Orendt, R, Buiter, SJH, May, DA, Kaus, BJP, Gerya, TV, & Tackley, PJ. 2012. A comparison of numerical surface topography calculations in geodynamic modelling: An evaluation of the ‘sticky air’method. Geophysical Journal International, 189(1), 38–54. Cerca con Google

Davies, Geoffrey F. 1977. Viscous mantle flow under moving lithospheric plates and under subduction zones. Geophysical Journal International, 49(3), 557–563. Cerca con Google

Davies, Geoffrey Frederick. 1999. Dynamic Earth: Plates, plumes and mantle convection. Cambridge University Press. Cerca con Google

Davies, J. Huw, & Stevenson, D. J. 1992. Physical model of source region of subduction zone volcanics. Journal of Geophysical Research: Solid Earth, 97(B2), 2037–2070. Cerca con Google

Dewey, JF, Helman, ML, Knott, SD, Turco, E, & Hutton, DHW. 1989. Kinematics of the western Mediterranean. Geological Society, London, Special Publications, 45(1), 265–283. Cerca con Google

Dickinson, William R, & Snyder, Walter S. 1979. Geometry of subducted slabs related to San Andreas transform. The Journal of Geology, 609– Cerca con Google

Doglioni, Carlo, Ismail-Zadeh, Alik, Panza, Giuliano, & Riguzzi, Federica. 2011. Lithosphere–asthenosphere viscosity contrast and decoupling. Physics of the Earth and Planetary Interiors, 189(1), 1–8. Cerca con Google

Dziewonski, Adam M, & Anderson, Don L. 1981. Preliminary reference Earth model. Physics of the earth and planetary interiors, 25(4), 297–356. Cerca con Google

Faccenda, M. 2014a. Mid mantle seismic anisotropy around subduction zones. Physics of the Earth and Planetary Interiors, 227, 1–19. Cerca con Google

Faccenda, Manuele. 2014b. Water in the slab: A trilogy. Tectonophysics, 614, 1–30. Cerca con Google

Faccenda, Manuele, & Capitanio, FA. 2013. Seismic anisotropy around subduction zones: Insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations. Geochemistry, Geophysics, Geosystems, 14(1), 243–262. Cerca con Google

Faccenda, Manuele, Gerya, Taras V, & Burlini, Luigi. 2009. Deep slab hydration induced by bending-related variations in tectonic pressure. Nature Geoscience, 2(11), 790–793. Cerca con Google

Faccenna, Claudio, Becker, Thorsten W, Lucente, Francesco Pio, Jolivet, Laurent, & Rossetti, Federico. 2001. History of subduction and back arc extension in the Central Mediterranean. Geophysical Journal International, 145(3), 809–820. Cerca con Google

Fornberg, B. A Practical Guide to Pseudospectral Methods. Cambridge University Press. Cerca con Google

Forsyth, Donald, & Uyeda, Seiya. 1975. On the relative importance of the driving forces of plate motion. Geophysical Journal International, 43(1), 163–200. Cerca con Google

Fukao, Yoshio, Obayashi, Masayuki, Inoue, Hiroshi, & Nenbai, Masakazu. 1992. Subducting slabs stagnant in the mantle transition zone. Journal of Geophysical Research: Solid Earth (1978–2012), 97(B4), 4809–4822. Cerca con Google

Fukao, Yoshio, Obayashi, Masayuki, & Nakakuki, Tomoeki. 2009. Stagnant slab: a review. Annual Review of Earth and Planetary Sciences, 37, 19–46. Cerca con Google

Gerya, T. Introduction to Numerical Geodynamic Modelling. Cambridge University Press. Cerca con Google

Gerya, Taras. 2011. Future directions in subduction modeling. Journal of Geodynamics, 52(5), 344–378. Cerca con Google

Gerya, Taras. 2014. Precambrian geodynamics: concepts and models.Gondwana Research, 25(2), 442–463. Cerca con Google

Gerya, Taras V., & Yuen, David A. 2003. Characteristics-based marker-incell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Physics of the Earth and Planetary Interiors, 140(4), 293 – 318. Cerca con Google

Gerya, Taras V, & Yuen, David A. 2007. Robust characteristics method for modelling multiphase visco-elasto-plastic thermomechanical problems. Physics of the Earth and Planetary Interiors, 163(1), 83–105. Cerca con Google

Gerya, Taras V, Connolly, James AD, & Yuen, David A. 2008. Why is terrestrial subduction one-sided? Geology, 36(1), 43–46. Cerca con Google

Grand, Stephen P. 1994. Mantle shear structure beneath the Americas and surrounding oceans. Journal of Geophysical Research: Solid Earth (1978–2012), 99(B6), 11591–11621. Cerca con Google

Grand, Stephen P, van der Hilst, Rob D, &Widiyantoro, Sri. 1997. Global seismic tomography: A snapshot of convection in the Earth. GSA today, 7(4), 1–7. Cerca con Google

Gung, Yuancheng, Panning, Mark, & Romanowicz, Barbara. 2003. Global anisotropy and the thickness of continents. Nature, 422(6933), 707–711. Cerca con Google

Gurnis, Michael. 1988. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature, 332(6166), 695–699. Cerca con Google

Hess, Harry H. 1962. History of ocean basins. Petrologic studies, 4, 599–620. Cerca con Google

Hofmeister, A. M. 1999. Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes. Science, 283(5408), 1699–1706. Cerca con Google

Holmes, Arthur. 1931. Radioactivity and earth movements. Nature, 128, 496. Cerca con Google

Huang, Jinli, & Zhao, Dapeng. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research: Solid Earth (1978–2012), 111(B9). Cerca con Google

Jolivet, L, Daniel, JM, Truffert, C, & Goff´e, B. 1994a. Exhumation of deep crustal metamorphic rocks and crustal extension in arc and back-arc regions. Lithos, 33(1), 3–30. Cerca con Google

Jolivet, Laurent, & Faccenna, Claudio. 2000. Mediterranean extension and the Africa-Eurasia collision. Tectonics, 19(6), 1095–1106. Cerca con Google

Jolivet, Laurent, Tamaki, Kensaku, & Fournier, Marc. 1994b. Japan Sea, opening history and mechanism: A synthesis. Journal of Geophysical Research: Solid Earth (1978–2012), 99(B11), 22237–22259. Cerca con Google

Karato, Shun-ichiro. 2010. Rheology of the deep upper mantle and its implications for the preservation of the continental roots: A review. Tectonophysics, 481(1), 82–98. Cerca con Google

Karato, Shun-ichiro, & Wu, Patrick. 1993. Rheology of the upper mantle: A synthesis. Science, 260(5109), 771–778. Cerca con Google

Karato, Shun-ichiro, Riedel, Michael R, & Yuen, David A. 2001. Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors, 127(1), 83–108. Cerca con Google

Katayama, Ikuo, & Karato, Shun-ichiro. 2008. Low-temperature, high-stress deformation of olivine under water-saturated conditions. Physics of the Earth and Planetary Interiors, 168(3), 125–133. Cerca con Google

Lei, Jianshe, & Zhao, Dapeng. 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 397(3), 281–295. Cerca con Google

Lowrie, William. 2007. Fundamentals of geophysics. Cambridge University Press. Lux, Richard A, Davies, Geoffrey F, & Thomas, John H. 1979. Moving lithospheric plates and mantle convection. Geophysical Journal International, 58(1), 209–228. Cerca con Google

Malinverno, Alberto, & Ryan, William BF. 1986. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics, 5(2), 227–245. Cerca con Google

McKenzie, DP. 1977. The initiation of trenches. Island arcs, deep sea trenches and back-arc basins, 57–61. Cerca con Google

Mele, Giuliana, Rovelli, Antonio, Seber, Dogan, Hearn, Thomas M, & Barazangi, Muawia. 1998. Compressional velocity structure and anisotropy in the uppermost mantle beneath Italy and surrounding regions. Journal of Geophysical Research: Solid Earth (1978–2012), 103(B6), 12529–12543. Cerca con Google

Melosh, Jay. 1977. Shear stress on the base of a lithospheric plate. pure and applied geophysics, 115(1-2), 429–439. Cerca con Google

Miller, Meghan S, & Kennett, Brian LN. 2006. Evolution of mantle structure beneath the northwest Pacific: Evidence from seismic tomography and paleogeographic reconstructions. Tectonics, 25(4). Cerca con Google

Mishin, Yury A, Gerya, Taras V, Burg, Jean-Pierre, & Connolly, James AD. 2008. Dynamics of double subduction: Numerical modeling. Physics of the Earth and Planetary Interiors, 171(1), 280–295. Cerca con Google

Moresi, L., Dufour, F., & MA˜ hlhaus, H.-B. 2003. A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal of Computational Physics, 184(2), 476–497. Cerca con Google

Okino, Kyoko, Ando, Masataka, Kaneshima, Satoshi, & Hirahara, Kazuro. 1989. The horizontally lying slab. Geophysical Research Letters, 16(9), 1059–1062. Cerca con Google

Pan, Frank, & Acrivos, Andreas. 1967. Steady flows in rectangular cavities. Journal of Fluid Mechanics, 28(04), 643–655. Cerca con Google

Panza, Giuliano, Doglioni, Carlo, & Levshin, Anatoli. 2010. Asymmetric ocean basins. Geology, 38(1), 59–62. Cerca con Google

Peltier, W Richard. 1989. Mantle Convection: Plate tectonics and global dynamics. Vol. 4. CRC Press. Cerca con Google

Piromallo, C, Becker, TW, Funiciello, F, & Faccenna, C. 2006. Threedimensional instantaneous mantle flow induced by subduction. Geophysical Research Letters, 33(8). Cerca con Google

Piromallo, Claudia, & Morelli, Andrea. 2003. P wave tomography of the mantle under the Alpine-Mediterranean area. Journal of Geophysical Research: Solid Earth (1978–2012), 108(B2). Cerca con Google

Pollack, Henry N. 1986. Cratonization and thermal evolution of the mantle. Earth and Planetary Science Letters, 80(1), 175–182. Cerca con Google

Ranalli, G. 1994. Nonlinear flexure and equivalent mechanical thickness of the lithosphere. Tectonophysics, 240(1), 107–114. Cerca con Google

Ranalli, Giorgio. 1995. Rheology of the Earth. Springer. Cerca con Google

Ren, Yong, Stutzmann, Eleonore, Van Der Hilst, Robert D, & Besse, Jean. 2007. Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B1). Cerca con Google

Schmeling, Harro. 1987. On the relation between initial conditions and late stages of Rayleigh-Taylor instabilities. Tectonophysics, 133(1a“2), 65 – 80. Cerca con Google

Schmid, Christian, Goes, Saskia, van der Lee, Suzan, & Giardini, Domenico. 2002. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth and Planetary Science Letters, 204(1), 17–32. Cerca con Google

Schubert, Gerald, Yuen, David A, & Turcotte, Donald L. 1975. Role of phase transitions in a dynamic mantle. Geophysical Journal International, 42(2), 705–735. Cerca con Google

Schubert, Gerald, Stevenson, David, & Cassen, Patrick. 1980. Whole planet cooling and the radiogenic heat source contents of the Earth and Moon. Journal of Geophysical Research: Solid Earth (1978–2012), 85(B5), 2531–2538. Cerca con Google

Schubert, Gerald, Turcotte, Donald L, & Olson, Peter. 2001. Mantle Convection in the Earth and Planets 2 Volume Set. Cambridge University Press. Cerca con Google

Seton, M, Muller, RD, Zahirovic, S, Gaina, C, Torsvik, T, Shephard, G, Talsma, A, Gurnis, M, Turner, M, Maus, S, et al. . 2012. Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 113(3), 212–270. Cerca con Google

Stock, JM, & Hodges, KV. 1989. Pre-Pliocene Extension around the Gulf of California and the transfer of Baja California to the Pacific Plate. Tectonics, 8(1), 99–115. Cerca con Google

Sutton, J. 1963. Long-term cycles in the evolution of the continents. Tackley, Paul J, Stevenson, David J, Glatzmaier, Gary A, & Schubert, Gerald. 1993. Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle. Nature, 361(6414), 699–704. Cerca con Google

Torrance, K, Davis, R, Eike, K, Gill, P, Gutman, D, Hsui, A, Lyons, S, & Zien, H. 1972. Cavity flows driven by buoyancy and shear. Journal of Fluid Mechanics, 51(02), 221–231. Cerca con Google

Turcotte, D.L., & Schubert, G. Geodynamics. Cambridge University Press. Turcotte, Donald L, & Emerman, Steven H. 1983. Mechanisms of active and passive rifting. Tectonophysics, 94(1), 39–50. Cerca con Google

Turcotte, Donald L, & Oxburgh, ER. 1972. Mantle convection and the new global tectonics. Annual Review of Fluid Mechanics, 4(1), 33–66. van der Hilst, Rob, & Seno, Tetsuzo. 1993. Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth and Planetary Science Letters, 120(3), 395–407. Cerca con Google

van der Lee, Suzan, & Nolet, Guust. 1997. Seismic image of the subducted trailing fragments of the Farallon plate. Nature, 386(6622), 266–269. Cerca con Google

Wegener, Alfred. 1920. Die entstehung der kontinente und ozeane. Vol. 66. F. Vieweg. Cerca con Google

Weinberg, Roberto Ferrez, & Schmeling, Harro. 1992. Polydiapirs: multiwavelength gravity structures. Journal of Structural Geology, 14(4), 425–436. Cerca con Google

Wilson, J Tuzo. 1966. Did the Atlantic close and then re-open? Nature. Cerca con Google

Woidt, W.-D. 1978. Finite element calculations applied to salt dome analysis. Tectonophysics, 50(2ˆa“3), 369–386. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record