Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Prando, Francesca (2014) "Field and microstructural investigation of exhumed normal faults in quartzites and calc-schists (Schistes lustres, Alpine Corsica, France).". [Magistrali biennali]

Full text disponibile come:

PDF (Tesi magistrale)


At present, the investigation of the complex physical and chemical processes occurring during earthquake nucleation, propagation and arrest cannot be accomplished only by means of seismological investigations, mainly because of source, path and attenuation effects that result in loss of information transported by seismic waves. Here the need for a complementary approach which involves field geology (e.g., investigation of ancient now exhumed seismogenic structures), deep drilling projects (e.g., investigation of active seismogenic structures), microstructural (e.g., investigation of natural fault rocks) and laboratory (e.g., experiments reproducing seismic deformation conditions) studies. In this study, we propose that, because of the eastward migration of the lithospheric extension starting from the Oligocene, the normal faults now outcropping in Alpine Corsica are the exhumed analogs of the seismogenic structures now active at depth in the Italian Apennines. The investigated fault zone cut serpentinites, quarzites, marbles and calc-schists of the Schistes Lustrés Complex (Late Cretaceous- Early Oligocene). Microstructural (EDS equipped field emission scanning electron, optical microscope cathodoluminescence) and mineralogical (micro-Raman spectroscopy and X-Ray powder diffraction) studies conducted on rocks sampled from the normal faults, evidenced a sequence of seismic and inter-seismic deformation processes during exhumation: pseudotachylyte (scars of ancient seismic ruptures) produced at 8-15 km depth are overprinted by carbonate-rich veins and eventually cut by semi-amorphous silica- (including nano-particles of quartz) and carbonaceous-rich (possible remnants of graphitization processes of calcitic marbles and calce-schists under anoxic conditions) mirror-like fault surfaces. The above overprinting microstructural relationships suggests continuous seismicity aided by the ingression of pressurized CO2-rich fluids during exhumation. These relationships are consistent with those proposed between crustal-mantle degassing and CO2 fault fluid ingression that characterize the actual seismicity in the Italian Apennines.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:UNSPECIFIED
Uncontrolled Keywords:Normal fault, Corsica, Microstrutture, Calcschist, Schist lustres
Subjects:Area 04 - Scienze della terra > GEO/07 Petrologia e petrografia
Area 04 - Scienze della terra > GEO/03 Geologia strutturale
Codice ID:47547
Relatore:Di Toro, Giulio
Correlatore:Pennacchioni, Giorgio
Data della tesi:10 October 2014
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Abercrombie, R., McGarr, A., Di Toro, G., Kanamori, H., (Eds.), 2006. Earthquakes: Radiated Energy and the Physics of Faulting, Geophysical Monograph Series Vol. 170 (American Geophysical Union, Washington, D.C.), pp. 1-327. ISBN 978-0-87590-435-1 Cerca con Google

Andersen, T. B., & Austrheim, H. (2006). Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica. Earth and Planetary Science Letters, 242(1), 58-72. Cerca con Google

Beeler, N.M., 2006. Inferring earthquake source properties from laboratory observations and the scope of lab contributions to source physics. In: Abercrombie, R., McGarr, A., Di Toro, G., Kanamori, H. (Eds.), Radiated Energy and the Physics of Faulting. Geophysical Monograph Series, vol.170. American Geophysical Union, Washington, D.C., pp. 99e119. Cerca con Google

Beyssac, O., Goffé, B., Chopin, C., & Rouzaud, J. N. (2002). Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of metamorphic Geology, 20(9), 859-871. Cerca con Google

Beyssac, O., Rouzaud, J. N., Goffé, B., Brunet, F., & Chopin, C. (2002). Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study. Contributions to Mineralogy and Petrology, 143(1), 19-31. Cerca con Google

Beyssac, O., Goffé, B., Petitet, J. P., Froigneux, E., Moreau, M., & Rouzaud, J. N. (2003). On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2267-2276. Cerca con Google

Bons, P. D., Elburg, M. A., & Gomez-Rivas, E. (2012). A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology, 43, 33-62. Cerca con Google

Carmignani, L., Conti, P., Cornamusini, G., & Meccheri, M. (2004). The internal Northern Apennines, the northern Tyrrhenian sea and the Sardinia-Corsica block. Geology of Italy. Special Volume, Italian Geological Society, IGC, 32, 59-77. Cerca con Google

Caron, J.M., 1977. Lithostratigraphie et tectonique des Schistes lust& dans les Alpes cottiennes septentrionales et en Corse orientale. Thesis, Univ. L. Pasteur de Strasbourg, Strasbourg, 326 pp. Cerca con Google

Cees W. Passchier, Rudolph A. J. Trouw (2005) Microtectonics - 2nd, Revised and Enlarged Edition. Springer Cerca con Google

Chiarabba, C., Amato, A., Anselmi, M., Baccheschi, P., Bianchi, I., Cattaneo, M., ... & Valoroso, L. (2009). The 2009 L'Aquila (central Italy) Mw6. 3 earthquake: Main shock and aftershocks. Geophysical Research Letters, 36(18). Cerca con Google

Chiaraluce, L., Valoroso, L., Piccinini, D., Di Stefano, R., & De Gori, P. (2011). The anatomy of the 2009 L'Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations. Journal of Geophysical Research: Solid Earth (1978–2012), 116(B12). Cerca con Google

Dallan, L., & Puccinelli, A. (1986). Geologia della regione del Nebbio (Corsica settentrionale). Bollettino della Societa Geologica Italiana, 105(3-4), 405-414. Cerca con Google

Dallan, L., & Puccinelli, A. (1995). Geologia della regione tra Bastia e St- Florent (Corsica settentrionale) con carta geologica alla scala 1: 25,000. Bollettino della Società geologica italiana, 114(1), 23-66. Cerca con Google

Daniel, J. M., Jolivet, L., Goffe, B., & Poinssot, C. (1996). Crustal-scale strain partitioning: footwall deformation below the Alpine Oligo-Miocene detachment of Corsica. Journal of Structural Geology, 18(1), 41-59. Cerca con Google

Di Toro, G., Mittempergher, S., Ferri F., Mitchell, T.M., Pennacchioni, G., 2012. The contribution of structural geology, experimental rock deformation and numerical modeling in the understanding of the seismic cycle Preface to the Special Volume "Physico-chemical processes in seismic faults". Journal of Structural Geology, vol. 38, pp. 3-10. Cerca con Google

Durand-Delga, M., 1984. Principaux traits de la Corse Alpine et corrélations avec les Alpes Ligures. Memorie della Societa Geologica Italiana 28, 285–329. Cerca con Google

Fellin, M. G., Picotti, V., & Zattin, M. (2005). Neogene to Quaternary rifting and inversion in Corsica: retreat and collision in the western Mediterranean. Tectonics, 24(1). Cerca con Google

Fournier, Marc, et al. "Alpine Corsica metamorphic core complex." Tectonics 10.6 (1991): 1173-1186. Cerca con Google

Hayashi, N., & Tsutsumi, A. (2010). Deformation textures and mechanical behavior of a hydrated amorphous silica formed along an experimentally produced fault in chert. Geophysical Research Letters, 37(12). Cerca con Google

Jolivet, L., Daniel, J. M., & Fournier, M. (1991). Geometry and kinematics of extension in Alpine Corsica. Earth and Planetary Science Letters, 104(2), 278-291. Cerca con Google

Jolivet, L., Dubois, R., Fournier, M., Goffé, B., Michard, A., & Jourdan, C. (1990). Ductile extension in alpine Corsica. Geology, 18(10), 1007-1010. Cerca con Google

Jolivet, L., Faccenna, C., Goffé, B., Mattei, M., Rossetti, F., Brunet, C., ... & Parra, T. (1998). Midcrustal shear zones in postorogenic extension: example from the northern Tyrrhenian Sea. Journal of Geophysical Research: Solid Earth (1978–2012), 103(B6), 12123-12160. Cerca con Google

Kirkpatrick J.D., Rowe, C., 2013. Disappearing ink: how pseudotachylytes are lost from the geological record, Journal of Structural Geology, vol. 52, pp. 183-198. Cerca con Google

Kiyokazu Oohashi, Raehee Han, Takehiro Hirose, Toshihiko Shimamoto, Kentaro Omura5, and Tatsuo Matsuda (2014).Carbon-forming reactions under a reducing atmosphere during seismic fault slip,Geology; v. 42; no. 9; p. 787–790 Cerca con Google

Lahondère, J.C., Lahondère, D., 1988. Organisation stucturale des «schistes lustrés» du Cap Corse (Haute‐Corse). Comptes Rendus de l'Académie des Sciences Paris 307, 1081–1086 Cerca con Google

Malavieille, J., Chemenda, A., & Larroque, C. (1998). Evolutionary model for Alpine Corsica: mechanism for ophiolite emplacement and exhumation of high-pressure rocks. TERRA NOVA-OXFORD-, 10, 317-322. Cerca con Google

Maluski, H. (1978). Behaviour of biotites, amphiboles, plagioclases and Kfeldspars in response to tectonic events with the< sup> 40</sup> Ar-<sup> 39</sup> Ar radiometric method. Example of Corsican granite. Geochimica et Cosmochimica Acta, 42(11), 1619-1633. Cerca con Google

Miller, S. A., C. Collettini, L. Chiaraluce, M. Cocco, M. Barchi, and J. P. K. Boris (2004), Aftershocks driven by a high pressure CO2 source at depth, Nature, 427, 724–727 Cerca con Google

Molli, G. (2008). Northern Apennine–Corsica orogenic system: an updated overview. Geological Society, London, Special Publications, 298(1), 413-442. Cerca con Google

Molli, G., & Malavieille, J. (2011). Orogenic processes and the Corsica/Apennines geodynamic evolution: insights from Taiwan. International Journal of Earth Sciences, 100(5), 1207-1224. Cerca con Google

Nakamura, Y., Muto, J., Nagahama, H., Shimizu, I., Miura, T., & Arakawa, I. (2012). Amorphization of quartz by friction: Implication to silica‐gel lubrication of fault surfaces. Geophysical Research Letters, 39(21). Cerca con Google

Niemeijer, A., Di Toro, G., Griffith, W. A., Bistacchi, A., Smith, S. A., & Nielsen, S. (2012). Inferring earthquake physics and chemistry using an integrated field and laboratory approach. Journal of structural geology, 39, 2-36. Cerca con Google

Principi, G., & Treves, B. (1984). Il sistema corso-appenninico come prisma d’accrezione. Riflessi sul problema generale del limite Alpi-Appennini. Mem. Soc. Geol. It, 28, 549-576. Cerca con Google

Sibson, R.H., and V. Toy, The habitat of fault-generated pseudotachylyte: presence vs. absence of friction melt, Radiated Energy and the Physics of Faulting, Geophysical Monograph Series Vol. 170, edited by. Abercrombie, R., A. McGarr., G. Di Toro and H. Kanamori, pp. 153-166, AGU, Washington, D.C., USA., 2006. Cerca con Google

Vitale Brovarone, A., Beyssac, O., Malavieille, J., Molli, G., Beltrando, M., & Compagnoni, R. (2013). Stacking and metamorphism of continuous segments of subducted lithosphere in a high-pressure wedge: the example of Alpine Corsica (France). Earth-Science Reviews, 116, 35-56. Cerca con Google

Waters, C. N. (1990). The Cenozoic tectonic evolution of alpine Corsica. Journal of the Geological Society, 147(5), 811-824. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record