Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Cavallin, Davide (2014) Meccanismi di sostituzione del titano nella biotite in funzione dell'ambiente petrogenetico. [Laurea triennale]

Full text disponibile come:

[img]
Preview
PDF (Tesi triennale)
2335Kb

Abstract

The purpose of this thesis is to investigate on the relationships between mechanisms of Ti substitution in biotite and petrogenetic environments. Ti can be accommodated in biotite according to three main substitution mechanisms: Ti-vacancy, where titanium entrance is balanced by crystalline vacant sites; Ti-oxy, where Ti change is balanced by H loss from the hydroxyle, and Ti-Tschermak, where the entry of Ti causes redistribution of charge in both octahedral and tetrahedral sites. Although Ti substitution mechanisms in biotite have been investigated extensively, the nature of this substitutions in different petrologic environments is still uncertain. In particular, it is unclear where and why the Ti-oxy substitution prevails over the Ti-vacancy and Ti-Schermak substitutions. The aim of this study is to contribute to the understanding of factors controlling the Ti entry mechanisms and to attempt to find a relationship between the dominant operating substitution mechanism and the petrologic context of the rocks.

Item Type:Laurea triennale
Corsi di Laurea Triennale:pre 2012- Facoltà di Scienze MM. FF. NN. > Scienze geologiche
Uncontrolled Keywords:Biotite, Sostituzione, Titanio
Subjects:Area 04 - Scienze della terra > GEO/07 Petrologia e petrografia
Area 04 - Scienze della terra > GEO/06 Mineralogia
Codice ID:47624
Relatore:Mazzoli, Claudio
Correlatore:Sassi, Raffaele
Data della tesi:12 December 2014
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Abrecht, J. H. (1988). Experimental evidence of the substitution of Ti in biotite. In American Mineralogist, Volume 73 (pp. 1275-1284). Blacksburg, Virginia. Cerca con Google

Boettcher, A., & O'neil, J. (1980). Stable isotope, chemical, and petrographic studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. In American Juornal Of Science, Volume 280-A (pp. 594-621). Cerca con Google

Brigatti, M. F., Frigieri, P., Ghezzo, C., & Poppi, L. (2000). Crystal chemistry of Al-rich biotites coexisting with muscovites in peralluminous granites. In American Mineralogist, Volume 85 (pp. 436-448). Cerca con Google

Cesare, B., Cruciani, G., & Russo, U. (2003). Hydrogen deficiency in Ti-rich biotite from anatectic metapelites (El Joyazo, SE Spain): Crystal-chemical aspects and implications for high-temperature petrogenesis. In American Mineralogist, Volume 88 (pp. 583-595). Italy. Cerca con Google

Charmichael, I. S., Lange, R. A., & Luhr, J. F. (1996). Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: a consequence of plate extension above a subduction modified mantle wedge. In Contrib Mineral Petrol (pp. 302-333). Cerca con Google

Dyar, M. D., Guidotti, C. V., Holdaway, M. J., & Colucci, M. (1993). nonstoichiometric hydrogen contents in common rock-forming hidroxyl silicates. In Geochimica et Cosmochimica Acta, Volume 57 (pp. 2913-2918). Cerca con Google

Dyar, M. D., Guidotti, C. V., Holdaway, M. J., & Colucci, M. (1993). Nonstoichiometric hydrogen contents in common rock-forming hydroxyl silicates. In Geochimica et Cosmochimica Acta, Volume 57 (pp. 2913-2918). Cerca con Google

Dymek, R. F. (1983). Titanium, alluminium and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. In American Mineralogist, Volume 68 (pp. 880-899). Harward University, Cambridge, Massachusetts. Cerca con Google

Feldstein, S. N., Lange, R. A., Vennemann, T., & O'Neil, J. R. (1996). Ferric-ferrous rations, H2O contents and D/H rations of phlogopite and biotite from lavas of different tectonic regimes. In Contrib Mineral Petrol (pp. 51-66). Cerca con Google

Galli, A., Bayon, B., Schmidt, M., Burg, J.-P., Caddick, M., & Reusser, E. (2011). Granulites and charnockites of the Gruf Complex: Evidence for Permian ultra-high temperature metamorphism in the Central Alps. In Lithos 124 (pp. 17-45). Zurich, Switzerland. Cerca con Google

Kogarko, L., & Ryabchikov, I. (2013). Diamond Potential versus Oxigen Regime of Carbonatites. In Petrology (pp. 316-335). Mosca, Russia. Cerca con Google

Lacalamita, M., Mesto, E., Scordari, F., & Schingaro, E. (2012). Chemical and structural study of 1M- and 2M1-phlogopites coexisting in the same Kosenyi kamafugitic rock (SW Uganda). In Phis Chem Minerals (pp. 601-611). Italy. Cerca con Google

Lyakhovich, V. V., Katayeva, Z. T., & Semenov, Y. I. (1994). Variations in Biotite Composition in a Vertical Sections of a North Caucasus Granite Intrusion. In Geochemistry International (pp. 535-547). Cerca con Google

Morteani, G., Kostitsyn, Y., Gilg, H., Preinfalk, C., & Razakamanana, T. (2013). Geochemistry of phlogopite, diopside, calcite, anhydrite and apatite pegmatites and syenites of southern Madagascar: evidence for crustal silicocarbonatitic (CSC) melt formation in a Panafrican collisional tectonic setting. In Int J Earth Sci (pp. 627–645). Cerca con Google

Rajesh, H., Belyanin, G., Safonov, O., Kovaleva, E., Golunova, M., & Van Reenen, D. D. (2013). Fluid-induced Dehydration of the Paleoarchean Sand River Biotite-Horneblende Gneiss, Central Zone, Limpopo Complex, South Africa. In Journal of petrology, Volume 54 (pp. 41-74). Cerca con Google

Reguir, E. P., Chakhmouradian, A. R., Halden, N., Malkovets, V., & Yang, P. (2009). Major-and trace-element compositional variation of phlogopite from carbonatites as a petrogenetic indicator. In Lithos (pp. 372-384). Cerca con Google

Sassi, R., Cruciani, G., Mazzoli, C., Nodari, L., & Craven, J. (2008). Multiple titanium substitutions in biotites from high-grade metapelitic xenoliths (Euganean Hills, Italy): Complete crystal chemistry and appraisal of petrologic control. In American Mineralogist, Volume 93 (pp. 339-350). Cerca con Google

Scordari, F., Ventruti, G., Sabato, A., Bellatreccia, F., Della Ventura, G., & Predazzi, G. (2006; Volume 18). Ti-rich phlogopite from Mt. Vulture (Potenza, Italy) investigated by a multianalitycal approach: substitutional mechanisms and orientation of the OH dipoles. In Eur. J. Mineral. (pp. 379-391). Italy. Cerca con Google

Thompson, R., Velde, D., & Leat, P. (1997). Oligocene lamproite containing an Al-poor, Ti-rich biotite, Middle Park, northwest Colorado, USA. Cerca con Google

Waters, D. J. (2002). Local equilibrium in polymetamorphic gneiss and the titanium substitution in biotite. In American Mineralogist, Volume 87 (pp. 383-396). Park Road, Oxford. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record