Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Giacomel, Piercarlo (2015) Frictional instabilities of basalts and calcite-built marbles in the presence of pressurized H2O- and CO2-rich fluids. [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF (Frontespizio)
24Kb
[img]
Preview
PDF (Indice)
13Kb
[img]
Preview
PDF (Tesi)
3696Kb

Abstract

Fluid-rock interactions control earthquake nucleation and the evolution of natural and man-induced seismic sequences. Experimental studies of fault frictional properties in the presence of pressurized fluids can provide unique insights into these interaction. We performed 14 friction experiments on cohesive silicate-built (basalts) and calcite-built rocks (Carrara marbles) in the presence of pressurized pure H2O, pure CO2 and H2O+CO2 fluids to investigate the triggering of frictional instabilities associated to CO2 storage in basalts (e.g. injection H2O+CO2 mixtures to fix CO2 to newly formed carbonate minerals) and, to a less extent, the processes driving to earthquake triggering in carbonate-built rocks. Experiments were performed at room temperature on 50/30 mm external/internal diameter hollow-shaped rock cylinders with the rotary shear apparatus SHIVA (INGV, Rome). Sample were inserted in a pressure vessel and the experiments performed under drained conditions. After imposing an initial normal stress of 15 MPa, an initial shear stress of 5 MPa and an initial pore fluid pressure of 2.5 MPa, the pore fluid pressure was increased in steps of 0.1 MPa every 100 s till the main frictional instability was triggered. The main instability was defined as the instant at which the sample accelerated to a slip rate of >0.3 m/s (seismic slip rate). Un-deformed and deformed samples, the slip surfaces, the slipping zones and the wall rocks were investigated with optical microscope, XRD, XRF and micro-Raman spectroscopy; H2O+CO2 and H2O fluids were recovered after the experiments to determine the enrichment of the chemical species (Ca++, Mg++, etc.). Carrara marble was more prone to slip in the presence of pressurized H2O+CO2 mixtures than in pure CO2 and H2O fluids; instead, in basalts, the injection of pressurized H2O+CO2 delayed the main frictional instability with respect to the experiments performed in pure H2O and anticipated with respect to pure CO2 fluids. Main instabilities were preceded by creep and slip burst events ("precursory events"): the number and frequency of slip burst events was larger in the experiments performed on basalts. Moreover, in basalts enriched in clay minerals (1) fault reactivation occurred at lower pore fluid pressures at a given normal stress and (2) the frequency of precursory events decreased, making the fault more “silent” and unstable than the fault made of less altered basalts. In the experiments, fluids may play both a chemical and mechanical role. Pure CO2 mainly contributes to pressurize the experimental faults in both basalts and Carrara marbles, with minimal chemical interaction with the host rock. Instead, H2O+CO2 mixtures resulted in formation of H+ ions which caused dissolution of the two rock types, as suggested by the enrichment in Ca2+ and Mg2+ cations measured in their respective aqueous solutions. Noteworthy, in the case of basalts, the high concentration of the Ca2+ and Mg2+ cations in solution and dissolved from glass, pyroxene and feldspars resulted in precipitation of calcite and dolomite (= mineral carbonation) in the experimental slipping zone. The rapid carbonation processes observed in our experiments, which last only 30-40 minutes, demonstrates the great effectiveness of the large scale CO2 storage projects in basaltic rocks as the CarbFix in Iceland.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:CO2 storage, Mineral carbonation, Basalts, Carrara marbles
Subjects:Area 04 - Scienze della terra > GEO/07 Petrologia e petrografia
Area 04 - Scienze della terra > GEO/03 Geologia strutturale
Codice ID:48736
Relatore:Marzoli, Andrea
Correlatore:Di Toro, Giulio and Spagnuolo, Elena
Data della tesi:13 March 2015
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Bachu, Bonijoly, Brandshaw, Burruss, Halloway, Christensen, Mathiassen (2007). CO2 storage capacity estimation: Methodology and Gaps. IJGGC I, 430-443. Cerca con Google

Beeler, N. M., T. E. Tullis, and D. L. Goldsby. "Constitutive relationships and physical basis of fault strength due to flash heating." Journal of Geophysical Research: Solid Earth (1978–2012) 113.B1 (2008). Cerca con Google

Broz, M. E., R. F. Cook, and D. L. Whitney (2006), Microhardness, toughness and modulus of Mohs scale materials, Am. Mineral., 91, 135–142. Cerca con Google

Byerlee, J. D. (1978), Friction of rocks, Pure Appl. Geophys., 116, 615–626. Cerca con Google

Chiaraluce, L., Valoroso, L., Piccinini, D., Di Stefano, R., De Gori, P., 2011. The anatomy of the 2009 L’Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations. J. Geophys. Res. 116, B12311, http://dx.doi.org/10.1029/2011JB008352. Vai! Cerca con Google

Choi, Y. S., & Nešić, S. (2011). Determining the corrosive potential of CO 2 transport pipeline in high pCO 2–water environments. International Journal of Greenhouse Gas Control, 5(4), 788-797. Cerca con Google

Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., 2011. Fault lubrication during earthquakes. Nature 471 (7339), 494–498, http://dx.doi.org/10.1038/nature09838. Vai! Cerca con Google

Di Toro, G., Niemeijer, A., Tripoli, A., Nielsen, S., Di Felice, F., Scarlato, P.G., Spada, G., Alessandroni, R., Romeo, G., Di stefano, G., Smith, S., Spagnuolo, E., Mariano, S., 2010. From Geophys. field geology to earthquake simulation: a new state- of-the-art tool to investigate rock friction during the seismic cycle (SHIVA). Rend. Fis. Acc. Lincei 21, 95–114, http://dx.doi.org/10.1007/s12210- 010-0097-x. Vai! Cerca con Google

Diamond, L. W., & Akinfiev, N. N. (2003). Solubility of CO 2 in water from− 1.5 to 100 C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid phase equilibria, 208(1), 265-290. Cerca con Google

El Hachimi H., Youbi N. Madeira J., Bensalah M.K., Martins L., Mata J., Medina F., Bertrand H., Marzoli A., Munha J., Bellieni G., Mahmoudi A., Abboui M., Assafari H. (2011). Morphology, internal architecture and emplacement mechanisms of lava flows from the Central Atlantic Magmatic Province (CAMP) of Argana Basin (Morocco). Geol. Soc. London Spec. Pub. 357, 167-193. Cerca con Google

Gislason, Wolff-Boenisch, Stefansson, Oelkers, Gunnlangsson, Sigurdardottir, Sigfusson, Broecker, Matter, Stute, Axelsson, Fridriksson (2010). Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. IJGGC 4, 537-545 Cerca con Google

Gudbrandsson, Wolff-Boenisch, Gislason , Oelkers (2008). Dissolution rates of crystalline basalt at pH 4 and 10 and 25-75°C. Mineralogical Magazine, Vol.72 (1), 155-158. Cerca con Google

Hanley, E.J., Dewitt, D.P., Roy, R.F., 1978. The thermal diffusivity of eight well characterized rocks for the temperature range 300–1000 K. Eng. Geol. 12, 31–47. Cerca con Google

Kelemen, Matter, Teagle (2014). Oman Drilling Proposal Project. Cerca con Google

Kelemen, Matter (2008). In situ carbonation of peridotite for CO2 storage. PNAS, US, 105,17,295-217,300. Cerca con Google

Le Maitre, R.W., 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, UK. 240 p. Cerca con Google

Miller,S.A.,Collettini,C.,Chiaraluce,L.,Cocco,M.,Barchi,M.,Kaus,B.J.P.,2004. Aftershocks drivenbyahigh-pressureCO2 source at depth. Nature427, 724–727. Cerca con Google

Matter, Kelemen (2009). Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nature Geoscience, DOI:10.1038/NGEO683. Cerca con Google

McGrail, Schaef, Ho , Chien, Dooley, Davidson (2006). Potential for carbon dioxide sequestration in flood basalt. Journal of Geophysical Research, vol.111, B12201. Cerca con Google

Stefan Nielsen, Elena Spagnuolo, Marie Violay; Composite sample mount assembly (SAMOA): the ultimate sample preparation for rotary shear experiments. INGV Rapporti Tecnici. ISSN 2039-741, Anno 2012, Numero 215; Cerca con Google

Oelkers, Gislason, Matter (2008). Mineral carbonation of CO2. Elements, vol.4, 331-335. Cerca con Google

Paterson, M. S., & Wong, T. F. (2005). Experimental rock deformation-the brittle field. Springer Science & Business Media. Cerca con Google

J. Rutqvist , J. Birkholzer, F. Cappa, C.-F. Tsang. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conversion and Management 48 (2007) 1798–1807. Cerca con Google

Samuelson, Spiers (2012). Fault friction and slip stability not affected by CO2 storage. Evidence from short term laboratory experiments on North Sea reservoir sandstones and caprocks. IJGGC 11S, S78-S90. Cerca con Google

Scholz (2002). The mechanics of earthquakes and fulting. Cambridge Univ.Press, Cambridge. Cerca con Google

Shimamoto, T., and A. Tsutsumi (1994), A new rotary-shear high-speed frictional testing machine: its basic design and scope of research (in Japanese with English abstract), J. Tectonic Res. Group of Japan, 39, 65-78. Cerca con Google

Stockmann, Wolff-Boenisch, Gislason, Oelkers (2011). Do carbonate precipitate after dissolution kinetics? 1: Basaltic glass. Chemical Geology 284, 306-316. Cerca con Google

Terakawa, T., Zoporowski, A., Galvan, B., Miller, S.A., 2010. High-pressure fluid at hypocentral depths in the L’Aquila region inferred from earthquake focal mechanisms. Geology 38, 995–998, http://dx.doi.org/10.1130/G31457.1 Vai! Cerca con Google

Van Noort, Spiers, Drury, Kandianis (2013). Peridotite dissolution and carbonation rates at fracture surfaces under condition relevant for in situ mineralization of CO2,.Geochimica et Cosmochimica Acta 106,1-24. Cerca con Google

Violay, M., Nielsen, S., Spagnuolo, E., Cinti, D., Di Toro, G., & Di Stefano, G. (2013). Pore fluid in experimental calcite-bearing faults: Abrupt weakening and geochemical signature of co-seismic processes. Earth and Planetary Science Letters, 361, 74-84. Cerca con Google

Violay, M., Nielsen, S., Gibert, B., Spagnuolo, E., Cavallo, A., Azais, P., ... & Di Toro, G. (2014). Effect of water on the frictional behavior of cohesive rocks during earthquakes. Geology, 42(1), 27-30. Cerca con Google

Waples, D.W., Waples, J.S., 2004. A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: Minerals and nonporous rocks. Nat. Resour. Res. 13 (2), 13–130. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record