Index

0.1: Abstract 1

0.2: Riassunto 3

1. Introduction 5

1.1: Why investigating basalt-fluid interaction: CO\textsubscript{2} geological storage 5

1.2: Why investigating Carrara marbles-fluid interaction: Apennine seismic sequences 9

2. Methods 11

2.1: Experimental methods 11

2.1.1: Slow to High Velocity Apparatus (SHIVA) 11

2.1.2: Experiments with H\textsubscript{2}O- and CO\textsubscript{2}-rich fluids 13

2.1.2.1: Pressurizing system and pressure vessel 13

2.1.2.2: Evaluation of the CO\textsubscript{2} content in the pressurized vessel 18

2.1.2.3: Determination of the temperature of the rock 22

2.1.3: Sample preparation 25

2.1.3.1: Rock drilling 25

2.1.3.2: Epoxy and mortar filling 26

2.1.3.3: Sample grinding 26

2.1.4: Experimental procedure 28

2.1.4.1: Torque and pore pressure control experiments 28

2.1.4.2: Standard test conditions 29

2.2: Microanalytical and microphysical techniques 31

2.2.1: X-ray fluorescence (XRF) 32

2.2.2: X-ray powder diffraction (XRPD) 32

2.2.3: Helium pycnometer 32

2.2.4: Micro-Raman spectroscopy 32

2.2.5: Ion chromatography 33

2.3: Petrography and microstructure of the investigated rocks 34

2.3.1: CAMP and Columbia River basalts 34

2.3.1.1: Petrographic observations: mineralogy, structures and textures 35

2.3.1.2: Chemical and mineralogical analysis 36

2.3.2: Carrara marbles 38

2.3.3: Selected hollow-cylinders couples for the experiments 38

3. Results 41

3.1: Mechanical data 41

3.1.1: Main instabilities events 47

3.1.1.1: Basalts 47

3.1.1.2: Carrara marbles 49

3.1.2: Slip weakening distance Dw\textsubscript{1} 51

3.1.2.1: Dw\textsubscript{1} in basalts 51

3.1.2.2: Dw\textsubscript{1} in Carrara marbles 54

3.1.3: Precursory events 55

3.1.3.1: Precursory events: basalts 57

3.1.3.1: Precursory events: Carrara marbles 61

3.1.4: LVDT & DCDT data 62

3.1.4.1: LVDT & DCVT data: basalts 64