UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE
D.I.C.E.A.

Tesi di Laurea Magistrale in Ingegneria Edile – Architettura

EDIFICI PER L’EMERGENZA SANITARIA

Studio di soluzioni modulari integrate
ad alta prefabbricazione per ospedali da campo

Relatore: Prof. Arch. Umberto Turrini
Correlatori: Prof. Giorgio Croatto
Prof. Edoardo Narne
Prof. Carlo Pellegrino
Prof. Luca Doretti
Dott. Daniele Pagin

Laureando: Silvano Moro
Dedico la mia tesi
a tutte le persone incontrate fin qui nella mia vita.

Ognuna di loro mi ha insegnato qualcosa,
ed aiutato a crescere.
Ringrazio il mio relatore,

il Prof. Arch. Umberto Turrini,

per la grande disponibilità e professionalità
con le quali mi ha assistito
in questo ultimo percorso accademico.

Ringrazio tutti i correlatori,

per il supporto concessomi.

Ringrazio in particolare l’azienda Pagin,

per la gentilezza e la serietà dimostrata
nel trasmettermi importanti insegnamenti
nel campo della prefabbricazione leggera.

Ringrazio l’associazione Croce Rossa Italiana,

per il prezioso dialogo instaurato
che arricchisce questo lavoro di tesi.
Ringrazio mio padre Fabio,
per avermi dato la possibilità di studiare
e di raggiungere questo importante traguardo di vita.

Ringrazio mia madre Lorella,
per avermi sempre sostenuto durante il percorso accademico,
ma più in generale per tutto ciò che mi ha trasmesso nella vita.

Ringrazio mia sorella Alessia,
per l’affetto e la pazienza.

Con amore ringrazio Lara,
per dimostrarmi, con la costante presenza,
la sua fiducia in me.

Un grazie va a tutti gli amici,
che mi hanno sempre motivato.

Un grazie speciale ai compagni della BLMZ: Marco, Nicolò e Giacomo,
perché con il loro inesauribile entusiasmo
hanno reso il mio percorso universitario
indimenticabile.
Indice

1. Gli eventi catastrofici 3
2. La risposta sanitaria e la Medicina delle Catastrofi 6
 2.1. La sicurezza sul luogo dell’evento 9
3. Le strutture sanitarie campali 11
 3.1. PMA di 1° livello 12
 3.2. PMA di 2° livello 12
 3.3. Ospedale da campo 14
 3.4. Cenni storici sugli ospedali da campo 19
4. Lo stato dell’arte 22
 4.1. Fattori caratteristici di un presidio mobile per ospedale da campo 23
 4.2. Tende 26
 4.3. Containers 42
 4.4. Soluzioni miste tende-containers 48
 4.5. Soluzioni modulari prefabbricate 52
 4.6. Scheda di valutazione finale 56
5. Progettazione della nuova soluzione di presidio per ospedali da campo 58
 5.1. Genesi del progetto 59
 5.2. Analisi funzionale 63
 5.3. Analisi dimensionale 93
 5.3.1. Trasporto 93
 5.3.2. Espansione 95
 5.3.3. Materiale sanitario 98
 5.3.4. Spazi-funzione 102
 5.4. Analisi dell’area 110
 5.5. Schema planimetrico – tradizione ed innovazione 113
 5.5.1. Nuova soluzione compositiva 116
5.6. **Progetto Strutturale Esecutivo**
 - 5.6.1. Dimensionamento strutturale e relazione di calcolo 125
 - 5.6.2. Fondazioni 171
 - 5.6.3. Struttura in elevazione 175

5.7. **Progetto architettonico esecutivo** 184

5.8. **Progetto impiantistico** 190
 - 5.8.1. Calcolo dei carichi termici invernali 190
 - 5.8.2. Calcolo dei carichi termici estivi 196
 - 5.8.3. Scambi termici del corpo umano con l’ambiente e condizioni di benessere 202
 - 5.8.4. Impianti di climatizzazione 205
 - 5.8.5. Impianto idro-sanitario 212
 - 5.8.6. Impianto illuminotecnico 216
 - 5.8.7. Impianto fotovoltaico 219

6. **Conclusioni** 226

7. **Bibliografia e sitografia** 228
1. Gli eventi catastrofici

La classificazione degli eventi si dimostra uno strumento importante per analizzare a posteriori l’efficacia degli interventi sanitari e civili e migliorare continuamente l’operatività dei servizi di emergenza, rendendo confrontabili dati che sono sempre molto complessi da interpretare.

La legge di Istituzione del Servizio di Protezione Civile Nazionale (legge 24 febbraio 1992, n. 225) all’articolo 2, distingue tre tipi di eventi, per ognuno dei quali identifica precisi ambiti di competenza e responsabilità nella gestione dei soccorsi:

- **a)** Eventi naturali o connessi con l’attività dell’uomo che possono essere fronteggiati mediante interventi attuabili dai singoli enti e amministrazioni competenti in via ordinaria;

- **b)** Eventi naturali o connessi con l’attività dell’uomo che, per la loro natura ed estensione comportano l’intervento coordinato di più enti o amministrazioni competenti in via ordinaria;

- **c)** Calamità naturali, catastrofi o altri eventi che per intensità ed estensione devono essere fronteggiati con mezzi e poteri straordinari.

Volendo sottolineare le conseguenze di una catastrofe si può dire che essa è un avvenimento in seguito al quale si verifica una netta sproportione, sebbene temporanea, tra i bisogni delle persone coinvolte e i mezzi di soccorso immediatamente disponibili.

Diventa necessario, ai fini delle decisioni relative al tipo e all’entità dei soccorsi da mettere in campo volta per volta, identificare alcuni fattori caratteristici secondo cui classificare ulteriormente gli eventi di tipo catastrofico. Fattori che descrivono una catastrofe in maniera molto generica sono la “configurazione geografica” (zona urbana o zona rurale-extrarurba), e la “configurazione sociale” (paese industrializzato oppure in via di sviluppo).

Distinzioni più precise invece dipendono da fattori di “estensione dell’area coinvolta” (inferiore a 1 km, tra 1 e 100 km, oltre 100 km), o dagli “effetti sulla comunità” (catastrofi semplice o complesse a seconda del grado di danneggiamento delle infrastrutture). Altre classi vengono stabilite a seconda del “numero di vittime” (catastrofe limitata, meno di 100 vittime; catastrofe media, tra 100 e 1000 vittime; catastrofe maggiore, più di 1000 vittime) e della “durata dei soccorsi” (inferiori alle 6 ore; compresa tra 6 e 24 ore; superiore alle 24 ore).

La classificazione di eventi catastrofici più generale e diffusa utilizza come fattore discriminante la causa scatenante, individuando tre gruppi fondamentali:
<table>
<thead>
<tr>
<th>Cause naturali</th>
<th>Geologiche</th>
<th>Idrogeologiche</th>
<th>Meteorologiche</th>
<th>Climatologiche</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Terremoti e Tsunami</td>
<td>- Alluvioni</td>
<td>- Nubifragi</td>
<td>- Temperature estreme</td>
</tr>
<tr>
<td></td>
<td>- Eruzioni vulcaniche</td>
<td>- Frane</td>
<td>- Uragan, cicloni e tornadi</td>
<td>- Siccità</td>
</tr>
<tr>
<td></td>
<td>- Caduta meteoriti</td>
<td>- Valanghe</td>
<td>- Nebbia</td>
<td>- Incendi</td>
</tr>
<tr>
<td>Cause tecnologiche</td>
<td>Trasporti</td>
<td>Collasso dei sistemi tecnologici</td>
<td>Incendi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Aerei</td>
<td>- Black-out elettrico</td>
<td>- Boschivi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ferroviari</td>
<td>- Black-out informatico</td>
<td>- Urbani</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Stradali</td>
<td>- Interruzione servizio idrico</td>
<td>- Industriali</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Navali</td>
<td>- Interruzione servizio gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Collasso dighe e bacini</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cause conflittuali e sociali</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidenti industriali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Incendi ed esplosioni</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contaminazione chimica, biologica, radioattiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Atti terroristici</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sommosse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Conflitti armati internazionali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Attacchi batteriologici, chimici, nucleari</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Epidemie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Carestie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Migrazione profugi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Eventi di massa</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tre sono le cause di disastri naturali che hanno colpito maggiormente la popolazione negli ultimi anni: alluvioni e inondazioni, uragani e tempeste, siccità. Con il termine “persone colpite” non vengono intese solamente vittime e feriti, ma tutte le persone emotivamente, psicologicamente, o socialmente coinvolte.

Il patrimonio materiale, allo stesso modo, è sottoposto all’effetto rovinoso degli agenti catastrofici. Con l’aumentare degli eventi, il costruito non ha saputo dare prova di resistenza e flessibilità. L’ammontare dei danni, e dei costi di ripristino, è la logica conseguenza di un sistema incapace ad adattarsi a particolari e complessi realtà naturali, tecnologiche e sociali.

Il quadro generale sugli eventi catastrofici sottolinea l’urgenza, e al tempo stesso la serietà, con cui va affrontato il tema che per logica ne consegue: il soccorso sanitario d’emergenza e gli interventi di protezione civile in regime di catastrofe.
2. La risposta sanitaria e la Medicina delle Catastrofi

Con particolare attenzione ad una risposta di tipo sanitario, si considerano principalmente due realtà, descritte nel documento “Criteri di massima per l’organizzazione dei soccorsi sanitari nelle catastrofi” (d.p.c.m. 13 febbraio 2001-12 maggio 2001):

- Evento catastrofico ad effetto limitato, caratterizzato dalla integrità delle strutture di soccorso esistenti nel territorio in cui si manifesta, nonché dalla limitata estensione nel tempo delle operazioni di soccorso valutata, su criteri epidemiologici di previsione, a meno di 12 ore.

- Evento catastrofico caratterizzato dal superamento delle potenzialità di risposta delle strutture locali e corrispondente alla nozione di catastrofe in senso proprio: comportante quindi devastazione di ampio territorio, elevato numero di vittime, venir meno delle reti di energia, trasporto, comunicazione, nonché la tipica sproporzione che si viene a creare tra richiesta e disponibilità di uomini e mezzi da impiegare sul campo.

In entrambi gli scenari, risulta fondamentale una risposta immediata per soccorrere la popolazione colpita: ogni contesto emergenziale prevede l’intervento della componente sanitaria, attraverso attivazioni e modalità strettamente connesse alla tipologia di evento da fronteggiarsi. Il disastro quindi assume un significato relativo alla risposta che la società e l’ambiente sono in grado di fornire. Secondo questo principio, in termini sanitari, si può parlare di “disastro” se 20 feriti gravi vengono gestiti in un ospedale non preparato ad affrontare tale situazione, mentre si può parlare di “incidente” alla presenza di 100 feriti trattati con forze adeguate e preparate.

Una “maxi-emergenza sanitaria” è una situazione critica che, insorgendo bruscamente con la presenza di una grande quantità di feriti bisognevoli di cure urgenti e indilazionabili, crea un aumento acuto delle richieste di soccorso. In queste condizioni l’improvvisazione non contribuisce a determinare un intervento efficace: per rispondere con prontezza ed efficiency, è necessario disporre di una struttura organizzata e formata, sia nella logistica operativa sia nei mezzi impiegati. Questo obbiettivo non può essere perseguito esclusivamente in occasione di interventi di emergenza, deve diventare impegno ordinario nella costruzione e gestione delle risorse necessarie per un’adeguata risposta sia alle situazioni critiche di livello locale, che alle grandi catastrofi.

L’organizzazione dei soccorsi nell’immediato post evento può essere caratterizzato da una serie di criticità: la scarsità e imprecisione nelle notizie ricevute in fase di allarme; la difficoltà nel reclutare il personale di supporto, che può essere stato coinvolto nel disastro stesso; l’inaccessibilità diretta al luogo del disastro per impraticabilità delle infrastrutture di collegamento.
Generalmente le prime ore dopo il disastro sono gestite unicamente dalle persone presenti sul territorio interessato e la grande maggioranza dei sopravvissuti si salva in quanto di per sé illesa o perché salvata immediatamente dopo l’evento da soccorritori occasionali. Tuttavia, questa fase deve durare il minor tempo possibile, affinché sia il personale esperto ed addestrato a dirigere il trattamento medico in modo efficace.

La successione degli interventi sanitari presuppone la conoscenza dei concetti fondamentali della Medicina delle Catastrofi, definita come la disciplina che studia quali atteggiamenti da assumere in relazione ad un evento eccezionale, che, pur per cause di diversa natura, si caratterizza sempre per una netta sproporzione fra le richieste dell’ambiente e le capacità di risposta dei soccorsi sanitari.

Le radici di questa specialità medica risiedono nella consapevolezza che:

- le situazioni di rischio che possono determinare una catastrofe sono presenti ovunque, anche se con evidenti differenze di qualità e quantità;
- la professione sanitaria contiene nel proprio codice genetico non soltanto l’obbligo di rispondere alle richieste ordinarie o d’emergenza, ma anche l’esigenza di fornire la miglior risposta possibile a tutte le persone coinvolte in una situazione di maxi-emergenza. Tale obbligo etico è presente sia nella zona dell’evento che nelle strutture sanitarie dove i pazienti trovano un trattamento definitivo.

Il complesso di tutte le azioni sanitarie, organizzative ed operative, metodologiche e logistiche, condotte in tali situazioni viene definito “Medicina delle Catastrofi”, il risultato delle quali è fortemente legato ad uno studio preventivo ed una corretta pianificazione. La medicina delle catastrofi è una disciplina scientifica che si basa sul coordinamento di più specialità, come la medicina d’emergenza, la medicina di guerra, internistica e chirurgia, l’epidemiologia, la psicologia, la psichiatria e la medicina legale. Ogni aspetto specialistico è in relazione dinamica con gli eventi.

Obbiettivo principale della Medicina delle Catastrofi è diminuire la vulnerabilità di un ambiente attraverso lo sviluppo degli strumenti di pianificazione e organizzazione, in tempo di pace, per poter ridurre ed eliminare in breve tempo, con strumenti sanitari specifici, la sproporzione fra le necessità e le capacità di risposta. Questo obbiettivo è raggiungibile solo con un approccio medico differenziato, finalizzato ad affrontare:

- una emergenza in situazione di caos;
- un gran numero e varietà di feriti spesso di competenza multidisciplinare;
- un possibile coinvolgimento della struttura sanitaria da parte dell’evento;
– una condizione di ridotte risorse, sicuramente sproporzionata rispetto alle richieste;
– la necessità di lavorare in modo coordinato e complementare con altre figure professionali.

Quasi sempre l’improvviso equilibrio tra le risorse necessarie e quelle disponibili durante una maxi-emergenza, rende insufficiente la risposta fornita quotidianamente dal sistema di soccorso sanitario e dal sistema ospedaliero. Tuttavia, il tempo di persistenza di tale sproporzione è un indicatore piuttosto fedele della capacità di risposta. Tanto minore sarà il tempo di caos, tanto più preparata sarà la funzione sanitaria, naturalmente in sinergia con tutte le componenti tecniche, non sanitarie, che intervengono.

Infatti l’autonomia organizzativa della componente sanitaria, ad ogni modo, non deve mai derogare dai criteri e dai principi del Sistema di Protezione Civile, altrimenti si correrrebbe il rischio di creare realtà che, non seguendo gli stessi indirizzi, non possono cooperare in maniera costruttiva e ordinata a livello extra/locale.

Le fasi operative si svolgono in uno scenario complesso e mutevole, che vede un progressivo allontanamento dall’epicentro del disastro. Il percorso compiuto dalle vittime si descrive in una successione di tappe, così classificate:

1. Spot: luogo in cui si verifica l’incidente e in cui si trovano i feriti
2. Cantiere: unità elementare in cui viene diviso lo Spot durante la fase di settorializzazione dei soccorsi, ad ognuna delle quali vengono assegnate le rispettive squadre d’intervento.
3. Area di raccolta: zona prossima allo Spot, ma esente da rischi evolutivi, in cui è possibile iniziare a raggruppare i feriti secondo categorie di precedenza ed erogare manovre salvavita elementari.
5. Posto Medico Avanzato (PMA): struttura provvisoria di primo soccorso interposta tra il luogo dell’evento e le strutture ospedaliere definitive.
6. Noria di evacuazione (o “grande noria”): circuito delle ambulanze (o altri mezzi di trasporto sanitario) dal PMA agli ospedali.

La necessità di “interrompere” il viaggio dei feriti verso gli ospedali, fermandosi in più punti, anche se può apparire una contraddizione, è invece funzionale ad un graduale ricevimento dei pazienti negli ospedali, senza che il servizio di questi collassi per un sovraccarico di richiesta. Molto spesso anche la
distanza che li separa dal luogo dell’incidente è tale che le ambulanze, sempre in numero insufficiente, impiegherebbero moltissimo tempo ad evacuare direttamente tutti i feriti. E’ frequente poi che le stesse strutture ospedaliere permanenti vengano coinvolte nell’evento catastrofico, causando uno scompenso molto rilevante della disponibilità sanitaria.

![Diagram](image)

Figura 2.1. – 01: Catena dei soccorsi, sequenza delle tappe dall’area del disastro alla struttura ospedaliera

2.1. La sicurezza sul luogo dell’evento

Uno scenario di incidente maggiore è composto da numerosi micro-sistemi che interagiscono tra di loro: i feriti, le strutture, il terreno, eventuali fenomeni fisici collegati o derivanti dall’incidente stesso (fuoco, fumo, ecc.), i mezzi di soccorso, le attrezzature dei soccorritori. Il tutto immerso in un contesto di elevata tensione emotiva e di forte pressione psicologica. Anche la più semplice azione può condizionare le fasi del soccorso. Inoltre, le condizioni ambientali obbligano spesso i soccorritori ad intervenire in condizioni pericolose. Il raggiungimento della sicurezza è possibile riconoscendo le situazioni di pericolo con il supporto delle componenti tecniche (Vigili del Fuoco) e avvicinandosi alle vittime solo al momento opportuno. Indipendentemente dal tipo di evento, l’approccio ai feriti di un incidente maggiore potrà avvenire solo dopo che la scena è stata messa in sicurezza, anche se questo potrebbe determinare un ritardo nell’inizio delle manovre di soccorso medico. E’ essenziale delineare le variabili ambientali che incidono sulla sicurezza:

- Conformazione del terreno o dell’edificio;
- Condizioni meteorologiche: nebbia, pioggia, vento, temperatura;
- Dinamica dell’incidente, tipologia dei mezzi coinvolti;
- Visibilità (fumi, gallerie, ostacoli);
- Affollamento (traffico, eventi di massa);
- Carichi sospesi e non in sicurezza;
- Presenza di sostanze tossiche o pericolose;
- Fenomeni di panico.

A confermare l’importanza di quanto detto è Paolo Marin, Maggiore medico del Corpo Militare della Croce Rossa Italiana e Coordinatore degli Anestesisti-rianimatori del Corpo Militare della CRI, che in una dichiarazione del 24 giugno 2014 racconta le maggiori difficoltà che un anestesista incontra in zona di guerra, ricordando che le linee guida usate in ambito militare sono poi applicate allo scenario civile: “le maggiori difficoltà sono legate alle condizioni ambientali ed ostili nelle quali ci si trova ad operare. Rispetto al lavoro in sala operatoria le risorse sono limitate nella quantità e nella qualità.” Ciò che non deve mai mancare quindi è “una buona preparazione ottenuta tramite esercitazioni che ‘simulano’ esattamente quello che accade in teatro operativo, una continua ed aggiornata informazione sulle novità internazionali relative ai prodotti ‘salvavita’ utilizzabili...”.
3. Le strutture sanitarie campali

Gli ospedali svolgono un ruolo cruciale per la società, garantendo una serie di servizi fondamentali (servizio di emergenza/urgenza, clinici e diagnostici), che dovrebbero essere forniti anche durante un evento catastrofico. Nonostante siano così importanti per la tutela della vita e della salute umana, a seguito di eventi catastrofici spesso subiscono gravi danni strutturali o crolli e devono essere evacuati. Non sono quindi in grado ne di trattare in modo adeguato i feriti provenienti dalle zone del disastro, ne di garantire l’assistenza ai pazienti ricoverati. A seguito di un disastro, sia di origine naturale (terremoti, uragani, frane, sicilità) che artificiale (guerre, incidenti di miniera, attacchi terroristici), le necessità sanitarie sono variabili e cambiano rapidamente.

Una catastrofe causa quindi un drammatico aumento della domanda di assistenza sanitaria di emergenza di diversa tipologia, a cui spesso l’ospedale locale non è in grado di rispondere perché inagibile, distrutto, o molto distante dal luogo dell’evento. L’utilizzo di strutture sanitarie campali è la risposta più efficace per fornire assistenza alle persone colpite.

Le strutture sanitarie campali sono “moduli” trasportabili in grado di fornire un servizio sanitario in condizioni di maxi-emergenza; sono caratterizzati da modularità, adattabilità a diversi ambienti, e flessibilità a possibili cambiamenti dello scenario dell’evento (d.p.c.m. 13 febbraio 2001-12 maggio 2001).

Occorre considerare che ogni tipologia di evento calamitoso presenta un andamento bifasico di risposta alle esigenze di soccorso sanitario:

- Risposta rapida, data dagli organi territoriali sulla base delle risorse locali immediatamente disponibili;
- Risposta differita, che si andrà ad articolare nelle ore successive all’evento con l’apporto degli aiuti che giungeranno dall’esterno all’area interessata.

Pur essendo diversi i due livelli di intervento, l’uno è connessenziale all’altro ed indipendente dalla tipologia dell’emergenza almeno in relazione ai contenuti principali.

La risposta rapida e di livello regionale, in Italia, viene fronteggiata attraverso lo schieramento del Posto Medico Avanzato. Il Posto Medico Avanzato (PMA) localizzato ai margini esterni dell’area di sicurezza o in una zona centrale rispetto al fronte dell’evento, può essere sia una struttura che un’area funzionale dove radunare le vittime, concentrare le risorse di primo trattamento, effettuare il triage e organizzare l’evacuazione sanitaria dei feriti nei centri ospedalieri più idonei.

È auspicabile che ogni Regione, a seconda delle caratteristiche e dei rischi del territorio, sia dotata di una o più strutture mobili, con funzioni di PMA, di immediata mobilitazione e rapidamente
attrezzabili; possono offrire un riparo dagli agenti atmosferici e costituiscono un punto materiale di riferimento per la catena dei soccorsi, consentendo di applicare, per quanto è realisticamente possibile, tecniche di supporto avanzato delle funzioni vitali per la sopravvivenza a breve termine dei feriti. Tali strutture hanno costi contenuti e rappresentano una risposta concreta ad elementari esigenze della primissima urgenza in caso di maxi-emergenza (d.p.c.m. 13 febbraio 2001-12 maggio 2001).

Questa tipologia di “modulo sanitario” viene poi suddivisa su due livelli, a seconda di alcuni importanti parametri coinvolti nell’evento catastrofico.

3.1. PMA di 1° livello

Con questo termine viene indicata una struttura di rapidissimo impiego, con capacità di attivazione entro massimo la prima ora, normalmente organizzata per trattare circa 10 feriti in codice di gravità giallo e rosso (codici assegnati in fase di triage). Generalmente viene allestita in caso di catastrofe ad effetto limitato. Tale scenario presuppone l’integrità delle strutture di soccorso esistenti, nonché una limitata estensione, nel tempo, delle operazioni di soccorso, quantificata in meno di 12 ore.

Il PMA di 1° livello può essere costituito da una vera e propria struttura (tende), ma anche semplicemente da un’area funzionalmente deputata allo svolgimento delle operazioni di selezione e trattamento sanitario delle vittime.

Quantificando i requisiti funzionali, le caratteristiche possono essere così riassunte:

<table>
<thead>
<tr>
<th>Caratteristica</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempi d’impiego d’allarme</td>
<td>< 1 ora</td>
</tr>
<tr>
<td>Capacità di trattamento</td>
<td>10 pazienti</td>
</tr>
<tr>
<td>Autonomia operativa</td>
<td>12 h</td>
</tr>
</tbody>
</table>

3.2. PMA di 2° livello

Descritto nelle sue caratteristiche e nelle dotazioni strumentali dalle linee guida pubblicate in G.U. n. 139 del 25 agosto 2003: con questo termine si identifica una struttura mobile da impiegarsi in eventi di “tipo c”; rispetto al PMA di 1° livello deve quindi essere in grado di assicurare gli interventi salvavita ad un numero maggiore di vittime e per un maggior numero di giorni.

Gli effetti di una calamità naturale con un forte impatto sulla popolazione e sull’ambiente impongono la necessità di uso di strutture campali che, oltre alla rapidità di invio ed allestimento, assommino la capacità di “funzionare” in autonomia per 72 ore, in modo da coprire la fase critica che segue immediatamente l’evento disastroso, consentendo il recupero e il trattamento dei feriti. Dopo le prime giornate, i soccorsi sanitari saranno nelle condizioni di allestire strutture sanitarie più
complesse, quali gli ospedali da campo, e sarà possibile la ripresa almeno parziale della funzionalità delle strutture sanitarie del territorio circostante.

Un PMA di 2° livello dovrebbe essere in grado di iniziare la propria attività nel giro di 3 - 4 ore dall’allarme, ed operare in piena autonomia per 3 giorni, trattando, nell’arco di una giornata, 50 feriti con codice di gravità rosso e giallo.

In seguito all’istituzione di un “meccanismo comunitario di protezione civile” da parte del Consiglio europeo (2007/779/CE), la Commissione europea ha deciso di uniformare il vocabolario sui moduli di protezione civile, tra i quali appunto il modulo sanitario “Posto Medico Avanzato” (2010/481/UE). I requisiti generali, in linea con quelli precedentemente esposti, vengono così riassunti:

<table>
<thead>
<tr>
<th>Compiti</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Procedere alla selezione (triage) dei pazienti sul sito del disastro.</td>
</tr>
<tr>
<td>– Stabilizzare le condizioni del paziente e prepararlo per il trasferimento verso la struttura sanitaria più consona perché sia sottoposto al trattamento definitivo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacità di trattamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Procedere al triage di almeno 20 pazienti all’ora.</td>
</tr>
<tr>
<td>– Disporre di una équipe medica in grado di stabilizzare 50 pazienti in 24 ore di attività, operando in due turni.</td>
</tr>
<tr>
<td>– Disporre di forniture sufficienti al trattamento di 100 pazienti con lesioni lievi nell’arco di 24 ore.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Componenti principali</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Équipe medica per ogni turno di 12 ore:</td>
</tr>
<tr>
<td>• triage: 1 infermiere e 1 medico;</td>
</tr>
<tr>
<td>• cure intensive: 1 medico e 1 infermiere;</td>
</tr>
<tr>
<td>• lesioni gravi che non comportano pericolo di vita: 1 medico e 2 infermieri;</td>
</tr>
<tr>
<td>• evacuazione: 1 infermiere;</td>
</tr>
<tr>
<td>• personale specializzato di supporto: 4.</td>
</tr>
<tr>
<td>– Tende:</td>
</tr>
<tr>
<td>• tenda(e) con zone collegate tra loro destinate al triage, al trattamento medico e all’evacuazione;</td>
</tr>
<tr>
<td>• tenda(e) per il personale.</td>
</tr>
<tr>
<td>– Postazione di comando.</td>
</tr>
<tr>
<td>– Deposito logistico e per le forniture mediche.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autonomia</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Si applicano gli elementi previsti dall’articolo 3 ter, paragrafo 1, lettere da a) a i), 2004/277/CE.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approntamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Disponibilità a partire al massimo entro 12 ore dall’accettazione dell’offerta.</td>
</tr>
<tr>
<td>– Il modulo deve poter essere operativo 1 ora dopo l’arrivo sul posto.</td>
</tr>
</tbody>
</table>

Il PMA di 2° livello, dovendo permanere sul territorio colpito da disastro fino ad un massimo di 72 ore, potrà essere costituito da tensostrette almeno per il triage, la stabilizzazione, l’evacuazione. Inoltre, per poter svolgere i compiti assegnati dovrà:
- essere in vicinanza all’area dei soccorsi ma in zona di sicurezza, per salvaguardare l’incolunmità di chi è impegnato nei soccorsi;
- essere vicino a vie di comunicazione stradali e possibilmente ad una piazzola di atterraggio per elicotteri;
- essere facilmente individuabile mediante cartelli segnaletici;
- avere l’entrata e l’uscita separate per canalizzare il flusso di vittime in un’unica direzione;
- avere adeguata illuminazione;
- usufruire di un idoneo sistema tele-radio comunicazioni per garantire i collegamento con le strutture sanitarie.

![Image](image.png)

Figura 3.2. – 01: PMA di 2° livello

3.3. Ospedale da campo

Qualora gli effetti dell’evento catastrofico (evento di tipo “c”) siano superiori alle capacità di risposta dei PMA, si necessita l’attivazione degli “ospedali da campo”. Questo dispositivo campale ricopre il ruolo sanitario nella risposta differita, cioè quella che si articola nelle ore successive all’evento con l’apporto di risorse eccezionali provenienti dall’esterno dell’ambito locale. I requisiti generali vengono individuati a livello europeo dal già citato regolamento 2010/481/UE secondo questo schema:

<table>
<thead>
<tr>
<th>Compiti</th>
<th>Fornire un trattamento medico e traumatomico iniziale o di follow-up, tenuto conto di linee guida internazionali riconosciute per l’utilizzo di ospedali da campo stranieri, come quelle dell’Organizzazione mondiale della Sanità o della Croce Rossa.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacità</td>
<td>10 posti letto per pazienti colpiti da gravi traumi, con possibilità di aumentare la capacità.</td>
</tr>
</tbody>
</table>
| Componenti principali | Equipe medica per:
 - il triage;
 - le cure intensive; |

14

Un ospedale da campo viene definito come una struttura sanitaria mobile, autonoma e autosufficiente, capace di essere schierata rapidamente e di adattarsi nelle dimensioni, per fronteggiare una situazione di immediata emergenza in uno specifico lasso di tempo (WHO-PAHO 2003).

L’ospedale da campo può essere inviato con personale addetto, oppure donato senza personale.

E’ chiaro che l’attivazione di un ospedale da campo è subordinata a determinate condizioni:

- deve seguire ad una appropriata dichiarazione di emergenza e ad una richiesta formale da parte delle autorità sanitarie del paese colpito;
- deve integrarsi nel sistema sanitario locale;
- devono essere chiaramente definiti i ruoli e le responsabilità per la sua installazione e il suo mantenimento in operatività.
L’ospedale da campo può essere utilizzato per sostituire o per completare il servizio medico, successivamente ad un evento catastrofico, per tre diverse ragioni:

– fornire immediato soccorso medico nelle prime 48 ore;
– somministrare cure di routine e cure aggiuntive ai casi di trauma dal giorno 3 al giorno 15;
– operare come struttura temporanea in sostituzione delle installazioni che richiedono riparazione o ricostruzione (normalmente dal mese 2 ai 2 anni o più).

A seconda di questi tre tipi di utilizzo, le linee guida evidenziano alcuni requisiti essenziali e opzionali, e chiarisce le questioni attinenti ciascun utilizzo.

3.3.1. Servizio medico di pronto soccorso (prime 48 ore)

Requisiti essenziali:

– essere operativo nel sito entro 24 ore successive al disastro;
– essere completamente autosufficiente;
– offrire standard medici comparabili o superiori a quelli disponibili in tempo di pace nel paese colpito.

Requisiti opzionali (consigliati):

– avere familiarità con la situazione sanitaria e culturale del paese colpito: condividere la stessa lingua o la stessa cultura può aiutare già dalle prime ore ad instaurare un rapporto proficuo di collaborazione, unendo il personale medico locale che per primo si è attivato al momento dell’allarme.

La collocazione più appropriata dell’ospedale da campo va ricercata congiuntamente allo staff medico locale, che conosce le esigenze sanitarie dei pazienti. Anche le necessità logistiche influenzano la scelta, come l’accessibilità da parte delle vittime e un buon collegamento con strade e infrastrutture. Generalmente, la miglior posizione è nelle vicinanze di una struttura sanitaria locale esistente, anche se questa si trova momentaneamente fuori servizio.

Il supporto dello staff medico esterno si esaurisce in qualche giorno, quindi la permanenza in sito non genera benefici se molto prolungata. La collaborazione in questo caso dura solo il tempo necessario a riportare la situazione d’emergenza in un clima di stabilità.
3.3.2. Cure mediche post-trauma (dal giorno 3 al giorno 15)

Requisiti essenziali:

- essere completamente operativo entro 3-5 giorni;
- necessità di supposto minima da parte delle comunità locali. L’ospedale da campo deve essere autosufficiente sia nella composizione dello staff medico sia nelle risorse e mezzi da impiegare. Anche le fonti di energia e l’acqua dovrebbero essere indipendenti dalla rete locale;
- conoscenza basica della situazione sanitaria e della lingua locale, e rispetto della cultura;
- disponibilità di personale medico specializzato, per trattare ogni tipologia di trauma nel miglior modo possibile senza distinzioni di età e genere;
- sostenibilità, intesa come un uso di tecnologie appropriate che la realtà locale sappia mantenere anche quando l’ospedale da campo abbia esaurito la sua funzione di appoggio.
- valutazione della convenienze e dei costi-benefici associati all’uso dell’ospedale da campo. Stabilire un ospedale da campo comporta diversi costi (trasporto, preparazione all’installazione, mantenimento, costi in operatività, personale) che la realtà locale può non essere in grado di affrontare e sostenere.

Requisiti opzionali (consigliati):

- somiglianza culturale;
- ampia gamma di discipline mediche.

Le considerazioni sulla durata del supporto medico sono le stesse fatte per la categoria precedente. Le funzioni principali sono la consulenza e il trattamento medico di routine: quando questi compiti sono terminati diventa sconveniente prolungare la permanenza. Si richiede particolare attenzione alla tipologia di medicinali somministrati, per evitare problemi di suddetta sostenibilità e continuità con le cure locali.

Le autorità locali dovranno fornire i dettagli sulle caratteristiche del luogo incidentato (morfologia urbana, terreno, reti di infrastrutture, reti idriche, ecc.), così da favorire una scelta appropriata dell’ubicazione dell’ospedale da campo.

17
3.3.3. Donazione di ospedale da campo (senza personale) come ospedale temporaneo (dal secondo mese ad alcuni anni)

L’uso di ospedali trasportabili e donati può sembrare, agli occhi malinformati di chi deve prendere decisioni, l’alternativa ideale no-cost e pronta all’uso durante la riparazione o ricostruzione delle strutture sanitarie locali. Tuttavia, non è la soluzione miracolosa attesa dalle autorità sanitarie del paese ospitante. L’attivazione di un ospedale da campo presenta particolari sfide e dovrebbe essere considerata con cautela.

Le autorità nazionali dovrebbero approcciare questa soluzione nei termini di fornitura di “ospedale durevole e temporaneo” (in fase di riabilitazione) fino a quando una soluzione permanente sarà disponibile (fase di ricostruzione).

Un ospedale da campo “mobile” è una delle possibili valide alternative e deve essere considerata sulla base della convenienza e dei costi-benefici.

Requisiti essenziali:

− mancanza di una alternativa più conveniente;
− standard appropriati per i pazienti e per lo staff: considerata la durata nell’utilizzo della struttura, è necessario garantire il comfort al personale e ai pazienti di lunga degenza, in termini di spazio, temperatura e protezione da fattori climatici e ambientali;
− progettazione per l’uso fino alla ricostruzione;
− supporto di installazione e mantenimento forniti al paese ospitante senza costi;

Requisiti opzionali (consigliati):

− attenzione a numerose considerazioni sulla salute (acqua, medicinali, strumenti medici) e sui fattori tecnici (temperatura, condizionamento aria, bisogno di carburante, voltaggio)

Vista la lunga permanenza dell’ospedale da campo in questa soluzione le linee guida suggeriscono delle questioni che andrebbero analizzate in via preventiva con personale tecnico esperto:

− i requisiti del sito, con l’obiettivo di ridurre le criticità del drenaggio delle acque e dell’accessibilità alle reti;
− bisogno di potenza elettrica e carburanti;
− equipaggiamento medico-chirurgico;
− condizionamento dell’aria, compatibile con l’isolamento di pazienti affetti da malattie infettive.
Nei confronti delle strutture utilizzate come ospedali da campo, le linee guida WHO-PAHO del 2003 si esprime così: “una sistemazione temporanea dovrebbe essere in grado di resistere all’usura e alla scarsa manutenzione, e rimanere a tenuta d’acqua e funzionale per tutta la durata della ricostruzione dell’ospedale danneggiato (generalmente due anni o più). Tende e moduli gonfiabili deteriorano per la poca manutenzione e cura tenute dallo staff e dal pubblico. Sotto le migliori condizioni le tende devono essere ripiazzate ogni 6 mesi. Containers d’acciaio hanno una vita più lunga e utile, rendendoli una scelta più durevole. Moduli prefabbricati offrono un altrettanto valida soluzione e permettono una maggior flessibilità nella selezione e nell’utilizzo dell’equipaggiamento medico.”

3.4. Cenni storici sugli ospedali da campo

Dal punto di vista storico il concetto di “ospedale da campo” nasce nell’ambito militare, e proprio in questo settore trova inizialmente i motivi del suo sviluppo. Solo in tempi recenti questo concetto trova spazio anche nell’ambito civile e umanitario, dando risposta a tutte le situazioni d’emergenza legate ad eventi catastrofici studiati in precedenza.

Il fondatore del concetto di ospedale da campo può essere ricercato nel nome di Dominique-Jean Larrey (Beaudéan, 8 luglio 1766 – Lione, 25 luglio 1842), medico e chirurgo francese, padre della “medicina d’urgenza”. Quando nel 1792 la Francia entra in conflitto contro Austria e Prussia, Larrey viene nominato capo-chirurgo dell’esercito del Reno. Qui entra per la prima volta a contatto con il mondo militare rimanendo profondamente colpito dal divario esistente tra le necessità reali e l’organizzazione effettiva del sistema di cura e del trasporto dei feriti attuato attraverso ambulanze; a quel tempo, arrivavano sul campo di battaglia addirittura alcuni giorni dopo lo scontro. La conseguenza diretta di questo fatto era naturalmente una mortalità molto elevata. Da quel momento Larrey si impegna, assieme al collega Percy, a ridefinire completamente l’assetto organizzativo dell’assistenza sanitaria, attraverso un progetto denominato “chirurgia delle battaglie”: prevedeva un corpo permanente di chirurghi ed un organico fisso che provvedesse al raggiungimento dei feriti già nel corso della battaglia, ed una immediata prestazione di cure per la stabilizzazione prima del trasporto.

Oltre all’aspetto organizzativo, Larrey si occupa anche della progettazione del mezzo di trasporto che venne chiamato “ambulanza volante”. Il termine “volante” viene assegnato poiché i carri usati venivano schierati accanto alle formazioni di artiglieria volante. Nelle specifiche originali, Larrey stabilisce che il veicolo sia costituito da un corpo fondamentale semplice, con parti facilmente riparabili. Doveva essere leggero di peso ma, nello stesso tempo, solido e robusto, con la capacità di muoversi velocemente senza creare eccessivo disagio ai feriti trasportati. Il corpo fondamentale dell’”ambulanza volante” era costituito da un cassone in legno, con il tetto
arrotolato per permettere alla pioggia di scivolare via senza appesantire ulteriormente il carico. Nella parte posteriore due cardini fissavano su ogni lato una doppia porta, chiudibile dall’esterno con una sbarra serrata su un perno girevole. Sulle pareti erano praticati dei fori, due per ogni lato, che consentivano la ventilazione all’interno del vano. Pannelli scorrevoli, posti internamente, permettevano di regolare l’aerazione. Era previsto il trasporto di due feriti al massimo, adagiati supini fianco a fianco, su dei lettini, precursori delle moderne barelle; erano infatti composti da una struttura metallica sulla quale si poggiava un materasso in crine di cavallo ricoperto in pelle. A ciascun lato della struttura metallica erano fissate delle maniglie e, nella parte inferiore, piccole ruote consentivano all’intero telaio di essere portato fuori del vano. Per la comodità dei feriti, i lettini, oltre ai materassi, erano dotati di cuscini in piume, anche questi rivestiti in pelle. L’arredo interno era completato da un ulteriore rivestimento in pelle nella parte inferiore delle pareti interne, ove erano ricavate numerose tasche che contenevano materiale di medicazione. Ogni ambulanza era costituita da una squadra composta da tre chirurghi e un infermiere. Il veicolo era trainato da 2 cavalli.

L’ambulanza volante è il primo mezzo che funzionava come unità sanitaria di pronto soccorso. La riduzione drastica del fattore tempo nella risposta sanitaria è senza dubbio la peculiarità principale, accompagnata dalla praticità d’uso del mezzo e dalla facilità di pulizia interna. I benefici introdotti da questa nuova struttura erano enormi e decisivi nel campo militare, tanto da innescare uno studio continuo volto a innovare la disciplina sanitaria nello scenario bellico.

Un’ altra figura determinante per lo sviluppo della professione infermieristica e l’organizzazione dei primi ospedali da campo militari è l’infermiera britannica Florence Nightingale (Firenze, 12 maggio 1820 - Londra, 13 agosto 1910). Nel 1854 Nightingale parte con 38 infermieri per la Turchia, dove la guerra di Crimea stava metendo un numero elevato di vittime, con la volontà di migliorare le condizioni sanitarie dei feriti. La situazione al suo arrivo a Scutari era disastrosa, tanto che nel quotidiano britannico Times venivano pubblicati da parte degli inviati articoli di questo genere:

I più comuni accessori di un ospedale qui mancano. Qui non si bada alla decenza e alla pulizia; il fetore è opprimente; l’aria fetida ostacola
l’atmosfera purificatrice che non riesce a filtrare attraverso i crepacci dei muri e dei tetti e, da tutto quello che io qui vedo, posso affermare che tutta questa povera gente muore senza che nessuno faccia niente per salvarla. Sono i malati che assistono i malati e i morenti che assistono i morenti.

Grazie all’esperienza maturata in Germania e ad un grande impegno, Nightingale riesce a trasformare l’ospedale da campo di Scutari in una struttura comparabile ad un vero ambulatorio medico. L’organizzazione delle competenze infermieristiche e dell’ambiente di lavoro sono gli aspetti che hanno determinato il successo del suo intervento: la mortalità dei feriti in breve tempo era scesa del 50%.

Da allora le procedure mediche e i mezzi di soccorso in campo militare si sono evoluti con rapida continuità. Nel recente passato le nuove tecnologie hanno permesso di trasferire queste conoscenze anche all’ambito civile e umanitario, migliorando notevolmente l’efficacia degli interventi di soccorso durante eventi disastrosi di carattere naturale.
4. Lo stato dell’arte

Di seguito viene esposto lo studio condotto sulle tipologie di presidio ospedaliero mobile attualmente in commercio nel mercato globale. È stata elaborata, per ogni tipologia di presidio, una valutazione dettagliata, sulla base di una serie di parametri che derivano dalle considerazioni teoriche e tecniche fin qui condotte.

Il regolamento 2010/481/UE tratta di “tende adatte per lo svolgimento delle attività mediche”; questa è l’unica tipologia di presidio contemplata dalla normativa, della quale tuttavia non viene menzionata nessuna caratteristica specifica.

Storicamente la tenda è stata la soluzione più utilizzata in caso di evento catastrofico, dimostrando buone capacità di risposta. Nonostante la ricerca e lo sviluppo abbiano migliorato negli ultimi decenni le capacità di impiego di questa soluzione, con le nuove tecnologie si sono affacciate sul mercato soluzioni diverse e molto competitive.

È il caso dei cosiddetti “shelter”, ovvero strutture rigide e modulari, che riescono a risolvere le principali criticità delle strutture tendate. In genere gli shelter sono veri e propri container adattati alla funzionalità medica. La loro robustezza strutturale permette di avere maggior adattabilità alle condizioni ambientali avverse e garantisce miglior sicurezza nelle attività sanitarie. Ai punti di forza di questa soluzione corrispondono punti di debolezza, che verranno studiati puntualmente in seguito.

L’innovazione ha dato vita a soluzioni miste tende-shelter, con l’obiettivo di ridurre le criticità di entrambe le singole soluzioni facendole cooperare unitamente. Tuttavia, nella difficoltà di interfacciare le due strutture, il campo della prefabbricazione si è spinto in tempi recenti a cercare una soluzione modular unica, di cui la presente tesi vuole essere sostenitrice e in un certo grado innovatrice.

La direzione verso cui si indirizza oggi la ricerca è quella di delineare una soluzione del tutto nuova, come conferma un comunicato dell’Agenzia Europea per la Difesa in data 7 ottobre 2014. L’obiettivo è di elaborare una “Multinational Modular Medical Unit”, una unità medica modulare per operazioni internazionali capace di ridefinire la risposta sanitaria.

Per effettuare una comparazione affidabile tra le soluzioni oggi esistenti, e per poter proporre una soluzione in termini di innovazione, è opportuno muoversi con un criterio quanto più oggettivo possibile sulla valutazione dei fattori caratteristici di queste strutture.
4.1. Fattori caratteristici di un presidio mobile per ospedale da campo

Mezzo di trasporto

La mobilità è uno degli elementi chiave per il successo di una struttura che deve essere adoperata come risposta d’emergenza. Quanti più veicoli riescono a trasportare la struttura, tanto maggiore è la tempestività e l’efficienza con la quale questa si rende operativa. I mezzi di trasporto più comuni sono: automobili, furgoni, camion, treni, barche, aeroplani, elicotteri e il trasporto manuale.

Esistono essenzialmente due metodi di confezionamento per il trasporto di grandi carichi:

- **Pallet:** il termine internazionale “pallet”, in italiano “paletta di carico”, è una attrezzatura di trasporto ISU caratterizzata da una pedana di appoggio della merce con dimensioni di base di 108’ x 88’ (274,3 x 223,5 cm). L’altezza viene definita attraverso il nome del pallet: ISU-90 corrisponde all’altezza di 90’ (228,6 cm). Lo spessore del pallet varia a seconda della resistenza richiesta per sopportare il carico. Viene movimentato per mezzo di attrezzature specifiche come carrelli elevatori e transpallet, e viene trasportato con una gamma ampia di mezzi di trasporto.

- **Container:** il termine “container ISO” è il riferimento internazionale dato dall’Organizzazione Internazionale per la Normazione ai contenitori standard per grandi carichi. Ne esistono di vari modelli, ma tutti di misure standard. Possono essere traspostati via terra su gomma o rotaia, via mare con navi e via aerea con aerei speciali di grandi dimensioni.

Nella scheda di valutazione di ogni soluzione verrà attribuita la lettera “P” per il trasporto in pallet, “C” per il trasporto in o di container, “D” per il trasporto diretto senza l’utilizzo di queste formule. Inoltre sarà assegnato un punteggio da 1 a 5 per il numero di mezzi di trasporto utilizzabili.

Dimensioni di trasporto

Si intendono le dimensioni della struttura quando è riposta per il trasporto, nella sua configurazione meno voluminosa. Le dimensioni influenzano molto il metodo di trasporto, il quale a sua volta incide sulla rapidità di risposta, sull’efficienza e sui costi dell’operazione.

La soluzione ottimale è quella più compatta e con il volume sfruttato completamente. Per la dotazione di ospedali da campo va fatta particolare attenzione alla fragilità delle componenti strumentali mediche e dello stoccaggio dei medicinali.

Nella scheda di valutazione sarà inserito il valore esatto del volume in m³, e sarà associata la lettera “M” se la soluzione contiene già in fase di trasporto il materiale sanitario, mentre “V” indicherà la soluzione sprovvista del materiale.
Dimensioni d’uso

Si intende l’ingombro finale della struttura una volta pronta ad assolvere la sua funzione. Le dimensioni dovranno trovare conferma dei requisiti stabiliti dalla normativa.

Il valore sarà espresso in m³.

Rapporto d’impronta a terra

Questo criterio di misurazione indica l’efficienza spaziale della soluzione strutturale adottata. Il rapporto viene fatto tra l’area occupata dalla struttura in configurazione di trasporto, diviso per l’area della struttura in configurazione operativa. Quanto più piccolo è questo rapporto maggiore è l’efficienza spaziale del presidio.

Nella scheda di valutazione si troverà l’esatto valore di questo rapporto.

Peso netto

Il peso della struttura, scaricata e senza equipaggiamento aggiuntivo, influenza dramaticamente il metodo di trasporto scelto, con le relative conseguenze.

Verrà espressa in kg.

Tempo di schieramento

È il tempo impiegato a montare/assemblare/erigere il presidio dalla configurazione di trasporto a quella definitiva. Questo fattore è tra i più importanti, avendo più volte sottolineato come la tempestività della risposta sanitaria sia determinante nel successo dell’intervento.

Comprnderà anche l’installazione degli impianti e delle strumentazione mediche, e nella scheda di valutazione verrà espresso in ore.

Numero di addetti allo schieramento

Viene conteggiato il numero di persone necessarie a rendere operativa la struttura fisica dell’ospedale da campo. Rientrano qui gli operai addetti a scaricare e montare la struttura, ma anche tutte le altre figure tecniche che verificano in situ il corretto funzionamento delle componenti di pertinenza.

Modularità

La modularità è il riflesso del come la struttura si riesce a connettere nelle sue singole parti creando un complesso di dimensioni variabili alle esigenze. Questa caratteristica, come già accennato in precedenza, ha acquisito grande interesse contemporaneo.
A questo fattore verrà assegnato un valore da 1 a 5 dove l’1 corrisponde ad una assente o scarsa modularità, mentre il 5 ad una elevata modularità.

Adattabilità

È la misura di quanto la struttura sia flessibile alle avversità del contesto: dalla resistenza a differenti condizioni climatiche, alla capacità di appoggiarsi su un terreno non livellato o in presenza di detriti. Nell’ottica di trovare una soluzione utilizzabile a scala globale, questo requisito assume connotazione molto rilevante: maggiore è l’adattabilità e più sono le possibilità di utilizzo della struttura senza compromettere il rendimento del servizio sanitario.

A questo fattore verrà assegnato un valore da 1 a 5 dove l’1 corrisponde ad una assente o scarsa adattabilità, mentre il 5 ad una elevata adattabilità.

Sicurezza

Per sicurezza si intende l’abilità della struttura a fornire protezione ai pazienti e al personale. Questo fattore si riflette sui materiali da costruzione e sulla loro robustezza, anche in termini di usura nel tempo. Lo stato d’animo di sicurezza è infuso anche dall’aspetto estetico del complesso; tale fattore di natura psicologica viene comunque preso in considerazione.

A questo fattore verrà assegnato un valore da 1 a 5 dove l’1 corrisponde ad un assente o scarso comfort interno, mentre il 5 ad una elevata qualità e sicurezza degli spazi.

Numero di pazienti

Il numero dei pazienti indica in realtà soltanto una stima, dal momento che il reale numero dei pazienti può variare fortemente, soprattutto in funzione delle cure richieste. Tuttavia questo dato illustra come il design di una struttura si adatti oppure no al variare della richiesta sanitaria. Il calcolo prevede che ad ogni paziente sia destinata un’area di 3,5 m².

Nella scheda di valutazione non sarà inserito il numero dei pazienti, bensì la capacità della soluzione di adeguarsi alla richiesta variabile di soccorso, assegnando la lettera “B” per una buona capacità, e “S” per scarsa capacità.

Ciclo di vita

Si attesta il tempo di durata della struttura una volta schierata, così come il numero di volte che può essere trasportata altrove e riutilizzata. Viene annotato anche il piano di manutenzione e le indicazioni utili alle riparazioni.

Nella scheda di valutazione sarà indicata in anni l’aspettativa di vita della struttura in esame.
4.2. Tende

La tenda costituisce ancora oggi la soluzione più adoperata come presidio sanitario campale. Le ragioni sono da ricercarsi principalmente nei costi, essendo la soluzione più economica rispetto a shelter e a soluzioni modulari prefabbricate.

Anche in Italia le organizzazioni umanitarie e di protezione civile allestiscono i loro ospedali da campo con tende. In particolare, assieme al responsabile della provincia di Padova per le attività di emergenza della Croce Rossa Italiana, Adamo Menarello, sono state individuate le due principali aziende produttrici e fornitrici di queste strutture nel panorama italiano: Eurovinil e Lanco.

4.2.1. Eurovinil

Eurovinil S.p.a. è una realtà industriale leader in Italia nello studio, progettazione e realizzazione di articoli pneumatici per la marina, la nautica da diporto, le Forze Armate e la Protezione Civile. La vasta gamma di prodotti comprende le strutture pneumatiche gonfiabili da campo.

L’azienda fornisce da decenni il Ministero della Difesa e varie organizzazioni di Protezione Civile. Le strutture sono state impiegate durante le missioni di pace in Iraq, Kosovo, dopo il terremoto in Iran, Pakistan e Algeria. I sistemi sono progettati per operare in aree militari o civili, in paesi colpiti da calamità naturali o da guerre, dove le strutture sanitarie sono inadeguate o del tutto inesistenti.

![Ospedale da campo Eurovinil per Medici Senza Frontiere in Pakistan, 2005.](image)

Le tende pneumatiche sono realizzate con materiale di base plastico, nello specifico EMC®, un polimero EV rinforzato con innesto poliestere, qualificato per temperature da -50° a +66°C che offre garanzia di durata molto elevata. Questo materiale plastico offre grandi capacità di resistenza al fuoco e resistenza a funghi e mufe.
La tecnologia di produzione è la saldatura elettronica ad alta frequenza (HFW®), che esclude ogni materiale interposto e consente l’unione delle parti in modo perfetto mediante fusione molecolare controllata. Per l’intera struttura non sono usate colle né adesivi, per cui è quasi impossibile il distacco dei materiali, in quanto una volta saldata formano un corpo unico.

La copertura superiore è unita, mediante stesso procedimento di saldatura, alla parte inferiore definita “catino”. Questa soluzione di continuità garantisce impermeabilità all’acqua e protezione da agenti inquinanti.

Le tende sono autoportanti, grazie ad una struttura gonfiabile costituita da archi e traversi di collegamento tra gli archi. In dotazione viene servito il gonfiatore elettrico, della potenza di 1000 W, alimentato da corrente a 230 V.

Ai fini della composizione di un ospedale da campo vengono prodotte due linee di tende: le tende “piccole” modello TPSE-07, e le tende “medie” modello Multifunzionale, collegabili tra loro. Inoltre esiste una linea speciale per i casi di contaminazione, con cabina doccia NBC e Stazione di Decontaminazione.

Tenda self-erecting TPSE-07

Il modello di piccole dimensioni si rivela idonea ad impieghi di pronto intervento ma anche per soluzioni campali a lungo termine (qualche mese). L’assenza di una destinazione funzionale precisa rende la struttura molto versatile ai diversi usi: può diventare una sala operativa amministrativa, spazio per alloggi o per il ricovero di persone e famiglie, o ancora un reparto di trattamento cure di un PMA o di un ospedale da campo.

Nella sua configurazione chiusa la struttura si presenta come un pacchetto molto compatto, che occupa un ingombro di appena 1 m³. Per la precisione ha una impronta a terra di 130 x 100 cm, ed
una altezza di 50 cm. Ciò implica una estrema facilità di trasporto, sia su veicoli che con trasporto a mano.

![figura](image)

Figura 4.2.1. -03 : Configurazione chiusa della Tenda Eurovinil modello TPSE-07.

La modularità della tenda consiste nel poterla collegare ad altre, attraverso le aperture che si trovano sui prospetti più corti. I collegamenti si possono sviluppare in serie in una sola direzione; per creare nodi nelle quattro direzioni è necessaria l’installazione di una tenda “media”.

Per il modello TPSE-07 sono previste 3 misure: la tenda a 3 archi misura 5,62 x 5,15 metri di base per 2,80 metri d’altezza, la tenda a 4 archi misura 5,62 x 7,55 m per 2,80 d’altezza, e la tenda a 5 archi con base di 5,62 x 9,95 m e altezza di 2,80 m.

L’interasse tra gli archi misura 240 cm, mentre il diametro degli archi dentro cui stagna l’aria è di circa 35 cm.

![figura](image)

Figura 4.2.1. – 04 : Tenda Eurovinil modello TPSE-07 a 4 archi. Pianta, prospetto laterale, prospetto frontale.
Riassumendo le caratteristiche tecniche fornite anche dal produttore, possiamo ricavare questi dati:

<table>
<thead>
<tr>
<th>Area di base</th>
<th>3 archi 29 m²</th>
<th>4 archi 42 m²</th>
<th>5 archi 56 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso</td>
<td>3 archi 135 kg</td>
<td>4 archi 180 kg</td>
<td>5 archi 225 kg</td>
</tr>
<tr>
<td>Carico di neve</td>
<td>15 kg/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistenza al vento</td>
<td>100 km/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiale</td>
<td>EMC® + tessuto spalmato in PVC 1100 Dtex</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dotazioni standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Mazza e picchetti per ancoraggio al suolo</td>
</tr>
<tr>
<td>– Gonfiatore manuale</td>
</tr>
<tr>
<td>– Kit di riparazione</td>
</tr>
<tr>
<td>– Manuale d’uso</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Telo coibente</td>
</tr>
<tr>
<td>– Telo divisorio</td>
</tr>
<tr>
<td>– Telo ombreggiante</td>
</tr>
<tr>
<td>– Gonfiatore elettrico</td>
</tr>
<tr>
<td>– Kit di pavimentazione</td>
</tr>
<tr>
<td>– Tappeto antipolvere</td>
</tr>
</tbody>
</table>

Con l’ausilio del gonfiatore elettrico la tenda può essere eretta da un solo operatore in 4 minuti. Questo è solo il calcolo della fase di pompaggio della struttura portante.

In realtà il tempo totale si allunga notevolmente se si considerano tutte le fasi di predisposizione e le fasi di installazione degli optional e degli impianti.

Infatti la tenda per potersi dimostrare una struttura efficiente ha bisogno di adagiarsi su una superficie livellata; nel caso non lo sia si deve ricorrere alla posa di grelle livellanti, fornite a parte dalla stessa azienda Eurovinil. I grigliati sono realizzati in materiale altamente resistente, di norma polietilene a bassa densità con resistenza a carico statico di 400 kg/dm³, e permettono la composizione di percorsi di camminamento.

Il kit di ombreggiamento consiste in una serie aggiuntiva di teli con il compito di abbattere le calde temperature di circa 5-7°C e di proteggere gli ambienti dall’irraggiamento. L’applicazione deve essere eseguita successivamente al gonfiaggio della tenda; ciò implica la presenza di almeno due operatori.

La pavimentazione, anch’essa da inserire successivamente, comprende dei tappeti speciali a riciclo vinilico di colore verde composto da strisce arrotolabili. Crea una superficie interna che isola dall’umidità di risalita dal terreno e trattiene la polvere. Tuttavia una pavimentazione di questo tipo, se non poggia su una superficie estremamente pianeggiante, crea difficoltà nella movimentazione delle strumentazioni sanitarie.
Come ultima fase di montaggio c’è l’installazione degli impianti elettrici e di condizionamento. Gli impianti vengono consegnati separatamente e sono uguali per entrami i modelli di tenda “piccola” e “media”; se ne darà specificazione dopo aver studiato la tenda modello Multifunzionale.

Tenendo in considerazioni tutti gli aspetti sopra elencati, gli slogan commerciali di “montaggio in 4 minuti” e di “imballaggio in 1 m³” vengono messi in discussione. I tempi di montaggio devono essere ridefiniti in un ordine di 30-40 minuti per tenda, con il lavoro di due operatori; mentre per le dimensioni e costi di trasporto devono essere aggiunti tutti gli ingombri generati da attrezzature complementari e dagli impianti.

Tenda Media Multifunzionale

![Tenda Media Multifunzionale](image)

Figura 4.2.1. – 05 : Tenda Eurovinil modella Multifunzionale.

Le grandi dimensioni di questo modello permettono un uso svariato della struttura: come rimessa per mezzi, magazzino, sala riunioni, officina, e nell’ambito di ospedali da campo come degenze per pazienti, triage e accoglienza, o sala mensa. I materiali e le tecnologie utilizzate sono le stesse descritte in precedenza per il modello TPSE-07.

La formula base della Tenda Media Multifunzionale prevede la composizione di 3 moduli: un modulo anteriore, uno centrale e uno posteriore. Così assemblata offre una superficie coperta di 105 m², ma aggiungendo moduli centrali la si può ampliare fino a 160 m². La modularità si estende al possibile collegamento con altre tende Multifunzionale o TPSE-07, in 4 direzioni: le aperture infatti sono una su ogni fronte.
I moduli sono autoportanti per mezzo di una struttura pneumatica gonfiabile simile al modello più piccolo. Il diametro degli archi è di 50 cm, con interasse tra gli archi di circa 240 cm; i traversi di collegamento non seguono più solo il colmo della copertura, ma sono presenti altre due file per irrigidire ulteriormente la struttura. I tempi di gonfiaggio si prolungano a 20 minuti.

Nella configurazione imballata ogni modulo arriva ad occupare 1,5 m³. Anche in questo caso rimango esclusa dal conteggio tutte le attrezzature supplementari alla strutture, comunque necessarie a renderla operativa.

L’unica differenza sostanziale con il modello precedente sta nelle dimensioni più capienti. L’altezza interna arriva a raggiungere i 4,10 metri, la lunghezza 12,67 m e la larghezza 8,25 m.

Aumentando così notevolmente la luce interna della struttura, si viene a creare uno scompenso nelle capacità di resistenza alle condizioni esterne: vento e neve. Il dato riportato nella seguente tabella delle specifiche tecniche non è incoraggiante, poiché in condizioni di evento catastrofico non è raro superare i valori limiti indicati.
<table>
<thead>
<tr>
<th>Area di base</th>
<th>Modulo frontale</th>
<th>26 m²</th>
<th>Modulo centrale</th>
<th>41 m²</th>
<th>Modulo posteriore</th>
<th>38 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso</td>
<td>Modulo frontale</td>
<td>181 kg</td>
<td>Modulo centrale</td>
<td>187 kg</td>
<td>Modulo posteriore</td>
<td>198 kg</td>
</tr>
<tr>
<td>Carico di neve</td>
<td>10 kg/m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistenza al vento</td>
<td>80 km/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiale</td>
<td>EMC® + tessuto spalmato in PVC 1100 Dtex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dotazioni standard</td>
<td>– Mazza e picchetti per ancoraggio al suolo</td>
<td>– Gonfiatore manuale</td>
<td>– Kit di riparazione</td>
<td>– Manuale d’uso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional</td>
<td>– Telo coibente</td>
<td>– Telo divisorio</td>
<td>– Telo ombreggiante</td>
<td>– Gonfiatore elettrico</td>
<td>– Kit di pavimentazione</td>
<td>– Tappeto antipolvere</td>
</tr>
</tbody>
</table>
La cabina doccia per singolo operatore, consente di effettuare la decontaminazione NBC di personale operativo di ritorno dalla zona contaminata. Gli operatori, ancora muniti dell’apposito equipaggiamento di protezione NBC (tuta, maschera, guanti, stivali, ecc.), grazie a questa struttura possono sottoporsi ad una prima decontaminazione non appena rientrati alla zona campale.

Lo spazio interna della struttura, pneumatica gonfiabile, consente all’operatore di ruotare completamente su se stesso assicurando la completa esposizione agli ugelli doccia da cui fuoriesce il materiale decontaminante (acqua calda pressurizzata e composito decontaminante).

La struttura gonfiabile è molto compatta, e può essere eretta da un solo operatore in 2 minuti e 30 secondi.

La stabilità può essere migliorata attraverso due sacche perimetrali riempibili d’acqua, ed eventuali tiranti da ancorare a terra.

L’impianto docce è integrato alla tenda ed è ancora agli archi. Può funzionare con o senza telo di copertura. È composto da 11 ugelli in materiale plastico e da due pistole spruzzatrici collegate ad un tubo in poliuretano di 4 metri. L’acqua che si deposita sul fondo viene aspirata da una pompa e convogliata in appositi serbatoi di raccolta.

Le caratteristiche tecniche si possono così riassumere:

<table>
<thead>
<tr>
<th>Caratteristica</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larghezza</td>
<td>276 cm</td>
</tr>
<tr>
<td>Lunghezza</td>
<td>303 cm</td>
</tr>
<tr>
<td>Altezza</td>
<td>287 cm</td>
</tr>
<tr>
<td>Peso</td>
<td>36 kg</td>
</tr>
<tr>
<td>Pressione di esercizio</td>
<td>0,20 bar</td>
</tr>
<tr>
<td>Materiale</td>
<td>Tessuto spalmato in PVC 1100 Dtex</td>
</tr>
</tbody>
</table>
La Stazione di Decontaminazione è una tenda di tipo pneumatico progettata per rispondere in maniera tempestiva agli interventi di emergenza in cui si renda necessaria una decontaminazione di massa.

La Stazione di Decontaminazione è disponibile nella versione a 4 archi pneumatici di diametro 35 cm, con caratteristiche molto simili alla versione TPSE-07. La linea docce è preassemblata, realizzata in materiale plastico resistente e durevole. Il tempo di gonfiaggio è di circa 2 minuti e 30 secondi con gonfiatore elettrico.

La modularità delle tende permette di ottenere all’interno, per mezzo di teli divisorî, zone doccia, zone vestizione, zone di svestizione e controllo, divise in corsie per uomini, donne e barellati.

<table>
<thead>
<tr>
<th>Dimensioni esterne</th>
<th>5,40 m (larghezza) – 7,60 m (lunghezza) – 2,60 m (altezza)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensioni da impacchettata</td>
<td>1,20 m (larghezza) – 1,00 m (lunghezza) – 0,70 m (altezza)</td>
</tr>
<tr>
<td>Area di base</td>
<td>41 m²</td>
</tr>
<tr>
<td>Peso</td>
<td>160 kg</td>
</tr>
<tr>
<td>Pressione di esercizio</td>
<td>0,3 bar</td>
</tr>
<tr>
<td>Materiale</td>
<td>EMC® + tessuto spalmato in PVC 1100 Dtex</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Dotazioni standard | – Picchetti e mazza
– Kit di riparazione
– Gonfiatore manuale
– Manuale tecnico |
| Optional | – Catino di raccolta delle acque
– Grelle
– Teli divisorì
– Sacche di raccolta delle acque
– Pompa di aspirazione
– Impianto elettrico e di condizionamento |

4.2.2. LANCO

La società LANCO è basata ad Hannover, Germania, e si occupa della produzione di tende e di altri articoli tessili. La gamma dei prodotti si articola su tre linee, denominate: TentTech (Tende), TexTech (Docce di decontaminazione – Rescue Boats – Tensostrutture), SignTech (Gonfiabili pubblicitari).

I prodotti LANCO sono in servizio con i Vigili del Fuoco, la Croce Rossa, la Mezza Luna Rossa, varie Organizzazioni Non Governative, la Polizia, la Protezione Civile e le Forze Armate di 18 diversi Paesi. Per il mercato della protezione civile, LANCO ha specificatamente sviluppato diversi prodotti tra cui due linee di tende pneumatiche, una linea di tende con struttura in alluminio, e un sistema di decontaminazione.

![Image of a field hospital setup]

Figura 4.2.2. – 01: Ospedale da campo LANCO per Agenzia ANPAS a Carpi (Modena), 20 maggio 2012.

La linea di tende pneumatiche, caratterizzate da tecnologia di saldatura elettronica ad alta frequenza, si divide in due serie: la serie ARZ dotate di struttura portante auto-gonfiabile interamente pneumatica, e la serie ARZ H a struttura ibrida, con archi pneumatici gonfiabili collegati per mezzo di traversi in alluminio. Entrambe le serie si possono definire modulari, dal momento che è possibile unire due o più tende tra loro per costituire un unico agglomerato.
Serie ARZ

Figura 4.2.2. – 02 : Tende LANCO modello ARZ.

Le tende ARZ sono auto-gonfiabili, dotate di una struttura portante interamente pneumatica. Tutti gli elementi di supporto sono costruiti in tessuto impermeabile all’aria; possono essere gonfiate con bombole di aria compressa o con un gonfiatore elettrico, da parte di una sola persona.

Vengono prodotti diversi modelli della stessa serie a seconda delle dimensioni richieste. Si passa dalla tenda più piccola di superficie 10 m² alla più grande di 61 m².

<table>
<thead>
<tr>
<th>ARZ 10</th>
<th>ARZ 20</th>
<th>ARZ 204</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunghezza</td>
<td>340 cm</td>
<td>Lunghezza</td>
</tr>
<tr>
<td>Larghezza</td>
<td>320 cm</td>
<td>Larghezza</td>
</tr>
<tr>
<td>Altezza al colmo</td>
<td>230 cm</td>
<td>Altezza al colmo</td>
</tr>
<tr>
<td>Area</td>
<td>10 m²</td>
<td>Area</td>
</tr>
<tr>
<td>Area impacchettata</td>
<td>0,7 m²</td>
<td>Area impacchettata</td>
</tr>
<tr>
<td>Peso</td>
<td>52 kg</td>
<td>Peso</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARZ 30</th>
<th>ARZ 40</th>
<th>ARZ 50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunghezza</td>
<td>572 cm</td>
<td>Lunghezza</td>
</tr>
<tr>
<td>Larghezza</td>
<td>550 cm</td>
<td>Larghezza</td>
</tr>
<tr>
<td>Altezza al colmo</td>
<td>200 cm</td>
<td>Altezza al colmo</td>
</tr>
<tr>
<td>Area</td>
<td>31 m²</td>
<td>Area</td>
</tr>
<tr>
<td>Area impacchettata</td>
<td>0,84 m²</td>
<td>Area impacchettata</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Peso</td>
<td>103 kg</td>
<td>Peso</td>
</tr>
</tbody>
</table>

ARZ 60

<table>
<thead>
<tr>
<th>Lunghezza</th>
<th>1121 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larghezza</td>
<td>550 cm</td>
</tr>
<tr>
<td>Altezza al colmo</td>
<td>200 cm</td>
</tr>
<tr>
<td>Area</td>
<td>61 m²</td>
</tr>
<tr>
<td>Area impacchettata</td>
<td>1,2 m²</td>
</tr>
<tr>
<td>Peso</td>
<td>173 kg</td>
</tr>
</tbody>
</table>

Serie ARZ H

Le tende della serie ARZ H sono gonfiabili a struttura ibrida, costituite da archi pneumatici di supporto, costruiti in tessuto impermeabile all’aria. Gli archi sono collegati tra loro per mezzo di pali in alluminio, posizionati al colmo ed al cambio pendenza. Le tende possono essere gonfiate con un gonfiatore elettrico, da parte di due persone.

Vengono realizzati quattro modelli della stessa serie, anche in questo caso a seconda delle dimensioni.
<table>
<thead>
<tr>
<th>ARZ 15 H</th>
<th>ARZ 30 H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunghezza</td>
<td>290 cm</td>
</tr>
<tr>
<td>Larghezza</td>
<td>570 cm</td>
</tr>
<tr>
<td>Altezza al colmo</td>
<td>200 cm</td>
</tr>
<tr>
<td>Area</td>
<td>16 m²</td>
</tr>
<tr>
<td>Area impacchettata</td>
<td>0,9 m²</td>
</tr>
<tr>
<td>Peso</td>
<td>81 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARZ 45 H</th>
<th>ARZ 60 H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunghezza</td>
<td>790 cm</td>
</tr>
<tr>
<td>Larghezza</td>
<td>570 cm</td>
</tr>
<tr>
<td>Altezza al colmo</td>
<td>200 cm</td>
</tr>
<tr>
<td>Area</td>
<td>45 m²</td>
</tr>
<tr>
<td>Area impacchettata</td>
<td>1,7 m²</td>
</tr>
<tr>
<td>Peso</td>
<td>161 kg</td>
</tr>
</tbody>
</table>

I vantaggi delle tende ARZ e ARZ H sono l’assenza di paleria interna che interrompe gli spazi, e la totale multifunzionalità degli stessi. Infatti l’allestimento della tenda viene introdotto in un secondo momento, con la libertà di predisporre lo spazio nella maniera più funzionale al caso.

In un contesto di emergenza però questo punto potrebbe diventare critico rispetto ai tempi e le modalità di allestimento. La rapidità d’intervento, come già evidenziato più volte, è fattore chiave del successo della risposta sanitaria. Allestire una tenda comporta tempi piuttosto lunghi, sia nell’allacciamento degli impianti sia nella disposizione del mobilio e delle strumentazioni mediche. Queste ultime talvolta non sono facili da movimentare, viste le loro dimensioni e la fragilità dei loro componenti. In questo senso, gli operatori dovranno essere esperti e preparati ad affrontare situazioni di forte pressione decisionale.

Per inquadrare a livello economico le tende pneumatiche Lanco, il costo parte dai 3.683 € del modello più piccolo ARZ 15 H e arriva a 8.043 € del modello più grande ARZ 60 H.
Tenda SG per Protezione Civile

La struttura delle tende è realizzata in paleria di alluminio anodizzato, diametro 40 mm, con connessioni e piastre di appoggio al suolo realizzate in fusione di alluminio. La paleria della veranda di ingresso è realizzata in acciaio galvanizzato, diametro 28 mm.

Il tessuto del telo di copertura è un cotone-modacrilico di peso 310 g/m², di colore blu, resistente alla fiamma in classe 1 (UNI 9177) e impermeabile alla colonna d’acqua. Le finestre sono munite di rete zanzariera, di un pannello trasparente e un pannello oscurante. La tenda è munita di 2 verandine di ingresso, 2 porte, 2 maniche per il passaggio di cavi elettrici e tubazioni di riscaldamento.

Il telo interno è realizzato in tessuto 100% cotone, peso 280 g/m², di colore grigio chiaro, resistente alla fiamma in classe 1 con catino di base integrale, realizzato in tessuto poliestere spalmato PVC peso 620 g/m², colore grigio. Le finestre sono munite di rete zanzariera e pannello trasparente. Il telo interno è munito di 2 porte, 2 maniche per il passaggio di cavi elettrici e tubazioni di riscaldamento.

Le dotazioni standard fornite da LANCA sono: sacca di trasporto della struttura, sacca per elementi di connessione e picchetti, sacca per telo esterno, sacca per telo interno, picchetti, funi controvento, mazzetta. Le dotazioni opzionali: teli divisorì interni, lampade, riscaldatori, condizionatori.

Come nelle precedenti linee, LANCO offre la possibilità di scegliere le dimensioni della tenda tra quattro modelli base.
SG 300 FR

<table>
<thead>
<tr>
<th>Lunghezza</th>
<th>400 cm</th>
<th>Lunghezza</th>
<th>600 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larghezza</td>
<td>590 cm</td>
<td>Larghezza</td>
<td>590 cm</td>
</tr>
<tr>
<td>Altezza al colmo</td>
<td>285 cm</td>
<td>Altezza al colmo</td>
<td>285 cm</td>
</tr>
<tr>
<td>Area</td>
<td>23,6 m²</td>
<td>Area</td>
<td>35,4 m²</td>
</tr>
<tr>
<td>Area impacchettata</td>
<td></td>
<td>Area impacchettata</td>
<td></td>
</tr>
<tr>
<td>Peso</td>
<td>107 kg</td>
<td>Peso</td>
<td>151 kg</td>
</tr>
</tbody>
</table>

SG 400 FR

<table>
<thead>
<tr>
<th>Lunghezza</th>
<th>800 cm</th>
<th>Lunghezza</th>
<th>1000 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larghezza</td>
<td>590 cm</td>
<td>Larghezza</td>
<td>590 cm</td>
</tr>
<tr>
<td>Altezza al colmo</td>
<td>285 cm</td>
<td>Altezza al colmo</td>
<td>285 cm</td>
</tr>
<tr>
<td>Area</td>
<td>47,2 m²</td>
<td>Area</td>
<td>59 m²</td>
</tr>
<tr>
<td>Area impacchettata</td>
<td></td>
<td>Area impacchettata</td>
<td></td>
</tr>
<tr>
<td>Peso</td>
<td>188 kg</td>
<td>Peso</td>
<td>224 kg</td>
</tr>
</tbody>
</table>

SG 500 FR

<table>
<thead>
<tr>
<th>Lunghezza</th>
<th>1000 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larghezza</td>
<td>590 cm</td>
</tr>
<tr>
<td>Altezza al colmo</td>
<td>285 cm</td>
</tr>
<tr>
<td>Area</td>
<td>59 m²</td>
</tr>
<tr>
<td>Area impacchettata</td>
<td></td>
</tr>
<tr>
<td>Peso</td>
<td>224 kg</td>
</tr>
</tbody>
</table>

Sistema di decontaminazione

![Immagini](image)

Figura 4.2.2. – OS : Sistema di decontaminazione LANCO.

Similmente alla linea Eurovinil, LANCO produce una soluzione per la decontaminazione, singola o collettiva. Le strutture sono costituite da tende pneumatiche con l’apposito catino di raccolta dell’acqua.

La cabina singola è realizzata in tessuto poliestere spalmato PVC su entrambi i lati (peso 600 g/m2), impermeabile all’acqua, resistente a fungi e muffe ed imputrescibile. La cabina è dotata di larghe
finestre trasparenti. Il catino di base è con lo stesso materiale ma munito di goffratura anti-scivolo.

La struttura portante pneumatica è costruita in tessuto poliestere spalmato PVC, su entrambi i lati (peso 1100 g/m²), collegata al telo della cabina doccia da un sistema di funi ed occhielli. La doccia di decontaminazione può essere gonfiata sia con aria compressa che per mezzo di un gonfiatore elettrico, in circa 1 minuto. La valvola di sovrapressione protegge la struttura da un gonfiaggio eccessivo. Sono presenti ugelli a cono pieno, disposti lungo gli archi (4,7 litri/minuto a 3 bar, per ciascun ugello), pistola manuale con tubazione di 1,5 metri, rubinetto di arresto, raccordo rapido tipo D per l’acqua di alimentazione, raccordo rapido di tipo C per acqua di scarico.

La doccia singola ha pianta quadrata di dimensione 2 metri per lato, ed una altezza di 2,5 metri. La struttura al netto degli impianti pesa 44 kg.

La tenda per la decontaminazione collettiva è realizzata con gli stessi materiale e le stesse tecniche della cabina doccia singola. Viene integrato un modulo di svestizione e vestizione alla zona doccia. Le dimensioni finali sono di 4,50 per 3,00 metri di base e 2,60 m d’altezza. Il peso è di 135 kg.

In dotazione opzionale vengono fornite le pompe di assorbimento dell’acqua, Hydrophor pump e Suction pump.

In generale tutte le tende LANCO hanno la necessità di impianti elettrici e di condizionamento esterni, collegati tramite tubazioni agli ambienti interni. LANCO provvede all’attrezzatura per la purificazione dell’aria, con lo strumento “Air Filtration Unit” in grado di generare un ricircolo d’aria di 180 m³/h.
4.3. Containers

Con lo studio fin qui condotto si è dimostrato come la soluzione di un presidio tendato abbia ottimi requisiti di leggerezza, trasportabilità, rapidità di montaggio e versatilità di destinazione d’uso. Nonostante ciò negli ultimi anni si sono andate progettando soluzioni più resistenti nel lungo periodo, capaci di adattarsi a terreni e condizioni climatiche difficili, e in grado di proteggere le strumentazioni mediche campali, che sempre di più possiedono alto contenuto tecnologico.

È proprio la struttura sanitaria che richiede maggior cura progettuale all’interno del complesso generale dell’ospedale da campo, con l’obiettivo di raggiungere i requisiti e le prestazioni di un ospedale tradizionale.

Il mercato propone quindi la soluzione di un presidio containerizzato: l’ossatura e le dimensioni di base sono quelle caratteristiche di un container ISO, trasportabile su terra, mare e aria. Rispetto alle tende riescono ad essere molto più robusti, sacrificando però il rapporto d’impronta a terra. Le aziende costruttrici hanno innovato il sistema container rendendolo espandibile, guadagnando superficie e volume utili in sede di utilizzo.

Considerata la rigidità del blocco anche in fase di trasporto, è possibile allestire il container in tempo di pace con le strumentazioni mediche. L’operatività della struttura diventa immediata non appena questa arriva nel luogo del disastro.

Lo stato dell’arte di sistemi medici mobili containerizzati trova oggi il più alto livello di innovazione in una compagnia italiana attiva sul mercato globale: MMH – Mobile Modular Hospital.

4.3.1. MMH - Mobile Modular Hospitals

MMH - Mobile Modular Hospitals nasce nel 2004 a Siena dalla esperienza industriale di SWISEL Italiana, che operava dal 1974 come azienda elettromeccanica per la produzione di precisione ad alto contenuto tecnologico. SWISEL Italiana progettava e produceva dal 1980 shelter e moduli allestiti per molteplici impieghi civili e militari.

Lo studio perseguito da MMH mira alla progettazione e costruzione di moduli sanitari attrezzati, installabili in tempi rapidi e che garantiscano elevata protezione alle strumentazioni cliniche ad alta tecnologia. La linea che trova soluzione a queste esigenze viene chiamata “Sistema di presidio medico” (Medical Shelter System) per emergenze sanitarie. Gli scenari di utilizzo sono appunto quelli derivanti da eventi catastrofici: terremoti, epidemie, contaminazioni, emergenze varie, grandi eventi, programmi di cooperazione internazionale, interventi della Difesa.
Le “Unità Mediche Mobili” (Mobil Medical Units) consentono modalità di impiego e prestazioni più efficienti rispetto alle strutture tendate, in relazione alla facilità di movimentazione e insediamento su tutti i tipi di terreno, elevata protezione delle apparecchiature contenute, maggiore durata operativa anche in severe condizioni ambientali, costi operativi e di manutenzione più contenuti.

Le Unità Mediche Mobili sono realizzate e completamente allettate da MMH. Ne viene previsto l’impiego singolo ed autonomo, oppure in pool per formare interi complessi sanitari mobili. Le tipologie funzionali fondamentali per un dispositivo sanitario mobile sono quelle individuate anche in precedenza nella normativa italiana: laboratorio di analisi, radiologia, pronto soccorso, farmacia, chirurgia e unità di servizio.

Ogni unità è costituita da un telaio strutturale composto da profilati estrusi in lega leggera, ad alta resistenza, fissati meccanicamente ai blocchi d’angolo ISO. Al telaio viene fissata, tramite rivettatura, la pannellatura, anch’essa con caratteristiche strutturali e portanti. I pannelli sono del tipo a “sandwich” incollato sotto pressa a caldo, formati da due lamiere con all’interno coibente espanso in lastra termostabilizzato e autoestinguente, e telaio ad alta resistenza che consente la successiva sicura applicazione di punti di ancoraggio per gli apparati o allestimenti. La cabina è dotata di un sistema di sollevatori, applicati ai blocchi d’angolo, che consentono il livellamento.

L’unità di base ha dimensioni caratteristiche del container di trasporto ISO 20 piedi (6096 mm). MMH ha innovato la semplice unità rendendola capace di espandere il proprio volume di 2 o 3 volte. Il sistema di espansione è manuale e richiede l’aiuto di due operatori, senza la necessità di strumenti speciali.

Tutte e tre le varianti contengono al loro interno un vano tecnico, nel quale sono alloggiati i componenti per il controllo dell’ambiente interno. È presente un climatizzatore che consente la regolazione ed il controllo della temperatura in ambiente di esercizio; un impianto elettrico completo
di illuminazione, e di quadro elettrico di comando e controllo; impianto ad aria compressa per il trattamento dell’aria.

<table>
<thead>
<tr>
<th>Shelter monovolume “1V”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunghezza esterna</td>
</tr>
<tr>
<td>Larghezza esterna</td>
</tr>
<tr>
<td>Altezza esterna</td>
</tr>
<tr>
<td>Area utile vano operativo</td>
</tr>
<tr>
<td>Volume utile vano operativo</td>
</tr>
<tr>
<td>Peso a vuoto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shelter a 2 volumi “2V”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunghezza esterna (cabina chiusa)</td>
</tr>
<tr>
<td>Larghezza esterna (cabina chiusa)</td>
</tr>
<tr>
<td>Altezza esterna (cabina chiusa)</td>
</tr>
<tr>
<td>Area utile vano operativo</td>
</tr>
<tr>
<td>Volume utile vano operativo</td>
</tr>
<tr>
<td>Peso a vuoto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shelter a 3 volumi “3V”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunghezza esterna (cabina chiusa)</td>
</tr>
<tr>
<td>Larghezza esterna (cabina chiusa)</td>
</tr>
<tr>
<td>Altezza esterna (cabina chiusa)</td>
</tr>
<tr>
<td>Area utile vano operativo</td>
</tr>
<tr>
<td>Volume utile vano operativo</td>
</tr>
<tr>
<td>Peso a vuoto</td>
</tr>
</tbody>
</table>

Alcuni moduli, in relazione alla propria destinazione funzionale, possono essere realizzati in differenti versioni, a seconda delle scelte operative. MMH propone come soluzione standard la “1V” per le funzioni di laboratorio, radiologia, pronto soccorso, farmacia, chirurgia e servizi. In aggiunta è stata progettata ad hoc una sala operatoria in configurazione “3V”, per soddisfare i requisiti di spazio richiesti dalla vigente normativa.
Il modulo espandibile per la sala operatoria “3V” è realizzato in materiale combinato: acciaio e alluminio. In questo modo si sfruttano i vantaggi della resistenza dell’acciaio e la proprietà di leggerezza dell’alluminio.

L’area operativa è di 27 m². Il vano tecnico ha una porta secondaria verso l’esterno, ed è fisicamente isolato rispetto alla sala operatoria.

Il pavimento interno della sala è liscio, uniforme, antisdrucciolevole e completamente libero da cavi o tubazioni; è resistente all’attacco di agenti chimici o biologici, ed è direttamente collegato alle pareti. Queste sono lisce, lavabili e disinfettabili, resistenti al fuoco. Stesse caratteristiche corrispondono ai pannelli di copertura, che nella superficie interna garantiscono massima pulizia.

Il modulo può operare in temperature esterne che oscillano dai -15 ai +55°C, riuscendo a mantenere un clima di comfort interno tra i +20 e +24°C. L’umidità relativa interna viene controllata e mantenuta tra il 40% e 60%. Il ricambio d’aria raggiunge un massimo di 1200 m³/h, e l’efficienza di filtraggio dell’aria è calcolata al 99,99% con un sistema di filtri assoluti di dimensioni standard. Sopra al tavolo operatorio circola un flusso d’aria laminare, in grado di assicurare la totale pulizia durante l’esercizio.

Dal vano tecnico vengono collegati i terminali per i gas medicali, secondo le norme UNI-EN-ISO 7396.1: ossigeno, protossido di azoto, aria medica, gas anestetici.

I moduli adibiti alle funzioni sono completati dall’arredo e dalla strumentazione medica ad alto contenuto tecnologico. Il catalogo standard proposto da MMH prevede:
Laboratorio di analisi

<table>
<thead>
<tr>
<th>Funzioni erogate</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Servizio medico ed epidemiologico</td>
</tr>
<tr>
<td>- Laboratorio per analisi chimiche</td>
</tr>
<tr>
<td>- Centro trasfusionale</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Componenti principali</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Centrifuga per uso ematologico</td>
</tr>
<tr>
<td>- Unità di sterilizzazione e lavatrice</td>
</tr>
<tr>
<td>- Microscopio binoculare</td>
</tr>
<tr>
<td>- Agitatore magnetico riscaldato</td>
</tr>
<tr>
<td>- Spettrofotometro visivo</td>
</tr>
<tr>
<td>- Analizzatore di sangue e urina</td>
</tr>
<tr>
<td>- Contatore emacitometrico</td>
</tr>
<tr>
<td>- Sistema completo di elettroforesi</td>
</tr>
<tr>
<td>- Unità fotometrica di fiamma</td>
</tr>
<tr>
<td>- Frigorifero per sangue e reagenti</td>
</tr>
</tbody>
</table>

Radiologia

<table>
<thead>
<tr>
<th>Funzioni erogate</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Servizi radiografici</td>
</tr>
<tr>
<td>- Servizi medici generali</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Componenti principali</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Unità raggi X completa di: unità di controllo, fonte generatore H.T. per esposizione raggi X con anodo di tipo rotativo, lettino completo con potter, unità teleradiografica montata in parete.</td>
</tr>
<tr>
<td>- Negativoscopio</td>
</tr>
</tbody>
</table>

Pronto soccorso

<table>
<thead>
<tr>
<th>Funzioni erogate</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Servizi medici generali di emergenza</td>
</tr>
<tr>
<td>- Ambulatorio dentale</td>
</tr>
<tr>
<td>- Ambulatorio ginecologico</td>
</tr>
<tr>
<td>- Ambulatorio di stomatologia</td>
</tr>
<tr>
<td>- Chirurgia locale</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Componenti principali</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Stazione dentale completa con torno</td>
</tr>
<tr>
<td>- Kit di fese per torno dentale</td>
</tr>
<tr>
<td>- Unità radiologica dentale</td>
</tr>
<tr>
<td>- Negativoscopio</td>
</tr>
<tr>
<td>- Lampada per sala operatoria</td>
</tr>
<tr>
<td>- Unità completa di anestesia</td>
</tr>
<tr>
<td>- Unità di sterilizzazione</td>
</tr>
<tr>
<td>- Frigorifero</td>
</tr>
</tbody>
</table>
Il trasporto di questi moduli, che per caratteristiche dimensionali e materiali si possono definire container, risulta molto efficace. Infatti qualunque mezzo predisposto a movimentare container è idoneo al trasporto dei moduli MMH: camion, nave, aereo, elicottero, treno. I tempi di inizio operatività si riducono ai soli tempi di trasporto, essendo ogni modulo già pre-allestito per la funzione richiesta.
4.4. Soluzioni miste tende-containers

Molte delle aziende manifatturie oggi attive nel settore, per colmare gli svantaggi derivanti dall’impiego di sole tende o di soli container, hanno adottato una linea di proposta ibrida, in cui le due tipologie cooperano tra loro. I container sono normalmente utilizzati per le funzioni mediche, mentre le tende per le funzioni di supporto.

Le caratteristiche di tende e container rimangono simili a quelle studiate in precedenza. Non vengono sviluppate cioè sostanziali modifiche volte a incrementare il livello di interconnessione e interoperabilità tra le strutture. I due sistemi risultano sostanzialmente autonomi ma fisicamente collegati tra loro.

Per elaborare un quadro dello stato dell’arte sono state scelte in questa sede una delle più grandi società produttrici di soluzioni miste: Real Trade Praha.

4.4.1. Real Trade Praha

La società Real Trade Praha è stata fondata a Praga il 3 febbraio 1998. Lo scopo principale della società è stato la realizzazione di un commercio nazionale e internazionale di materiali militari. Dal 2000 la società è in possesso del "permesso per la realizzazione del commercio internazionale di materiali militari". Attualmente l’azienda è autorizzata al commercio con l’ampio spettro degli assortimenti militari comprese le armi, armi di grosso calibro, munizioni, bombe, missili, mezzi tossicologici, aerei ed elicotteri e tutti i pezzi di ricambio per le citate tecnologie. L’autorizzazione include i diritti per le consegne in 90 paesi in tutti i continenti. La parte principale della tecnologia offerta deriva dalle apparecchiature dell’esercito della Repubblica Ceca, e ulteriormente gli eserciti di Slovacchia, Ungheria, Serbia e altri.

Real Trade Praha fornisce una soluzione per ospedale da campo di tipo misto: un impianto composto da tende e da container. La capacità dell’ospedale standard è progettata e quantificata per 50 posti letto. Ad un incremento del numero dei pazienti può corrispondere però una estensione del complesso in maniera modulare, aumentando il numero di tende o dei container a seconda delle funzioni richieste.

L’impianto si fonda su uno schema a spina, in cui la parte centrale è formata da un corridoio di tende pneumatiche gonfiabili. Queste a loro volta sono collegate da entrambi i lati ad altre tende o ai container, tramite dei moduli di interconnessione.
La composizione viene determinata associando ad ogni reparto la corrispondente tipologia strutturale più adatta ad ospitare tale funzione:

- Corridoio centrale: 6 tende gonfiabili
- Reception e triage medico: 2 tende gonfiabili
- Unità di decontaminazione: 1 tenda gonfiabile
- Reparto ambulatoriale:
 - Pronto soccorso: 1 tenda gonfiabile
 - Sala di attesa per pazienti: 1 tenda gonfiabile
 - Unità sanitaria: 1 container ISO
 - Amministrazione: 1 container ISO
- Reparto di chirurgia:
 - Sala operatoria: 2 container ISO uniti
 - Sala di preparazione per personale medico: 1 container ISO
 - Sala di preparazione per paziente: 1 container ISO
 - Unità di sterilizzazione: 2 container ISO uniti
 - Sala per lo staff: 1 container ISO
 - Corridoio per reparto chirurgico: 6 container ISO
 - Unità di servizio: 2 container ISO
- Reparto di diagnosi e farmacia:
 - Radiologia: 1 container ISO
 - CT: 2 container ISO
 - Laboratorio ematologico: 1 container ISO “2in1”
 - Farmacia: 1 container ISO “2in1”
- Reparto degenze:
• Degenze: 3 tende gonfiabile
• Nursery: 1 container ISO
• Sala per lo staff medico: 1 tenda gonfiabile
• Sala da pranzo: 1 tenda gonfiabile
• Unità sanitaria: 1 container ISO

Le attrezzature dell’ospedale da campo sono complete da dalla parte logistica, così composte:

- Cucina campale: 1 container ISO “2in1”
- Magazzino per cibo: 1 container ISO
- Riserve d’acqua per cucina: 1 container ISO
- Sala da pranzo per personale: 2 tende gonfiabili
- Lavanderia: 2 container ISO
- Unità sanitarie per staff: 2 container ISO
- Riserve d’acqua potabile: 4 container ISO
- 8 container di trasporto per le tende

In generale le strutture, simili nelle caratteristiche a quelle descritte singolarmente dei capitoli precedenti, possono operare in condizioni climatiche esterne variabili da -32 a +49°C.

Hanno stabilità sotto venti costanti di 80 km/h e resistono a raffiche di vento di 120 km/h.

I moduli di interconnessione sono realizzati con lo stesso tessuto delle tende pneumatiche, e vengono sigillate attorno alla apertura delle due strutture da metterne in comunicazione. Va evidenziato che questo tipo di soluzione non è del tutto efficiente; infatti le quote di calpestio di tende e di container sono diverse tra loro: la pavimentazione delle tende poggia a terra, con relativi problemi di regolarità del terreno, mentre i container sono generalmente sollevati da terra per mezzo dei piedi d’appoggio. Il leggero dislivello rappresenta una soluzione di continuità nella distribuzione e quindi una barriera architettonica per gli utenti.
4.5. Soluzioni modulari prefabbricate

Sul panorama mondiale della produzione di strutture per ospedali da campo si stanno affacciando nuove soluzioni, modulari e interamente prefabbricate, sostanzialmente differenti da quelle ormai consolidate di tende e container. L’alto numero di eventi catastrofici e il loro sempre più gravoso impatto su beni materiali e persone, richiede una riflessione più contemporanea nella definizione delle strutture campali.

La prefabbricazione rimane l’unico processo in grado di assicurare prodotti di alta qualità e predisposti ad un impegno immediato; la modularità, intesa come standardizzazione sia nei processi produttivi sia nei prodotti e nelle loro componenti, si connota come miglior fattore per la riduzione dei costi e la semplicità di utilizzo.

La prima soluzione che si avvia verso questa direzione nasce in Italia, dall’azienda Eurotec MB, con il nome di GICA Modular. Una risposta unica e semplice a qualunque tipo di spazio di un ospedale da campo.

4.5.1. Eurotec MB

In situazioni normali e di emergenza, Eurotec MB offre assistenza qualificata e supporto nella fornitura di strutture sanitarie a Nazioni Unite, Organizzazioni internazionali e umanitarie (Croce Rossa, Mezzaluna Rossa, ONG), istituzioni governative e altre organizzazioni filantropiche.

Figura 4.5.1. – 01 : Ospedale da campo Eurotec MB con soluzione GICA Modular.
La soluzione innovativa di Eurotec MB è “GICA Modular”, una costruzione composta di moduli prefabbricati assemblabili. Grazie alla modularità e flessibilità di spazio questa soluzione trova utilizzo in qualunque genere di sistemazione. La pianta dell’edificio può essere di ogni forma e dimensione, comunque basata su una griglia modulare di 2,50 x 2,50 metri. La struttura è concepita per ottenere costruzioni di dimensioni che possono essere ampliate a seconda delle esigenze personali. Il modulo base nella configurazione operativa possiede un’impronta a terra di 13,24 m², e superficie utile interna di 11,74 m².

![Figura 4.5.1 – 02: Esploso della struttura del modulo base GICA Modular.](image)

Ogni modulo è formato dall’assemblaggio di elementi standard: parete vuota (senza serramenti), parete piena (con porta o finestra), elemento di colonna, pannello del tetto e pannello del pavimento. Di seguito sono riportate le principali caratteristiche per ogni elemento.

- **Parete vuota:** è composta da un telaio di supporto in alluminio estruso anodizzato, all’intero del quale è alloggiato un sistema di parete piena senza serramenti. Il sistema consiste in una pannellatura isolante di spessore 50 mm, costituita da 2 fogli esterni di ferro pre-verniciato e pre-zincato (spessore 6/10) e uno strato interno in poliuretano espanso autoestinguente. Le dimensioni del blocco sono di 2440 x 2497 x 100 mm. Il peso è 20 kg.
 Al telaio sono fissati 6 ganci ad attacco rapido per la connessione della parete all’elemento colonna. Il telaio delle pareti include all’interno il canale di scolo per le acque piovane.

- **Parete piena:** presenta le stesse caratteristiche della parete vuota, ma ospita i serramenti. Il peso quindi aumenta a 90 kg, diventando l’elemento più pesante.
 La porta, di dimensioni 900 x 2050 mm, viene installata su telaio in alluminio estruso anodizzato. È dotata di guarnizioni anti polvere e zanzariera contro gli insetti.
 La finestra ad apertura scorrevole, che misura 900 x 900 mm, è anch’essa inserita su telaio in alluminio. È realizzata con vetro infrangibile, persiana interna e zanzariera.

- **Elemento di colonna:** le colonne fungono da elemento portante, alle quali si ancorano le pareti. Sono realizzate in alluminio estruso anodizzato, di sezione quadrata 100 x 100 mm, e
alte 2500 mm. Possiedono 8 guarnizioni di gomma a tenuta, 2 per lato, per sigillare le fessure durante in motaggio.

Le colonne sono munite di piedini, in ferro galvanizzato, regolabili in altezza (corsa di 300 mm) e adattabili all’inclinazione del terreno fino a 15°. Il peso di ogni colonna, incluso il relativo piedino, è di 35 kg.

- Pannello del tetto: si tratta di un unico pannello in lamiera di acciaio zincato pre-verniciato (sp. 6/10) e poliuretano espanso ad alta densità, dello spessore totale di 60 mm. Il rivestimento esterno in lamiera di acciaio zincato ha un profilo ondulato, con funzione di tenuta all’acqua e alla schermatura solare. Le dimensioni sono di 2440 x 2440 x 60 mm, e pesa 70 kg.

Possiede una capacità di carico di copertura di 250 kg/m², comprovando buona resistenza al carico della neve in climi freddi.

- Pannello del pavimento: il pavimento è composto di due pannelli in poliuretano espanso di spessore 65 mm. Ognuno dei due pannelli misura 2420 x 1210 mm, e pesa 78 kg.

La capacità portante di questi pannelli è di 300 kg/m².

I singoli componenti sono stoccati in pallets. Questi sono movimentati per mezzo di gru o carrelli elevatori. Ogni componente è progettato per essere montato manualmente; il peso massimo di ogni componente arriva a non più di 90 kg. Le dimensioni del pallet imballato, contenente i componenti di un intero modulo, sono di 2275 x 2720 x 1285 mm. Il peso complessivo è di 1314,7 kg.

Figura 4.5.1. – 03 : Sistema di stoccaggio e trasporto di GICA Modular.

L’assemblaggio viene realizzato sul posto e non necessita di mezzi di sollevamento o attrezzature particolari di montaggio: ogni componente è movimentato a mano. I tempi di montaggio sono ridotti a qualche ora per costruzioni di piccole dimensioni; si richiede invece qualche giorno per complessi di grandi dimensioni; in alternativa è necessario aumentare il numero di operatori per ridurre i tempi di montaggio.

Il trasporto dei pallets è agevole e permette un’ampia combinazione di veicoli.
Via terra la soluzione più conveniente è quella su gomma: su un camion di 13 metri è possibile caricare 8 moduli standard GICA Modular, per un peso totale del carico di 10512 kg.

Via mare il trasporto viene effettuato per mezzo di container highcube da 40 piedi (12,2 metri), in ognuno dei quali si riescono a stivare 7 moduli standard GICA Modular e 1 GICA Conference. Il peso complessivo risulta di 5485 kg.

Il trasporto aereo su aeroplani predisposti al carico di merci pesanti e al servizio tattico militare, come i C130, permette di spedire per volta 8 moduli standard.

L’impianto elettrico di GICA Modular è completamente pre-cablato, viene fissato per mezzo di sistemi magnetici e non richiede l’intervento di un tecnico specializzato per le connessioni; i cavi interni sono alloggiati nelle pareti vuote. I dispositivi installati sono: connettore 220 V CEE, connettore RJ 45, connettore RJ 41, interruttori luci, illuminazione al neon 1 * 58W, interruttore di sicurezza magneto-termico.

Il sistema di climatizzazione si sviluppa attraverso l’inserimento di un apposito dispositivo, il monoblocco di climatizzazione 9000 btu mod skwt 0901UHP-7, che genera raffreddamento e riscaldamento per 9080 btu. Questa attrezzatura ha dimensioni compatte di 560 x 380 x 692 mm e peso di 48 Kg; viene alloggiata esternamente alla costruzione, su una mensola prevista in appositi pannelli-parete.
4.6. Scheda di valutazione finale

Lo studio approfondito delle soluzioni esistenti viene riassunto in una scheda finale di valutazione, capace di definire e comparare le caratteristiche di ogni soluzione. Il criterio utilizzato è quello dei fattori caratteristici, descritto al paragrafo 6.1., e si farà riferimento alle indicazioni di legenda riportate in forma abbreviata in fondo alla tabella.

<table>
<thead>
<tr>
<th>Azienda</th>
<th>Tende</th>
<th>Container</th>
<th>Miste</th>
<th>Prefab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eurovinil</td>
<td>D-5</td>
<td>D-5</td>
<td>C-4</td>
<td>P-4</td>
</tr>
<tr>
<td>Lanco</td>
<td>D-5</td>
<td>35-M</td>
<td>C-4</td>
<td></td>
</tr>
<tr>
<td>HTD Global</td>
<td>D-5</td>
<td>35-M</td>
<td>C-4</td>
<td></td>
</tr>
<tr>
<td>Tradeway</td>
<td>D-5</td>
<td>35-M</td>
<td>C-4</td>
<td></td>
</tr>
<tr>
<td>Vira soluzioni</td>
<td>D-5</td>
<td>35-M</td>
<td>C-4</td>
<td></td>
</tr>
<tr>
<td>MMH</td>
<td>4,5-V</td>
<td>35-M</td>
<td>35-M</td>
<td>35-M</td>
</tr>
<tr>
<td>Marshall</td>
<td>1,9-V</td>
<td>35-M</td>
<td>35-M</td>
<td>35-M</td>
</tr>
<tr>
<td>Weatherhaven</td>
<td>1,3-V</td>
<td>35-M</td>
<td>35-M</td>
<td>35-M</td>
</tr>
<tr>
<td>Real Trade Praha</td>
<td>1,8-V</td>
<td>35-M</td>
<td>35-M</td>
<td>35-M</td>
</tr>
<tr>
<td>Hispano Verna</td>
<td>2-V</td>
<td>35-M</td>
<td>35-M</td>
<td>35-M</td>
</tr>
<tr>
<td>MMC</td>
<td>8-V</td>
<td>35-M</td>
<td>35-M</td>
<td>35-M</td>
</tr>
<tr>
<td>Eurotec MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mezzo di trasporto</th>
<th>4,5-V</th>
<th>1,9-V</th>
<th>1,3-V</th>
<th>1,8-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensioni di trasporto (m³)</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>Dimensioni d’uso (m²)</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Rapporto d’impronta</td>
<td>0,04</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>Peso netto (kg)</td>
<td>566</td>
<td>209</td>
<td>506</td>
<td>111</td>
</tr>
<tr>
<td>Tempo montaggio (h)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Numero di addetti</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Modularità</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Adattabilità</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sicurezza</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Numero di pazienti</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Ciclo di vita (anni)</td>
<td>0,5</td>
<td>0,5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Legenda:

- **Mezzo di trasporto**: P = pallet, C = container, D = trasporto diretto; punteggio da 1 a 5.

- **Dimensioni di trasporto**: valore in m³; M = con materiale sanitario incluso, V = senza materiale.

- **Dimensioni d’uso**: valore in m².

- **Rapporto d’impronta a terra**: valore adimensionale.
Peso netto: valore in kg.

Tempo di schieramento: valore in ore.

Numero di addetti allo schieramento: valore adimensionale.

Modularità: punteggio da 1 a 5.

Adattabilità: punteggio da 1 a 5.

Sicurezza: punteggio da 1 a 5.

Numero di pazienti: B = buona capacità di adattamento alla richiesta, S = scarsa capacità.

Ciclo di vita: valore in anni.

Per ogni fattore caratteristico è stato evidenziato in rosso il valore più competitivo, quello che meglio riflette i requisiti di un buon presidio per ospedale da campo.

Si può notare come le soluzioni tendate dimostrino migliori caratteristiche in merito al trasporto, alla leggerezza e alle dimensioni di utilizzo. Tuttavia nel lungo periodo si rivelano inadeguate per la sicurezza e l’adattabilità a condizioni ambientali ostili, nonché all’installazione e alla movimentazione di strumentazioni mediche, che in questo caso devono anche essere trasportate separatamente.

La soluzione modulare prefabbricata dimostra invece ottimi requisiti di modularità, adattabilità e sicurezza, anche nel lungo periodo. Gli svantaggi risiedono nel rapporto d’impronta a terra e nel trasporto separato tra presidio e materiali sanitari.

Le soluzioni con container si prestano bene al trasporto congiunto delle risorse sanitarie, abbassando notevolmente il tempo di installazione del presidio. Tuttavia si mostra carente il grado di modularità, fattore molto importante per la composizione di un ospedale da campo; ciò rende la soluzione con container poco adatta alle variazioni di domanda di soccorso.

Inoltre, non è stato evidenziato il valore concernente il numero di addetti al montaggio, giacché tutte le soluzioni prevedono il numero di almeno 2 operatori per la corretta posa in opera della struttura.
5. Progettazione della nuova soluzione di presidio per ospedali da campo

Le numerose criticità logistiche, organizzative e tecniche riscontrate dallo studio dello stato dell’arte per le soluzioni esistenti di presidio per ospedali da campo, congiuntamente alla crescente esigenza di innovazione e miglioramento della risposta sanitaria evidenziata dall’epidemiologia delle catastrofi, creano i presupposti di fondamento alla fase progettuale. La progettazione è infatti rivolta ad eliminare o correggere drasticamente le criticità delineate, con il risultato di definire una nuova struttura di presidio capace di riflettere integralmente i requisiti di un ospedale da campo.

Con questo obiettivo, lo studio condotto sullo sviluppo del nuovo presidio, che interessa varie e complesse tematiche, viene supportato dal contributo di figure professionali senza le quali il lavoro di ricerca avrebbe perso di precisione e qualità.

Di fondamentale aiuto è stato il dialogo intrapreso con il responsabile della provincia di Padova per le attività di emergenza della Croce Rossa Italiana, Adamo Menarello, grazie al quale è stato possibile comprendere quali siano le risorse e le tecnologie oggi utilizzate e quali siano i loro limiti attuali. Da questo confronto è emersa anche quanto l’impianto planimetrico del complesso ospedaliero campale si rifletta sul successo delle operazioni di soccorso.

In campo tecnico, l’esperienza di stage presso l’azienda Pagin S.r.l. di Campodarsego (PD) nel settore del modular buildings, si rivela imprescindibile al successo del risultato finale della ricerca. In questo ambito è stato analizzato il processo della prefabbricazione di costruzioni leggere e modulari, i cui principi sono stati seguiti nella progettazione della soluzione in esame.

Dalla raccolta e rielaborazione dei contributi esterni ed universitari, sommati al lavoro personale di ricerca esposto ai capitolii precedenti, è stata quindi intrapresa la fase propositiva di progetto.

Così come suggerisce la buona norma nell’ambito dell’architettura tecnica, lo studio viene esposto per gradi, seguendo una successione che rispecchia il reale sviluppo della costruzione:

- **Genesi del progetto**

 Ripercorre in forma sintetica le istanze concettuali che costituiscono il substrato alla fase propria di progettazione.

- **Analisi funzionale**

 Individuate le unità funzionali, che interessano nel caso in esame una costruzione di ambito medico-sanitario, se ne stende un elenco ordinato, descrivendone con perizia i requisiti che possono influenzare le scelte progettuali.

- **Analisi dimensionale**
Si analizzano i parametri che condizionano la quantificazione delle superfici e dei volumi della costruzione, dalla stima dei quali è possibile elaborare le prime rappresentazioni grafiche legate alle suddette funzioni, determinando gli spazi-funzione.

- **Analisi dell’area**

 Prima di procedere alla redazione degli elaborati esecutivi è opportuno investigare le condizioni di permanenza della costruzione in relazione al sito geografico. Tali condizioni sono in prevalenza relative alla collocazione territoriale, alla morfologia, e alle normative edilizie ed urbanistiche.

- **Schema planimetrico**

 Esprime, attraverso lo studio di layout compositivi, il risultato spaziale del complesso finale, frutto dell’aggregazione degli spazi-funzione.

- **Progetto strutturale esecutivo**

 Dalla sintesi dei precedenti punti il dimensionamento di massima viene tradotto in un dimensionamento strutturale, supportato dall’osservanza delle normative vigenti in materia di nuova progettazione, e dalla verifica statica e sismica del comportamento strutturale con l’ausilio di un programma di calcolo.

- **Progetto architettonico esecutivo**

 Si rendono esplicite le scelte architettoniche, complementari a quelle strutturali.

- **Studio della termica**

 Vengono esaminate le prestazioni termiche dell’edificio, al fine di ricavare utili osservazioni sui materiali costituenti l’involucro e sul fabbisogno energetico.

- **Dimensionamento di massima degli impianti**

 A completamento del progetto si formulano alcune considerazioni sull’impiantistica necessaria a soddisfare le richieste di elettricità, acqua ed aria.

5.1. Genesi del progetto

Prima di affrontare dettagliatamente le fasi di progetto, al fine di sintetizzare i risultati della ricerca, sono stati rielaborati i concetti fondanti la definizione della nuova soluzione per ospedale da campo. Come già specificato, l’innovazione ed il miglioramento apportati dalla nuova proposta si devono valutare sulla base dei fattori che caratterizzano le buone prestazioni di un ospedale da campo. A
questo proposito i valori rossi della scheda finale di valutazione sulle soluzioni esistenti fungono da riferimento con i quali confrontarsi.

La rapidità di intervento risulta fattore imprescindibile per il successo delle operazioni sanitarie di soccorso. Il regolamento europeo 2010/481/UE, sulla definizione di ospedale da campo, fissa dei requisiti temporali: la disponibilità a partire al massimo 7 giorni dopo la richiesta; l’operatività entro 12 ore dopo l’arrivo sul posto; la permanenza in autonomia per almeno 15 giorni. L’Organizzazione Mondiale della Sanità prescrive misure più stringenti, riducendo a 24 ore il tempo in cui la struttura ospedaliera deve essere operativa, qualora questa si adoperi per servizio medico di pronto soccorso.

La soluzione proposta sarà quindi di facile trasporto e di rapido allestimento. Queste caratteristiche si riflettono nelle dimensioni compatte e nel peso contenuto, nella scelta dei mezzi di trasporto utilizzabili per la movimentazione, e nello studio di un sistema rapido di dispiegamento.

![Diagram](image-url)

Figura 5.1. – 01: Concept sulla rapidità di trasporto e di allestimento.

Per questo motivo il progetto si fonda sulla definizione di una unità strutturale di base, la cui modularità permetta di creare per aggregazione il complesso clinico finale. L’unità strutturale funzionerà come una vera e propria cellula di un organismo. Le cellule possono essere agilmente trasportate in maniera indipendente e, una volta in loco, essere unite le une alle altre per comporre il presidio nella sua interezza. D’ora in avanti, per linearietà di linguaggio, l’unità strutturale di base verrà chiamata *modulo*. Questo per accentuare l’importanza del fattore di modularità, non solo come standardizzazione nella produzione di ogni singola unità strutturale, ma anche nella capacità spaziale del complesso clinico di adattarsi ad espansioni o riduzioni della richiesta sanitaria.

La progettazione studierà quindi con particolare attenzione l’interfaccia *modulo-modulo*, affinché la giunzione sia rapida ma allo stesso tempo attenta alle prestazioni della struttura.

La modularità, nel lungo periodo, favorisce anche la riparazione di eventuali parti danneggiate dell’ospedale senza l’obbligo di interrompere le attività interne. È infatti sufficiente intervenire localmente alla sostituzione dei moduli o delle parti di modulo danneggiati.
Lo spazio interno del complesso clinico, frutto dell’aggregazione dei moduli, sarà investito in fase operativa dalla presenza delle risorse sanitarie. Il materiale sanitario e quello tecnico, analogamente all’unità strutturale, necessitano di trasporto verso il luogo del disastro e, successivamente, dell’allestimento all’interno della struttura stessa. Questo comporta notevole sforzo organizzativo e logistico, nonché dispendio di tempo e risorse tolte all’attività di soccorso vera e propria.

Attualmente solo le soluzioni containerizzate dispongono del materiale sanitario all’interno del presidio stesso anche in fase di trasporto. Questo offre grandi vantaggi nella fase emergenziale. Tuttavia emergono alcune criticità: ogni container è allestito in tempo di pace per una singola funzione, con scarsa, se non nulla, capacità di riconfigurare lo spazio interno al variare dell’esigenza; e la bassa predisposizione all’unione dei container tra loro per formare spazi funzionali permeabili e flessibili.

Pertanto la proposta progettuale si dedica all’integrazione delle risorse sanitarie (ovviamente con esclusione del personale) all’interno del *modulo* già in fase di stoccaggio e trasporto. Ogni *modulo* però non sarà strettamente vincolato alle funzioni del materiale trasportato, in modo tale da poter cambiare il proprio allestimento interno con il mutare delle necessità.

Per quanto riguarda il materiale tecnico ed impiantistico si è deciso di creare una unità strutturale separata, definita come *modulo jolly*, all’interno del quale organizzarlo e trasportarlo. Il *modulo jolly*, in sito, viene congiunto ad un *modulo* base in maniera tale da fornire il servizio aggiuntivo di cui è dotato. Si prevedono due tipologie di *modulo jolly*: il modulo impiantistico, che unito al modulo base fornisce il fabbisogno per le prestazioni ambientali; e il modulo dei servizi igienici dotato delle installazioni sanitarie.
Con particolare riferimento alle condizioni ambientali interne, la progettazione punta ad assicurare un alto fattore di adattabilità alle avversità del contesto, e di protezione degli utenti anche nel lungo periodo. Ciò si riflette nella scelta del tipo di costruzione e dei materiali utilizzati: il modulo sarà di tipo prefabbricato, con struttura portante in acciaio e tamponamenti a pannellatura sandwich, con isolamento integrato; le superfici interne saranno sterili e lavabili e le finiture terranno in considerazione la natura medica della funzione svolte.

Del modulo verrà effettuata inoltre la verifica del comportamento strutturale sotto l’azione delle condizioni ambientali più sfavorevoli, e si analizzeranno le prestazioni dell’involucro per determinare il fabbisogno energetico richiesto. In questo modo le prestazioni della struttura, ancorché di natura temporanea, saranno garantite per un ciclo di vita molto ampio.

Con l’obiettivo di migliorare il rapporto di impronta a terra, cioè il rapporto tra le dimensioni di trasporto e quelle di configurazione operativa, il modulo verrà concepito come contenitore di spazialità. Sarà studiato un sistema che permetta al modulo di ampliare la propria superficie utile in
fase di intervento, senza perdere la capacità di unirsi ad altri moduli. Sarà prestata particolare attenzione alla reversibilità di tale sistema: l’espansione deve risultare rapida durante le operazioni di allestimento, ma con altrettanta facilità ed efficienza si deve garantire il ritorno alla configurazione di trasposto al termine dell’intervento.

![Figura 5.1. – OS: Concept sull’espansione volumetrica del modulo base.](image)

5.2. Analisi funzionale

L’ospedale da campo costituisce una realtà complessa, nella quale si intersecano e convivono diverse discipline in continua relazione tra loro. Per questo motivo il percorso progettuale parte dall’analisi delle funzioni svolte all’interno di un tradizionale ospedale da campo, per comprendere le necessità di spazio legate, in particolare, alle attività mediche, e come si relazionino queste attività in uno schema planivolumetrico generale.

Vengono riportati come riferimento progettuale i requisiti individuati dalla normativa italiana, poiché all’avanguardia in campo sanitario. Va specificato che la normativa non tratta l’ambito particolare degli ospedali da campo, bensì di strutture ospedaliere permanenti. Rilevando una differenza sostanziale nel tipo di strutture che alloggiano le funzioni qui descritte, si riserva la possibilità di adattare i requisiti minimi alle capacità di una struttura mobile campale. Lo sforzo progettuale sarà comunque rivolto a raggiungere gli standard stabiliti per ospedali tradizionali.

Il D.P.R. 14 gennaio 1997 istituisce la “Approvazione dell’atto di indirizzo e coordinamento alle regioni e alle provincie autonome di Trento e di Bolzano, in materia di requisiti strutturali, tecnologici ed organizzativi minimi per l’esercizio delle attività sanitarie da parte delle strutture pubbliche e private.”

All’articolo 4 viene fatta una classificazione delle strutture in relazione alla tipologia delle prestazioni contemplate dai livelli di assistenza, in:

\[a) \text{ strutture che erogano prestazioni in regime di ricovero ospedaliero a ciclo continuativo e/o diurno per acuti;} \]
b) strutture che erogano prestazioni di assistenza specialistica in regime ambulatoriale, ivi comprese quelle riabilitative, di diagnostica strumentale e di laboratorio;

c) strutture che erogano prestazioni in regime residenziale, a ciclo continuativo e/o diurno.

Inoltre, le strutture che erogano prestazioni in regime di ricovero ospedaliero a ciclo continuativo e/o diurno possono essere distinte:

a) in relazione alla destinazione funzionale: secondo le attività per l’acuzie e la post-acuzie;

b) in relazione alla tipologia dell’istituto: aziende ospedaliere di rilievo nazionale e di alta specializzazione, aziende ospedaliere regionali, presidi ospedalieri della USL, policlinici universitari, istituti di ricovero e cura a carattere scientifico, ospedali militari.

L’ospedale da campo può essere quindi definito come struttura che eroga prestazioni in regime di ricovero ospedaliero a ciclo continuativo e/o diurno per acuti, ma anche di assistenza specialistica in regime ambulatoriale.

Ai fini della applicazione dei requisiti minimi e tenuto conto che con il termine di requisito organizzativo si intende l’azione organizzativa, si definisce:

– Azienda: il soggetto giuridico, pubblico e privato che offre attività o prestazioni sanitarie.

– Presidio: Struttura fisica (ospedale, poliambulatorio, ambulatorio ecc.) dove si effettuano le prestazioni e/o le attività sanitarie.

– Struttura organizzativa: Dimensione organizzativa complessiva della funzione svolta.

Da qui in avanti chiameremo le strutture fisiche, comprese quelle attinenti al caso specifico in esame di ospedale da campo, con il termine generico di “presidio”. Si passerà dallo studio dei requisiti minimi generali dei presidi a quelli specifici per prestazione ivi erogata.

Per quanto concerne i requisiti minimi strutturali e tecnologici generali, la normativa stabilisce che tutti i presidi devono essere in possesso dei requisiti previsti dalle vigenti leggi in materia di:

– protezione antisismica;

– protezione antincendio;

– protezione acustica;

– sicurezza elettrica e continuità elettrica;

– sicurezza anti-infortunistica;

– igiene dei luoghi di lavoro;
- protezione delle radiazioni ionizzanti;
- eliminazione della barriere architettoniche;
- smaltimento dei rifiuti;
- condizioni microclimatiche;
- impianti di distribuzione dei gas;
- materiali esplodenti.

In merito a tali problematiche si ritiene di fare riferimento alle specifiche norme nazionali, regionali, locali e, per la prevista parte di competenza, alle disposizioni internazionali.

5.2.1. Requisiti minimi strutturali, tecnologici e organizzativi specifici per le strutture che erogano prestazioni di assistenza specialistica in regime ambulatoriale

Assistenza specialistica ambulatoriale

Per ambulatorio di assistenza specialistica si deve intendere la struttura o luogo fisico, intra od extra-ospedaliero, preposto alla erogazione di prestazioni sanitarie di prevenzione, diagnosi, terapia e riabilitazione, nelle situazioni che non richiedono ricovero neanche a ciclo diurno.

Requisiti minimi strutturali:

I locali e gli spazi devono essere correlati alla tipologia e al volume delle prestazioni erogate.

La dotazione minima di ambienti per l’attività ambulatoriale è la seguente:

- sala per l’esecuzione delle prestazioni, che garantisca il rispetto della privacy dell’utente, in particolare con area separata per spogliarsi;
- spazi per attesa, accettazione, attività amministrative;
- servizi igienici distinti per utenti e personale;
- spazio/locali per deposito di materiale pulito;
- spazio/locali per deposito di materiale sporco;
- spazi o armadi per deposito materiale d’uso, attrezzature, strumentazioni.

Requisiti minimi impiantistici:

La dotazione minima impiantistica prevista deve essere:

- in tutti i locali devono essere di regola assicurate l’illuminazione e la ventilazione naturali;
- impianto telefonico per utenti.

Requisiti minimi tecnologici:
Il locale ambulatorio deve disporre di attrezzature e presidi medico-chirurgici in relazione alla specificità dell'attività svolta.

Inoltre, deve essere prevista la seguente dotazione minima tecnologica:
- carrello per la gestione dell’emergenza.

Requisiti minimi organizzativi:

Ogni struttura erogante prestazioni ambulatoriali deve possedere i seguenti requisiti organizzativi:
- durante lo svolgimento dell’attività ambulatoriale deve essere prevista la presenza di almeno un medico, indicato quale responsabile delle attività cliniche svolte nell’ambulatorio;
- personale in numero proporzionale agli accessi ambulatoriali e alla tipologia dell’attività svolta;
- tutti i materiali, farmaci, confezioni soggetti a scadenza, devono portare in evidenza la data della scadenza stessa;
- le prestazioni effettuate devono essere registrate e corredate dalle generalità riferite dall’utente; le registrazioni e le copie dei referti vanno conservate secondo le modalità e i tempi sanciti dalla normativa vigente.

Servizi di medicina di laboratorio

L’attività di medicina di laboratorio fornisce informazioni ottenute con metodi chimici, fisici o biologici su tessuti o liquidi di origine umana o su materiali connessi alla patologia umana, ai fini della prevenzione, della diagnosi, del monitoraggio della terapia e del decorso della malattia e ai fini della ricerca.

La tipologia di prestazioni eseguite nei diversi laboratori e la dotazione strumentale hanno un diverso grado di complessità commisurato alla realtà sanitaria ed alla tipologia dei quesiti diagnostici posti al laboratorio.

2. Laboratori specializzati: esplicano indagini diagnostiche monospecialistiche ad elevato livello tecnologico e professionale nell’ambito della biochimica clinica e tossicologica, dell’ematologia ed emocoagulazione, dell’immunoematologia, della microbiologia, della virologia, della citoistopatologia, della biologia molecolare e della genetica.
3. Laboratori generali di base con settori specializzati: sono laboratori ad organizzazione complessa che, per carico di lavoro, per varietà di tipologia analitica e complessità dei quesiti diagnostici posti, necessitano di una articolazione in unità operative o moduli specializzati e della disponibilità di tecnologie di livello superiore e di competenze professionali particolari. Tali laboratori possono svolgere indagini diagnostiche nell’ambito degli specifici settori di cui ai punti 1 e 2.

Requisiti minimi strutturali e tecnologici:

I locali e gli spazi devono essere correlati alla tipologia e al volume delle attività erogate.

La dotazione minima di ambienti per l’attività di medicina di laboratorio è la seguente:

- area di attesa dotata di servizi igienici dedicati all’utenza ambulatoriale e di un adeguato numero di posti a sedere rispetto ai picchi di frequenza degli accessi;
- locale per il prelievo, che consenta il rispetto della privacy dell’utente;
- almeno un locale per l’esecuzione delle analisi, nonché almeno un locale per ogni settore specializzato;
- servizi igienici distinti per il personale;
- locale per le attività amministrative e di archivio;
- locale per il trattamento del materiale d’uso.

Requisiti minimi organizzativi:

Il personale sanitario laureato e/o tecnico deve essere adeguato alla tipologia e al volume delle prestazioni erogate.

È presente un documento che descriva tutti i servizi/prestazioni offerti dal laboratorio ed in cui sono esplicitati gli esami che vengono eseguiti direttamente - con quali procedure ed attrezzature – e quelli che vengono inviati ad altre strutture.

Devono esistere documenti di servizio (regolamenti interni o linee guida) per lo svolgimento delle principali attività di gestione, concordati con i servizi competenti.

In particolare:

- riconoscimento degli utenti;
- identificazione dei campioni;
- trasferimento del materiale biologico dalle zone di prelievo al laboratorio;
- processi di sanificazione (pulizia ambiente, procedure di disinfezione e di sterilizzazione, decontaminazione, ecc.);
- smaltimento dei rifiuti.
Reagenti, materiale di controllo, materiale di calibrazione devono presentare etichette che ne indichino: identità, titolo o concentrazione, condizioni di conservazione raccomandate, data di preparazione e di scadenza, ogni altra informazione necessaria per l'uso corretto. Nessun materiale deve essere utilizzato oltre la data di scadenza.

Deve esistere un sistema di archiviazione che deve contenere almeno:

- i risultati degli esami sugli utenti (conservati per almeno un anno);
- i risultati dei controlli di qualità interno conservati per almeno un anno e quelli esterni per almeno tre anni.

Deve esistere un manuale delle procedure diagnostiche, contenente per ogni esame almeno:

- preparazione dell'utente agli esami;
- modalità di raccolta, trasporto e conservazione del campione;
- caratteristiche e descrizione del metodo analitico impiegato;
- modalità di compilazione, trasmissione e consegna dei referti.

Valutazione e miglioramento della qualità:

Il laboratorio deve svolgere programmi di Controllo Interno di Qualità e partecipare a programmi di Valutazione Esterna di Qualità promossi dalle Regioni, o, in assenza di questi, a programmi validati a livello nazionale o internazionale.

Presso ogni laboratorio:

- deve esistere un opuscolo informativo sul Servizio per gli utenti, che deve contenere almeno le modalità di accesso;
- deve poter essere possibile il ritiro dei referti in tutti i giorni feriali e in almeno alcuni pomeriggi della settimana.
Viene in questa sede omessa la trattazione sulle prestazioni di assistenza specialistica in regime ambulatoriale per i quali non si viene a creare necessità in seguito ad eventi catastrofici, come i presidi di recupero e rieducazione funzionale, i centri di riabilitazione, i centri di salute mentale, e i presidi per il trattamento dei tossicodipendenti.

5.2.2. Requisiti minimi strutturali, tecnologici e organizzativi specifici per le strutture che erogano prestazioni in regime di ricovero ospedaliero a ciclo continuativo e/o diurno per acuti

Pronto soccorso ospedaliero

L’unità organizzativa deputata all’emergenza deve assicurare gli interventi diagnostico-terapeutici di urgenza compatibili con le specialità di cui è dotata la struttura, deve poter eseguire un primo accertamento diagnostico strumentale e di laboratorio e gli interventi necessari alla stabilizzazione dell’utente. Deve garantire il trasporto protetto.

Requisiti minimi strutturali:

I locali e gli spazi devono essere correlati alla tipologia e al volume delle attività erogate.

L’unità minima dovrà prevedere:

- camera calda (area coperta e riscaldata di accesso diretto per mezzi e pedoni);
- locale per la gestione dell’emergenza;
- locale visita;
– locale osservazione;
– locale attesa utenti deambulanti;
– locale attesa utenti barellati;
– locale lavoro infermieri;
– servizi igienici del personale;
– servizi igienici per gli utenti;
– deposito pulito;
– deposito sporco;
– spazio registrazione/segreteria/archivio.

Requisiti minimi impiantistici:

Ogni unità deputata al pronto soccorso deve possedere i seguenti requisiti:

– impianto di illuminazione di emergenza;
– impianto di gas medicali.

Requisiti minimi tecnologici:

Dotazione minima strumentale deve prevedere:

– elettrocardiografo;
– cardiomonitore defibrillatore;
– attrezzature per rianimazione cardiopolmonare;
– lampada scialitica.

Le strutture deputate all’emergenza-urgenza si articolano su più livelli operativi legati alla complessità delle prestazioni erogate e devono possedere requisiti tecnologici adeguati alla complessità di tali prestazioni.

Requisiti minimi organizzativi:

Ogni struttura erogante prestazioni di Pronto Soccorso deve prevedere i seguenti requisiti organizzativi:

– la dotazione organica del personale medico ed infermieristico deve essere rapportata alla tipologia della struttura e al volume delle prestazioni e comunque, sull’arco delle 24 ore, l’articolazione dei turni del personale medico e infermieristico deve garantire la presenza di almeno un infermiere e un medico.
Area di degenza

L’area di degenza deve essere strutturata in modo da garantire il rispetto della privacy dell’utente ed un adeguato comfort di tipo alberghiero. Devono essere garantiti spazi comuni di raccordo tra le degenze e/o i servizi sanitari nei quali prevedere utilities per gli accompagnatori o visitatori.

Requisiti minimi strutturali:

La dotazione minima di ambienti per la degenza:

– camera di degenza:
 – 9 mq per posto letto
 – non più di 4 posti letto per camera,
 – almeno un servizio igienico ogni 4 posti letto, almeno il 10% delle stanze di degenza deve ospitare un solo letto;

– un locale per visita e medicazioni;

– un locale di lavoro, presente in ogni piano di degenza, per il personale di assistenza diretta;

– spazio per capo-sala;

– un locale per medici;

– un locale per soggiorno;

– un locale per il deposito del materiale pulito;

– un locale per deposito attrezzature;
– un locale, presente in ogni piano di degenza, per il materiale sporco, e dotato di vuotatoio e lavapadelle;
– una cucina di reparto;
– servizi igienici per il personale;
– spazio attesa visitatori;
– un bagno assistito.

Per le degenze pediatriche: devono essere previsti spazi di soggiorno e svago ad uso esclusivo dei bambini, proporzionati al loro numero. Deve essere previsto lo spazio per la presenza dell’accompagnatore.

Per le degenze psichiatriche deve essere previsto un locale specifico per colloqui/visite specialistiche e soggiorno in relazione al numero dei posti letto.

Nei locali di degenza per malattie infettive va attuato l’adeguamento previsto dalla legge n. 135 del 1990 e successive modifiche ed integrazioni.

Requisiti minimi impiantistici:

Dotazione minima impiantistica:
– impianto illuminazione di emergenza;
– impianto forza motrice nelle camere con almeno una presa per alimentazione normale;
– impianto chiamata con segnalazione acustica e luminosa;
– impianto gas medicali: prese vuoti e ossigeno.

Requisiti minimi tecnologici:
– Carrello per la gestione dell’emergenza completo di cardiomonitor con defibrillatore e unità di ventilazione manuale;
– carrello per la gestione terapia;
– carrello per la gestione delle medicazioni con eventuale strumentario chirurgico.

Requisiti minimi organizzativi:

Ogni reparto di degenza deve prevedere i seguenti requisiti organizzativi:
– la dotazione organica del personale addetto deve essere rapportata al volume delle attività.
Reparto operatorio

Il numero complessivo di sale operatorie deve essere definito, per ogni singola struttura, in funzione della tipologia e complessità delle prestazioni per specialità che vengono erogate, ed in particolare in relazione alla attivazione o meno della Day Surgery.

Requisiti minimi strutturali:

I locali e gli spazi devono essere correlati alla tipologia e al volume delle attività erogate.

La dotazione minima di ambienti per il gruppo operatorio è la seguente:

- spazio filtro di entrata degli operandi;
- zona filtro personale addetto;
- zona preparazione personale addetto;
- zona preparazione utenti;
- zona risveglio utenti;
- sala operatoria;
- deposito presidi e strumentario chirurgico;
- deposito materiale sporco.

Requisiti minimi impiantistici:

La sala operatoria deve essere dotata di condizionamento ambientale che assicuri le seguenti caratteristiche igrotermiche:

- temperatura interna invernale e estiva: compresa tra 20-24 °C
- umidità relativa estiva e invernale: 40-60%
- ricambi aria/ora (aria esterna senza ricircolo): 15 v/h
- filtraggio aria: 99.97%
- impianto di gas medicali e impianto di aspirazione gas anestetici direttamente collegato alle apparecchiature di anestesia;
- stazioni di riduzione della pressione per il reparto operatorio. Devono essere doppie per ogni gas medica/tecnico e tali da garantire un adeguato livello di affidabilità;
- impianto rilevazione incendi;
- impianto allarmi di segnalazione esaurimento gas medicali.

Requisiti minimi tecnologici:

Per ogni sala operatoria:

- tavolo operatorio;
- apparecchio per anestesia con sistema di evacuazione dei gas dotato anche di spirometro e di monitoraggio della concentrazione di ossigeno erogato, respiratore automatico dotato anche di allarme per deconnessione paziente;
- monitor per la rilevazione dei parametri vitali;
- elettrobisturi;
- aspiratori distinti chirurgici e per broncoaspirazione;
- lampada scialitica;
- diafanoscopio a parete;
- strumentazione adeguata per gli interventi di chirurgia generale e delle specialità chirurgiche.

Per ogni gruppo operatorio:

- frigoriferi per la conservazione di farmaci e emoderivati;
- amplificatore di brillanza;
- defibrillatore.

Per zona risveglio:

- gruppo per ossigenoterapia;
- cardiomonitor e defibrillatore;
- aspiratore per broncoaspirazione.

Requisiti minimi organizzativi:

Ogni struttura erogante prestazione deve prevedere i seguenti requisiti organizzativi:

- la dotazione organica del personale medico ed infermieristico deve essere rapportata alla tipologia e al volume degli interventi chirurgici; l'attivazione di una sala operatoria deve
comunque prevedere almeno un medico anestesista, due chirurghi e due infermieri professionali.

Figura 5.2.2. – 03 : Schema funzionale – Gruppo operatorio.

Rianimazione e terapia intensiva
Le attività di rianimazione e terapia intensiva sono dedicate al trattamento intensivo dei soggetti affetti da una o più insufficienze d’organo acute, potenzialmente reversibili, tali da comportare pericolo di vita ed insorgenza di complicanze maggiori.

La configurazione ambientale delle unità di rianimazione e terapia intensiva può essere a degenza singola o a degenze multiple.

Requisiti minimi strutturali:

I locali e gli spazi devono essere correlati alla tipologia e al volume delle attività erogate.

La dotazione minima di ambienti per la rianimazione e terapia intensiva è la seguente:

- zona filtro per i degenti;
- zona filtro personale addetto;
- degenze;
- locale per pazienti infetti dotato di zona filtro;
- locale medici;
- locale lavoro infermieri;
- servizi igienici per il personale;
- deposito presidi sanitari ed altro materiale pulito;
- deposito materiale sporco.

Requisiti minimi impiantistici:

La terapia intensiva deve essere dotata di condizionamento ambientale che assicuri le seguenti caratteristiche igrotermiche:

- temperatura interna invernale e estiva: compresa tra 20-24 °C
- umidità relativa estiva e invernale: 40-60%
- ricambi aria/ora (aria esterna senza ricircolo): 6 v/h

È inoltre prevista la seguente dotazione minima impiantistica:

- impianto di gas medicali;
- impianto rilevazione incendi;
- impianto allarmi di segnalazione esaurimento gas medicali.

Requisiti minimi tecnologici:

- Letto tecnico;
– apparecchio per anestesia con sistema di evacuazione dei gas dotato anche di spirometro e di monitoraggio della concentrazione di ossigeno erogato, respiratore automatico dotato anche di allarme per deconnessione paziente;
– monitor per la rilevazione dei parametri vitali;
– aspiratore per broncoaspirazione;
– lampada scialitica;
– diafanoscopio a parete;
– frigoriferi per la conservazione di farmaci e emoderivati;
– defibrillatore.

Requisiti minimi organizzativi:

Ogni struttura erogante prestazioni deve prevedere i seguenti requisiti organizzativi:

– la dotazione organica del personale medico ed infermieristico deve essere rapportata alla tipologia dell’attività svolta e al volume complessivo degli interventi chirurgici effettuati.

\[
\text{Letto}
\]
\[
\text{Box armadio per il materiale sanitario}
\]
\[
\text{Elementi di seduta}
\]
\[
\text{Cardiомonitor e strumenti per la rianimazione}
\]
\[
\text{Spazio d'uso e di passaggio, min. 50 cm}
\]

\[
\begin{align*}
\text{Schema funzionale di degenza per terapia intensiva e rianimazione} & \\
\text{A = 3 m²}
\end{align*}
\]

\[
\text{Figura 5.2.2. – 04 : Schema funzionale – Rianimazione e terapia intensiva.}
\]

\textbf{Attività di radioterapia}

L'attività di radioterapia è svolta mediante l'impiego di fonti radioattive e di sorgenti di radiazioni ionizzanti ed è diretta al trattamento della malattia neoplastica e, in casi selezionati, al trattamento di patologie non neoplastiche, a carattere malformativo e/o cronico degenerativo.

Requisiti minimi strutturali:

I locali e gli spazi devono essere correlati alla tipologia e al volume delle attività erogate.
La dotazione minima di ambienti per l’attività di radioterapia è la seguente:

- aree di attesa per gli utenti trattati;
- spazi adeguati per accettazione, attività amministrative ed archivio;
- una sala di simulazione;
- un bunker di terapia;
- un locale per la conformazione dei campi di irradiazione, per la contenzione e la protezione dell’utente in corso di terapia, per la verifica dosimetrica;
- un locale visita;
- un locale per trattamenti farmacologici brevi;
- un locale per la conservazione e manipolazione delle sostanze radioattive;
- servizi igienici distinti per gli operatori e per gli utenti;
- uno o più spogliatoi per gli utenti in relazione alle sale di terapia e alle sale visite presenti e comunicanti con le stesse.

Requisiti minimi tecnologici:

- Simulatore per radioterapia ovvero la piena disponibilità di una diagnostica radiologica (convenzionale o computerizzata) dedicata alla definizione tecnica e pianificazione dei trattamenti;
- unità di terapia a fasci collimati (telecobalto terapia, acceleratore lineare);
- attrezzatura per la valutazione della dose singola e dei relativi tempi di trattamento;
- apparecchiature per il controllo dosimetrico clinico.

Requisiti minimi organizzativi:

Ogni unità di radioterapia deve assicurare i seguenti requisiti minimi organizzativi:

- il personale sanitario laureato e/o tecnico deve essere adeguato alla tipologia e al volume delle prestazioni erogate;
- attivazione di un sistema di controllo di qualità;
- presso ogni struttura di radioterapia è previsto l’obbligo di comunicare all’utente, al momento della prenotazione dell’indagine diagnostica, i tempi di consegna dei referti;
- ad ogni unità di radioterapia deve essere garantita, in caso di necessità, la possibilità di accesso ad un settore di degenza ove sia possibile l’assistenza dei pazienti trattati;
- qualora vi fosse disponibilità di una sola unità di terapia, si dovrà provvedere alla formalizzazione di un protocollo di collaborazione con un’altra unità operativa di
radioterapia, in modo da garantire la continuità terapeutica in caso di guasto alle apparecchiature.

Figura 5.2.2. – 05 : Schema funzionale – Attività di radioterapia.

Day-hospital

Il day-hospital deve disporre di spazi per il trattamento diagnostico-terapeutico e per il soggiorno dei pazienti in regime di ricovero a tempo parziale (di tipo diurno).

Requisiti minimi strutturali:

I locali e gli spazi devono essere correlati alla tipologia e al volume delle attività erogate.

La dotazione minima di ambienti per il day-hospital è la seguente:

- spazio da dedicare alle attività di segreteria, registrazione, archivio;
- spazio attesa;
- locale visita;
- ambienti dedicati alla degenza;
- locale lavoro infermieri;
- cucinetta;
- deposito pulito;
- deposito sporco;
- servizi igienici distinti per utenti e per il personale.
Ad eccezione degli ambienti dedicati alla degenza in regime di ricovero diurno, qualora la funzione di day-hospital si svolga all’interno di un’area di degenza, i servizi di supporto sopraindicati possono essere comuni.

Requisiti minimi impiantistici:

Dotazione minima impiantistica prevista è la seguente:

– impianto gas medicali;
– impianto rilevazione incendi.

Dotazione minima di arredi: *camere di degenza*:

– impianto chiamata sanitari con segnalazione acustica e luminosa;
– utilities per attività alberghiera.

Dotazione minima di arredi: *locale visita trattamento*:

– attrezzature idonee in base alle specifiche attività;
– lettino tecnico.

Requisiti minimi organizzativi:

Ogni struttura erogante prestazioni deve prevedere i seguenti requisiti organizzativi:

– la dotazione organica del personale medico ed infermieristico deve essere rapportata al volume delle attività e delle patologie trattate; nell’arco delle ore di attività di day-hospital deve essere garantita la presenza di almeno un medico e un infermiere professionale anche non dedicati.

Day-surgery

Con il termine chirurgia di giorno (day-surgery) si intende la possibilità clinica, organizzativa ed amministrativa di effettuare interventi chirurgici od anche procedure diagnostiche e/o terapeutiche invasive e seminvasive in regime di ricovero limitato alle sole ore di giorno, in anestesia locale, loco-regionale, generale.

Requisiti minimi strutturali:

I locali e gli spazi devono essere correlati alla tipologia e al volume delle attività erogate.

La dotazione minima di ambienti per il day-surgery è la seguente:

– spazio attesa;
– spazio registrazione archivio;
– filtro sala operatoria;
– sala operatoria: deve possedere gli stessi requisiti indicati per il gruppo operatorio;
– zona preparazione personale addetto;
– zona preparazione paziente;
– zona risveglio;
– deposito materiali sterili e strumentario chirurgico;
– locale visita;
– camera degenza;
– cucinetta;
– servizi igienici pazienti;
– servizi igienici personale;
– deposito pulito;
– deposito sporco.

Ad eccezione degli ambienti dedicati alla degenza in regime di ricovero diurno, qualora la funzione di day-surgery si svolga all'interno di un'area di degenza, i servizi di supporto soprindicati possono essere comuni.

Requisiti minimi impiantistici:

Le caratteristiche igrometriche per la sala operatoria coincidono con quelle del gruppo operatorio.

Dotazione minima di arredi: camere di degenza:
– impianto chiamata sanitari con segnalazione acustica e luminosa;
– utilities per attività alberghiera.

Dotazione minima di arredi: locale visita trattamento:
– attrezzature idonee in base alle specifiche attività;
– lettino tecnico.

È inoltre prevista la seguente dotazione minima impiantistica:
– impianto gas medicali;
– impianto chiamata sanitari;
– aspirazione gas medicali direttamente collegata alle apparecchiature di anestesia;
– stazioni di riduzione delle pressioni per il reparto operatorio. Devono essere doppie per ogni gas medicale/tecnico e tali da garantire un adeguato livello di affidabilità;
– impianto allarmi di segnalazione di esaurimento dei gas medicali.

Requisiti minimi organizzativi:
Ogni struttura erogante prestazioni deve prevedere i seguenti requisiti organizzativi:

- la dotazione organica del personale medico ed infermieristico deve essere rapportata al volume delle attività e delle patologie trattate; nell’arco delle ore di attività di day-surgery deve essere garantita la presenza di almeno un medico e un infermiere professionale anche non dedicati.

Gestione farmaci e materiale sanitario

Requisiti strutturali:

Il Servizio di Farmacia se presente nella struttura, deve disporre di spazi per il deposito dei medicinali, dei presidi medico-chirurgici e sanitari, del materiale di medicazione e degli specifici materiali di competenza.

L’articolazione interna deve consentire percorsi distinti del materiale in entrata e in uscita, con accessibilità dall’esterno autonoma rispetto al sistema dei percorsi generali del presidio.

Devono essere inoltre presenti:

- spazio ricezione materiale/registrazione;
- deposito per farmaci e presidi medico-chirurgici;
- vano blindato o armadio antiscasso per la conservazione degli stupefacenti;
- locale o spazio per preparazioni chimiche;
- studio del farmacista;
- arredi e attrezzature per il deposito e conservazione dei medicinali, dei presidi medicochirurgici, del materiale di medicazione e degli altri materiali di competenza;
- cappa di aspirazione forzata nel locale;
- pavimenti con superficie lavabile e disinfettabile;
- pareti con rivestimento impermeabile e lavabile fino all’altezza massima di m. 2 relativamente ai locali adibiti a laboratorio;
- frigoriferi atti alla conservazione dei medicinali da custodire a temperatura determinata, dotati di registratori di temperatura, di sistema di allarme, e eventualmente collegati a gruppi di continuità o ad una linea di alimentazione preferenziale;
- armadi chiusi a chiave per la custodia dei veleni;
- attrezzature ed utensili di laboratorio obbligatori, e ogni altra dotazione di strumenti atti ad una corretta preparazione galenica;
- deposito infiammabili debitamente autorizzato nel rispetto della normativa vigente;
- sostanze obbligatorie come previsto dalla F.U.;
- spazi adeguati per il movimento in uscita dei farmaci e altro materiale sanitario.

Ove non esista il servizio di farmacia, la struttura deve assicurare la funzione ed essere dotata di:

- spazio ricezione materiale/registrazione;
- deposito per farmaci e presidi medico-chirurgici;
- vano blindato o armadio antincasso per la conservazione degli stupefacenti;
- arredi e attrezzature per il deposito e conservazione dei medicinali, dei presidi medicochirurgici, del materiale di medicazione e degli altri materiali di competenza;
- pavimenti con superficie lavabile e disinfettabile.

Requisiti minimi tecnologici:

Caratteristiche igrotermiche:

- Temperatura interna invernale ed estiva: 20-26 °C;
- umidità relativa: 50% ± 5%;
- n. ricambi aria esterna/ora: 2 v/h;
- classe di purezza: filtrazione con filtri a media efficienza.

![Schema funzionale di locale deposito farmaci](image)

Figura 5.2.2. – 06 : Schema funzionale – Farmacia.

Servizio di sterilizzazione

Il Servizio di sterilizzazione deve prevedere spazi articolati in zone nettamente separate di cui una destinata al ricevimento, lavaggio e confezionamento dei materiali, una alla sterilizzazione e, infine, una al deposito e alla distribuzione dei materiali sterilizzati.
Il percorso deve essere progressivo dalla zona sporca a quella pulita.

In ogni struttura, comunque deve essere garantita l’attività di sterilizzazione in rapporto alle esigenze specifiche delle attività svolte.

Requisiti minimi strutturali:

I locali e gli spazi devono essere correlati alla tipologia e al volume delle attività erogate.

La dotazione minima di ambienti per il servizio di sterilizzazione è la seguente:

- locali per ricezione, cernita, pulizia e preparazione;
- zona per la sterilizzazione;
- filtro per il personale, preliminare all’accesso al deposito dei materiali sterili;
- locale per il deposito di materiale sterile;
- locale deposito per materiale sporco;
- servizi igienici del personale.

Requisiti minimi impiantistici:

Il Servizio di Sterilizzazione deve essere dotato di condizionamento ambientale che assicuri le seguenti caratteristiche igrometriche:

- temperatura interna invernale e estiva: 20-27 °C;
- umidità relativa estiva e invernale: 40-60%;
- n. ricambi aria esterna /ora: 15 v/h.

È inoltre prevista la seguente dotazione minima impiantistica:

- impianto illuminazione di emergenza;
- impianto di aria compressa.

Requisiti minimi tecnologici:

Dotazione minima tecnologica del Servizio di Sterilizzazione:

- apparecchiatura di sterilizzazione;
- apparecchiatura per il lavaggio del materiale da sottoporre a sterilizzazione;
- bancone con lavello resistente agli acidi ed alcalini;
- pavimenti antisdrucciolo nelle zone sporche con adeguate pendenze in modo da garantire i necessari scarichi.

Requisiti minimi organizzativi:

Ogni servizio di sterilizzazione deve prevedere i seguenti requisiti organizzativi:
la dotazione organica del personale addetto deve essere rapportata al volume delle attività e, comunque, si deve prevedere all'interno dell'équipe almeno un infermiere professionale.

Figura 5.2.2. – D7: Schema funzionale – Servizio di sterilizzazione.

Servizio di disinfezione

Il servizio di disinfezione deve garantire spazi per il trattamento degli effetti personali, letterecci, della biancheria, e in genere dei materiali infetti.

L'articolazione interna degli spazi deve consentire la netta separazione tra le zone sporche e pulite.

Il percorso deve essere progressivo dalla zona sporca alla zona pulita.

Requisiti minimi strutturali:

I locali e gli spazi devono essere correlati alla tipologia e al volume delle attività erogate.

La dotazione minima di ambienti è la seguente:

- locale filtro del personale, con servizi igienici e spogliatoi;
- locale di pre-trattamento e disinfezione;
- deposito materiale da trattare;
- deposito pulito.

Requisiti minimi impiantistici:
Il Servizio di disinfezione deve essere dotato di condizionamento ambientale che assicuri le seguenti caratteristiche igrometriche:

- temperatura interna invernale e estiva: 20-27 °C;
- umidità relativa estiva e invernale: 40-60%;
- n. ricambi aria esterna /ora: 15 v/h.

È inoltre prevista la seguente dotazione minima impiantistica:

- impianto illuminazione di emergenza;
- impianto di aria compressa.

Requisiti minimi tecnologici:

Il servizio di disinfezione deve essere dotato di:

- apparecchiature idonee al trattamento del materiale;
- pavimenti antispiducio nelle zone sporche con adeguate pendenze in modo da garantire i necessari scarichi.

Requisiti minimi organizzativi:

Ogni servizio di disinfezione deve prevedere i seguenti requisiti organizzativi:

- la dotazione organica del personale addetto deve essere rapportata al volume delle attività e, comunque, si deve prevedere all’interno dell’équipe almeno un infermiere professionale.

Servizio mortuario

Il Servizio mortuario deve disporre di spazi per la sosta e la preparazione delle salme e di una camera ardente.

In termini di accessibilità devono essere consentite l’entrata e l’uscita autonoma senza interferenze rispetto al sistema generale dei percorsi interni della struttura.

Deve essere previsto un accesso dall’esterno per i visitatori.

Requisiti minimi strutturali:

Il servizio deve essere dotato di:

- locale osservazione/sosta salme;
- camera ardente;
- locale preparazione personale;
- servizi igienici per il personale;
- servizi igienici per i parenti;
- sala per onoranze funebri al feretro;
- deposito materiale.

Requisiti minimi impiantistici:

Il Servizio mortuorio deve essere dotato di condizionamento ambientale che assicuri le seguenti caratteristiche igrometriche:

- Temperatura interna invernale ed estiva non superiore a 18 °C per i locali con presenza di salme;
- umidità relativa: 60% ± 5;
- n. ricambi aria esterna /ora: 15 v/h.

È prevista la seguente dotazione minima impiantistica:

- impianto illuminazione di emergenza.

Le ultime prestazioni trattate dalla norma (gestione farmaci e materiale sanitario, servizio di sterilizzazione, servizio di disinfezione, servizio mortuario) rientrano nelle attività ospedaliere a ciclo continuativo, ma all’interno dell’ospedale da campo trovano collocamento nel complesso amministrativo. Questo per alleggerire il flusso di persone già elevato del complesso clinico.

5.2.3. Triage medico

Si definisce “triage” il processo di suddivisione dei pazienti in classi di gravità in base alle lesioni riportate e alle priorità di trattamento e/o di evacuazione. Il triage è quindi una procedura sanitaria di tipo dinamico che consente di gestire le limitate risorse disponibili al fine di ridurre al massimo la mortalità e la morbilità delle persone coinvolte nell’evento, orientando il trattamento sanitario e il trasferimento dei pazienti in base alla priorità scaturita dalla loro valutazione sanitaria.

Essendo un atto sanitario, il triage deve essere documentato attraverso una scheda che deve sempre seguire il paziente nelle varie fasi di trattamento, in modo da permettere la ricostruzione degli interventi effettuati su di esso.

Man mano che si procede dall’area del disastro verso le strutture sanitarie campali, le figure professionali che vengono schierate (o che si rendono disponibili) divengono sempre più qualificate e
le risorse materiali impiegate maggiormente sofisticate dal punto di vista tecnologico; di conseguenza, l’aspettativa di una maggiore qualità di assistenza, diagnosi e trattamento aumenta progressivamente.

Analisi del processo di triage:

L’analisi del processo di triage rappresenta la metodologia di approccio più corretta per la costruzione dello strumento di lavoro, poiché consente di individuare necessità concrete a cui rispondere con soluzioni idonee a soddisfare le esigenze operative dei soccorritori. In situazioni ambientali spesso critiche, caratterizzate da scarsi mezzi ed elevatissima componente di stress, ogni strumento di lavoro deve essere progettato in funzione della sua reale possibilità di impiego per non aggiungere agli operatori ulteriori elementi di criticità.

In relazione alla tipologia degli scenari si possono identificare:

- Scenario incidentale non pianificato:
 - data e luogo ignoti;
 - patologia prevalente non prevedibile fino a ricognizione effettuata nell’area interessata;
 - può essere difficile raggiungere l’area di interesse;
 - possono esistere problemi di sicurezza tali da imporre priorità ad allontanare le persone dall’area piuttosto che iniziare i trattamenti medici.

- Scenario pianificato (grandi eventi organizzati):
 - data e luogo noti: l’evento è preceduto da una fase di pianificazione che consente di prevedere con considerevole precisione quante e quali risorse umane e materiali siano necessarie e, quindi, di procedere ad una selezione mirata del personale e assegnazione precisa di ruoli e compiti;
 - la documentazione affidata al personale di primo intervento può tenere conto del suo livello di capacità professionale e della tipologia di informazioni che dovranno essere raccolte sul posto;
 - la patologia prevalente, connessa con lo scenario in esame, è nota anche se rimane sempre un margine di imprevedibilità per eventuali sovrapposizioni di incidenti dovuti a cause non correlate con lo scenario primitivo;
 - i problemi di accesso al focolaio incidentale sono ridotti poiché in fase di pianificazione vengono previsti i percorsi riservati alle squadre ed ai mezzi di soccorso per raggiungere velocemente ogni punto dell’area in esame;
 - è possibile individuare e pianificare il posizionamento di presidi sanitari, anche campali, in modo da consentire, in sicurezza, il trattamento dei pazienti con caratteristiche assimilabili a
 quella di un Pronto Soccorso (raccolta anamnesi, registrazione parametri clinici, notazioni di terapia farmacologica e strumentale).

In base alle diverse esigenze che possono manifestarsi nei due scenari sopra indicati e quindi sulla base delle diverse modalità operative e conseguenti differenti esigenze di triage, si porrebbe la necessità di separare gli algoritmi e la modulistica da utilizzare. E’ però necessario tener conto che lo scenario pianificato per i grandi eventi può trasformarsi in scenario incidentale imprevisto ed, inoltre, che è importante armonizzare gli strumenti con l’operatività quotidiana in modo da facilitare l’intero processo, compresa la compilazione della modulistica.

Inoltre occorre considerare che in caso di maxi-emergenza, nella prima fase dei soccorsi è presente, quale risorsa aggiuntiva, anche personale non sanitario: le procedure e i materiali da utilizzare nelle fasi di triage devono tener conto di ciò per non imporre protocolli e modulistiche di difficile comprensione da parte di soccorritori con minori competenze professionali sanitarie.

La scheda sanitaria di maxi-emergenza dovrà essere versatile e permettere di segnalare le condizioni del paziente anche in eventi eccezionali come quelli di tipo NBCR (nucleare, biologico, chimico, radiologico). In tal caso i dati da inserire potranno riguardare l’eventuale sostanza tossica riscontrata, il trattamento con antidoti e la decontaminazione effettuata.

Nella fase di dimensionamento dell’evento, cioè all’arrivo della prima squadra sanitaria, il triage verrà eseguito con dispositivi che consentano l’immediata visualizzazione del codice colore ed una iniziale identificazione della gravità del paziente; l’algoritmo del triage dovrà permettere di fornire informazioni sempre più complesse e dettagliate anche relativamente alle cure erogate.

In caso di maxi-emergenza infatti le operazioni di soccorso si realizzano attraverso tre fasi fondamentali: nella prima fase la squadra di soccorso esegue il triage delle vittime con l’attribuzione di codici-colore di gravità utilizzando l’algoritmi semplici e veloci (Gazzetta Ufficiale 12 maggio 2001, n. 109); nella seconda fase si realizzano le prime operazioni di stabilizzazione dei parametri vitali, di solito in un punto di raccolta prossimo al focolaio incidentale, in attesa che la struttura campale venga installata; nella terza fase, giunti nel ospedale da campo, si eseguirà una rivalutazione del triage per verificare la congruità del codice-colore preventivamente assegnato, le informazioni cliniche iniziali verranno integrate in maniera sistematica e verranno effettuate e registrate le procedure diagnostico-terapeutiche erogate.

Sulla base delle precedenti considerazioni, lo strumento operativo più efficace appare essere la scheda triage, eventualmente integrata da dispositivi di diversa tipologia (quali: braccialetto, cartellino colore, ecc.), di rapida applicazione da parte di personale anche non sanitario e
particularmente pratici soprattutto se utilizzati sul “cantiere” ed in condizioni metereologiche avverse.

Le caratteristiche della scheda e dei dispositivi (tags) dovranno rispondere a criteri di:

- facile visibilità;
- facilità di applicazione;
- tracciabilità del percorso della vittima, possibilmente attraverso codici pre-numerati;
- conoscenza e condivisione, almeno a livello regionale, da parte degli operatori dell’emergenza, sia sanitari che laici;
- resistenza ad eventi atmosferici e potenziali agenti lesivi;
- disponibilità in quantitativi adeguati su tutti i mezzi di soccorso.

La tipologia ed il dettaglio dei dati che dovranno essere indicati in quanto necessari ad accompagnare il paziente fino alla sede definitiva di trattamento, sono:

- sezione anagrafica: nome, cognome, età, sesso;
- indicazione della sede di recupero;
- dati cronologici dell’evento;
- codice colore di gravità.

In campo internazionale vengono riconosciuti 4 codici-colore di gravità per la classificazione dei pazienti:

- codice verde: urgenza minima;
- codice giallo: urgenza relativa;
- codice rosso: estrema urgenza;
- codice nero: deceduto o non salvabile.

Viene qui riportata una tabella formulata dalla Croce Rossa Italiana, che mette in correlazione le patologie osservate e il corrispondente grado d’urgenza.

<table>
<thead>
<tr>
<th>Grado di urgenza</th>
<th>Esempi di patologie</th>
<th>Condotta da tenere</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSSO</td>
<td>– politraumatizzato in stato di insufficienza cardio-circolatoria e/o ventilatoria</td>
<td>trattamento sul posto</td>
</tr>
<tr>
<td>ROSSO</td>
<td>– ferite profonde del collo</td>
<td>evacuazione medicalizzata prioritaria</td>
</tr>
<tr>
<td></td>
<td>– ferite lacero-contuse del volto</td>
<td>previa stabilizzazione</td>
</tr>
<tr>
<td></td>
<td>– ferite cranio-celebrali</td>
<td>ritardo operatorio max 6 ore</td>
</tr>
<tr>
<td></td>
<td>– ferite gluteno-perineali emorragiche</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– traumi cranici comatosi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– traumi vertebro-midollari con disturbi neurologici</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– traumi toracici gravi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– traumi addominali con insufficienza</td>
<td></td>
</tr>
<tr>
<td>Colore</td>
<td>Condizioni medico-socio-sanitarie</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td></td>
</tr>
</tbody>
</table>
| **GIALLO** | - traumi cranici non comatosi
- traumi vertebrali senza turbe neurologiche
- traumi toracici compensati
- lesioni addominali sospette
- ustioni medie
- fratture esposte o multiple ai grossi segmenti
- politraumatizzati senza deficit |
| **VERDE** | - feriti leggeri
- fratture chiuse
- ferite non emorragiche
- ustioni leggere
- rischi preesistenti al sinistro (cardiopatici, gravidanze oltre il 7° mese ecc.) |
| **NERO** | - morte evidente (decapitazione, carbonizzazione, rigor mortis ecc.)
- morti constatate dal medico |

All’interno del complesso clinico dell’ospedale da campo l’attività di triage viene svolta da almeno un infermiere qualificato sotto la supervisione di un medico. Questo per garantire quella progressiva affidabilità di trattamento all’allontanarsi dal contesto movimentato della catastrofe.

La direttiva non si pronuncia sulle dotazioni minime di spazio o di tecnologie per svolgere il triage sanitario, proprio a causa della natura dinamica di tale operazione. Sarà necessario garantire un locale ampio e salubre, resistente al passaggio di un gran numero di persone. L’accessibilità dall’esterno deve essere agevole e priva di barriere architettoniche, per l’ingresso di barele e persone con disabilità conseguenti all’incidente. Lo spazio coperto dovrà prevedere aree per la sosta dei feriti in attesa della valutazione di gravità, sportelli di accettazione per una valutazione ordinata e rapida dei pazienti, aree di sosta per i codici meno urgenti in attesa dei trattamenti medici, e una buona connessione agli spazi di distribuzione della spina clinica.
Figura 5.2.3. – 01 : Schema funzionale – Triage.

Schema funzionale di triage medico per:
- 30 pazienti deambulanti;
- 2 pazienti disabili con carrozzina;
- 2 pazienti barelletti;
- 2 postazioni di accettazione
5.3. Analisi dimensionale

Il dimensionamento del modulo base, nonostante la configurazione finale si debba adattare alle numerose attività mediche elencate nell’analisi funzionale, per la sua intrinseca proprietà di modularità, non viene espresso sulla base dei requisiti spaziali definiti dalle stesse attività, bensì fa sostanziale riferimento ad altre tre complesse tematiche: il trasporto, l’espandibilità del modulo stesso, ed il materiale sanitario contenuto. È importante quindi stabilire una strategia per ognuna di queste tematiche e definirle le grandezze in gioco. Da queste si potrà dedurre una corretta proporzioni delle misure del modulo.

5.3.1. Trasporto

La strategia individuata per il trasporto del modulo base si caratterizza per una duplice valenza: la possibilità di stivare più moduli all’interno di un container standard, in maniera tale da sfruttare tutte le tipologie di mezzi già abilitati al trasporto dei container stessi; e la possibilità di mobilitare direttamente il modulo, senza l’ausilio di altri contenitori, conferendo alla struttura l’adeguata rigidità e le necessarie predisposizioni per il sollevamento.

La capienza di un container ISO 20’ è di 2458 mm di larghezza, 2591 mm di altezza, 6358 mm di lunghezza. La versione da 40’ ha uguale larghezza ed altezza, ma raddoppia la lunghezza a 12716 mm. Delle stesse dimensioni interne esistono le varianti aperte, denominate flat rack, ovvero senza pareti laterali e senza copertura, per le quali è facilitato il carico e scarico del materiale stoccatato. La soluzione in esame potrà essere contenuta e trasportata sia con container tradizionali, sia con flat rack, con preferenza di quest’ultimo se lo scarico si deve effettuare in tempi molto rapidi.

![Figura 5.3.1. – 01: Container ISO 20’, Container ISO 40’, Flat rack 20’, Flat rack 40’](Image)

Le misure del modulo base, oggetto di progettazione, si andranno quindi ad adattare alle suddette dimensioni di capienza. La misura che si rivela più restrittiva è quella legata alla larghezza, e di conseguenza sarà la prima ad essere definita nel modulo: un lato di base del modulo sarà di 2438 mm, avendo considerato 20 mm di tolleranza per il carico e scarico dal box.
Per ragioni di modularità si stabilisce che anche l’altro lato di base abbia la medesima dimensione, affinché sia più ampia la possibilità di combinare i moduli tra loro in fase di giunzione. Se i lati avessero misure differenti infatti le possibilità di accoppiamento sarebbero ristrette ai soli lati simili. Nel caso di lati uguali, ovvero in presenza di un modulo a pianta quadrata, non ci sono limitazioni nell’accostamento di moduli, giacché ogni lato può essere congiunto ad uno qualsiasi di un altro modulo contiguo. Successivamente si studierà come uno dei quattro lati verrà sacrificato a favore del fattore di espandibilità del modulo. Nonostante ciò anche la lunghezza del modulo in fase di trasporto sarà di **2438 mm**.

L’altezza, che non deve superare i 2591 mm dettati dalle misure interne dei container, viene stabilita anch’essa di **2438 mm**, considerando che 15 cm saranno utili al sollevamento per l’inserimento o l’estrazione del modulo dal box.

Il modulo base in fase di trasporto si configura come un cubo perfetto, di lato **2438 mm**.

In un container 20’ si potranno trasportare 2 moduli base, con un ulteriore eccesso di spazio che verrà sfruttato per dimensionare il modulo jolly, che avrà quindi dimensione 1160 mm di lunghezza, entro i 2438 mm di larghezza, e 2438 mm di altezza; di conseguenza, all’interno di un container 40’ saranno trasportabili 4 moduli base e 2 moduli jolly.

![Figura 5.3.1. – 02 : Trasporto su container ISO 20’ su camion.](image)

Grazie alla compattezza delle dimensioni ogni singolo modulo può essere trasportato anche in maniera indipendente con mezzi leggeri; inoltre, essendo “sottomultiplo” di un container, rimangono garantiti tutti i mezzi elencati in precedenza, potendo stivare direttamente il modulo in nave, treno o aereo senza prima stoccarlo in box.

Determinata la geometria esterna dell’involucro, è necessario procedere alla progettazione della struttura e delle sue dimensioni interne. Come anticipato in fase concettuale, l’obiettivo è di
trasportare in modo integrato non solo il materiale sanitario, ma anche “spazio” aggiuntivo, che nella realtà si traduce in ulteriore superficie calpestabile, pareti laterali e copertura.

5.3.2. Espansione

In questa fase la progettazione studia la miglior soluzione di espansione compatibile con le dimensioni di trasporto dedotte al punto precedente.

Il progetto si fonda su un sistema di espansione telescopico, simile a quello utilizzato per le coperture di portici, serre, o piscine. In questo modo lo sviluppo avviene in un’unica direzione, mantenendo tre lati inalterati, ai quali sarà quindi possibile unire un altro modulo.

![Foto di coperture telescopiche per piscine, in configurazione chiusa e aperta.](image)

Emerge alcune criticità legate alla geometria del sistema telescopico: le varie porzioni di cui è costituito il sistema sono comprese una nell’altra, e ad ogni strato si riducono le dimensioni dell’involucro in proporzione allo spessore strutturale e architettonico dello stesso; questo avviene sia per le pareti, sia per la copertura e la pavimentazione. Risulta evidente che in un presidio per ospedale da campo la quota interna di calpestio debba rimanere costante, per eliminare ogni possibile barriera architettonica che rallenti le operazioni mediche e di soccorso. Allo stesso modo conviene che la copertura non sia interessata da discontinuità interne di quota, a maggior ragione dove le dimensioni esterne risultano già di partenza molto esigue.

Alla luce di queste considerazioni il progetto vedrà l’impianto telescopico integrato da un sistema di elementi a ribalta: la pavimentazione e la copertura saranno in grado di ribaltare, dalla configurazione chiusa a quella aperta, grazie a cerniere in acciaio. Le pareti laterali formeranno il vero e proprio sistema telescopico ad estrazione rapida.

Il numero delle porzioni di cui sarà composto il modulo base definitivo viene stabilito secondo un pre-dimensionamento dell’involucro edilizio. Considerando uno spessore di almeno 8 cm per le pareti prefabbricate, di 16 cm per la pavimentazione e di 20 cm per la copertura (pacchetto completo con pannello isolante, controventi a croce di S. Andrea, impianto di illuminazione), ne risulta, per le
dimensioni del modulo “chiuso”, che le porzioni aggiuntive possano essere 2. In totale quindi il modulo sarà composto da tre porzioni: quella di partenza, delle dimensioni esterne definite dalle caratteristiche di trasporto, più due porzioni aggiuntive, le cui misure saranno descritte in maniera precisa nelle tavole di progetto allegate.

Il sistema ibrido, rispetto alla soluzione telescopica semplice, prevede un numero maggiore di operazioni per portare il modulo alla configurazione di utilizzo. Tuttavia la progettazione si propone di assicurare un numero limitato di passaggi e di rapido compimento, in modo da non compromettere la rapidità di installazione.

Per riassumere, il processo di espansione del modulo, così come illustrato nella successiva immagine, si andrà sviluppando nei seguenti passaggi: nella prima fase viene ribaltata la pavimentazione della prima e della seconda porzione estraibile; la pavimentazione, tutta alla stessa quota d’appoggio e di calpestio, conterrà le guide per estrarre le pareti laterali telescopiche, alle quali è agganciata la copertura; si procederà dunque all’estrazione della prima porzione, facendola scorrere all’interno delle guide allineate dei basamenti. La copertura, che in fase di trasporto si trova “appesa” alle pareti laterali in direzione verticale, viene ribaltata di 270° grazie ad un sistema a doppia cerniera, che verrà descritto nel dettaglio nella fase esecutiva. Una volta fissata la copertura sarà estratta la seconda porzione (pareti e copertura annessa) e si eseguirà la stessa procedura per il posizionamento della copertura. Sarà infine garantita la fissaità della struttura con opportuni sistemi di connessione tra gli elementi strutturali.
Figura 5.3.2. – 02 : Sequenza di operazioni nel processo di espansione del modulo.
5.3.3. Materiale sanitario

La definizione degli spazi interni del complesso clinico dell’ospedale da campo è fortemente influenzata dalla tipologia delle attività sanitarie svolte. Infatti ogni attività richiede l’utilizzo di particolari tecnologie e strumentazioni mediche, ognuna delle quali possiede un proprio ingombro volumetrico. La progettazione deve quindi tenere in considerazione le grandezze derivanti da questi strumenti, per il loro trasporto, la loro movimentazione ed il loro utilizzo finale.

Gli esperti del campo emergenziale sottolineano l’esistenza di una serie di problemi tipici nell’organizzazione interna degli spazi in fase operativa, che spesso generano difficoltà con le quali il personale si deve confrontare. In queste circostanze, le funzioni vengono adattate ai presidi disponibili sul mercato e sono ottimizzate attraverso l’esperienza; ma in generale le strutture non sono specifiche per la funzione o l’intervento richiesti, e quindi presentano alcuni limiti come i seguenti:

– la necessità di riconfigurare gli spazi, i cablaggi e l’impianto elettrico durante ogni operazione o intervento;

– la difficoltà di installare e posizionare l’equipaggiamento strumentale e gli impianti, che sono disposti sul pavimento oppure appesi al soffitto o alle pareti, in mancanza di specifico alloggio;

– spazi indifferenziati, incluso l’utilizzo di tende senza setti o pannelli divisori, che possono risultare sotto o sovrastimati se comparati ai bisogni d’uso;

– le condizioni di lavoro generalmente caotiche ed instabili che caratterizzano l’intera struttura;

– il molto tempo richiesto per montare le stazioni di lavoro interne;

– l’impossibilità di un adeguato sistema di condizionamento interno dell’aria dovuto alla difficoltà di delimitare gli ambienti in modo completo;

– la difficoltà nel gestire gli stock di materiale sanitario, sia in fase non operativa che in quella operativa;

– la difficoltà nel selezionare il materiale per ogni missione, dal momento che le risorse sono immagazzinate in scatoloni divisioni in base al loro contenuto e non secondo le funzioni per le quali sono predisposti.

Questo sottolinea la mancanza di una precisa corrispondenza tra la configurazione spaziale e i bisogni funzionali. Tale aspetto impone la necessità di procedere con una strategia che unisca contenitore e
Contenuto in maniera semplice ma univoca, con l’obiettivo di risolvere i conflitti spazio-funzione sopra elencati.

Come analizzato in precedenza, la normativa italiana associa ad ogni attività i dispositivi tecnologici minimi di cui dotarsi. Tuttavia non si fa esplicito riferimento sulle dimensioni di tali dispositivi, anche se risulta chiaro che gli spazi si dovranno poi adattare all’utilizzo di questi. Va ricordata inoltre la sostanziale differenza spazio-dimensionale tra una struttura ospedaliera tradizionale, cui la normativa si indirizza, ed un presidio per ospedale da campo. Questo per focalizzare l’attenzione ancora una volta sulla difficoltà di mobilitare strumentazioni di grandi dimensioni e di grande contenuto tecnologico all’interno di strutture itineranti e temporanee.

Il settore medico lavora ormai da decenni nello sviluppo di strumentazioni di emergenza, per renderle sempre più compatte e leggere, assicurando comunque prestazioni comparabili a quelle tradizionali. Nonostante il grande progresso in questo senso, l’organizzazione delle risorse rimane però di complessa gestione, con le conseguenti limitazioni descritte in precedenza.

In vista della determinazione dimensionale delle strumentazioni per le varie attività sanitarie, si vuole sostenere, dopo averlo analizzato con attenzione, un recente lavoro di ricerca condotto dal Professor Roberto Bologna dell’Università di Firenze. Il contributo, pubblicato con il titolo “Post-disaster medical emergency: project for the realization of an Advanced Medical Station”, ha come obiettivo di studio la definizione sistematica delle funzioni, procedure, organizzazione e tecnologie richieste in situazioni di emergenza sanitaria. Sebbene sia volto alla definizione di un Posto Medico Avanzato, le riflessioni e i risultati della ricerca in merito alle tecnologie mediche possono trovare concreta applicazione anche al caso di ospedali da campo.

Sono state analizzate tutte le attività sanitarie basiche svolte durante le operazioni di emergenza, le quali ammontano ad un totale di 95 attività, divise tra ordinarie e specifiche. Le attività di base sono state raggruppate a seconda della loro affinità funzionale, identificando 21 unità spaziali; le unità spaziali rappresentano una sorta di zonizzazione generale delle attività svolte all’interno della struttura ospedaliera, in accordo con criteri di localizzazione per contesti omogenei. Le 21 unità spaziali sono state successivamente aggregate in 13 unità funzionali, partendo dall’analisi delle implicazioni spaziali ed altre considerazioni di compatibilità. Di ogni unità funzionale si sono analizzate nel dettaglio le dimensioni spaziali delle attività attinenti, e le relative strumentazioni. L’aspetto fondamentale su cui ci si focalizza è infatti l’erogazione delle funzioni.

La proposta, qui condivisa, è di organizzare il sistema del materiale sanitario per le 13 unità funzionali in 13 lotti di equipaggiamento. Si è assunto di stoccare il materiale di ogni unità funzionale in contenitori separati, equipaggiati con tutte le dotazioni richieste. In questo modo le risorse possono
essere facilmente ordinate e controllate in tempo di pace, ed essere pronte all’uso e al veloce impiego in caso di intervento.

Con l’organizzazione in unità modulari completamente equipaggiate è possibile trasportare e installare rapidamente le stazioni di lavoro e renderle immediatamente operative. Un altro vantaggio di questa sistemazione modulare è la possibilità di adattare la struttura ai bisogni specifici, e soprattutto alla quantità di personale operativo.

Vengono qui elencati i contenitori per ogni funzione, differenziati ognuno da un colore, ai quali sono stati aggiunti altri tre box opzionali:

1. Triage (verde-grigio)
2. Coordinazione per i soccorsi (verde kaki)
3. Registrazione pazienti di codice giallo-rosso (rosa)
4. Trattamento pazienti di codice giallo-rosso (rosso)
5. Diagnosi (viola)
6. Area d’aspetto (arancione)
7. Evacuazione (giallo)
8. Pronto soccorso (turchese)
9. Deposito materiali (ciclalino)
10. Servizi igienici (blu)
11. Registrazione pazienti codice verde (verde erba)
12. Trattamento pazienti di codice verde (verde bosco)
13. Deposito salme (grigio scuro)
14. Modulo di collegamento (limone)
15. Ingresso alla sala operatoria (beige)
16. Sala operatoria (bianco)

Figura 5.3.3. – 01: Contenitore dei materiali per ogni unità funzionale.

Pero ogni contenitore l’analisi riporta anche il materiale e le risorse richieste. Da questa analisi del materiale, è evidente che ogni unità richiederebbe un box di dimensioni differenti; tuttavia, per definire un unico contenitore che possa essere usato per tutte le funzioni, con l’unica distinzione per il colore, è stato progettato un contenitore di dimensioni standard.

Il lotto di equipaggiamento modulare, realizzato in alluminio estruso, risulta delle seguenti dimensioni:
200 cm (altezza) x 130 cm (larghezza) x 65 cm (profondità).

Il design si ispira alle valige da viaggio per il trasporto di materiale fragile, anche se le dimensioni sono più proprie di un armadio.

Per spiegare con più chiarezza la soluzione proposta, si porta l’esempio del contenitore per il trattamento di pazienti in codice giallo-rosso. Il contenitore è stato disegnato per alloggiare materiale attualmente disponibile sul mercato. Le dimensioni sono state determinate sulla base degli oggetti specifici, dando preferenza a quelli di dimensioni più compatte.

Nello specifico caso quindi le risorse, stoccate con ordine come mostrato nelle figura in basso, sono:

- aspiratore;
- carrello d’emergenza;
- carrello delle medicazioni;
- cardio-monitor;
- defibrillatore;
- respiratore;
- acqua;
- materiale di consumo;
- luce alogena.

Il contenitore è dotato poi di quattro ruote per poter essere movimentato senza difficoltà all’interno della struttura campale.
In conclusione, la progettazione del presidio per ospedale da campo fa affidamento a queste caratteristiche dimensionali nell’ambito delle risorse sanitarie, sia per il trasporto che per la gestione in fase operativa. Per dare una visione concreta di quanto detto, si illustra, in anteprima, con la seguente immagine il risultato raggiunto, ovvero quello di integrare il lotto sanitario all’interno del modulo base in configurazione chiusa, pronto per il trasporto.

5.3.4. Spazi-funzione

Sovrapponendo le indicazioni ottenute dall’analisi funzionale e dall’analisi dimensionale, è possibile, attraverso un processo di sintesi, elaborare un contenuto formale più preciso chiamato spazio-funzione. Determinate le dimensioni del modulo base, infatti, è ora necessario verificare la conformità di queste con i parametri funzionali. Si ricorda che all’interno dell’analisi dimensionale è stato considerato fin da subito l’aspetto legato al trasporto e all’utilizzo del materiale sanitario, come specificato al paragrafo precedente; per questo motivo è possibile confermare a priori che il modulo possiede, anche in fase operativa, una superficie tale da contenere le strumentazioni mediche e
l’arredo richiesti. Lo studio degli spazi-funzione ha lo scopo quindi di fornire indicazioni sulla buona distribuzione del materiale sanitario e dell’arredo, concretizzando l’ingombro minimo con quello del modulo in esame. Nelle corrispondenti tavole di progetto in allegato, alla sezione chiamata analisi funzionale, è stato descritto in modo lineare e preciso, per ognuna delle principali funzioni, il processo di definizione dello spazio-funzione ad esso associato. Si riportano di seguito, come risultato della prima parte di analisi sul progetto, gli elaborati grafici in dimensione ridotta accompagnati da una sintetica trattazione.

Il primo spazio analizzato, seguendo la sequenza logica delle fasi di intervento, è quello relativo al triage medico. Il locale di ingresso all’ospedale da campo presenta zone di sosta e di attesa per i pazienti, e zone di accettazione e valutazione delle vittime. Seguendo gli schemi funzionali sviluppati in precedenza, per l’accoglienza di 30 pazienti deambulanti, 2 pazienti disabili con carrozzina e 2 pazienti barellati, sono necessari 8 moduli, che coprono una superficie interna di circa 94 m². Questa quantità soddisfa pienamente il requisito minimo di 51 m² stabiliti dall’analisi funzionale. Vengono sempre rispettati gli spazi di passaggio per la circolazione degli utenti, calcolati sulle caratteristiche antropomorfe nella misura di 50 cm. Allo stesso modo sono garantiti spazi di circolazione e di manovra delle carrozze per disabili e delle barelle.

![Figura 5.3.4 - 01: Spazio-funzione Triage medica.](image-url)
Il secondo spazio analizzato è relativo all’attività di Pronto Soccorso. Questo si divide in locali di osservazione e locali per la visita del paziente. Entrambi i locali richiedono un’area minima di 9 m² per postazione. Un unico modulo, di 12 m² di superficie, risulta conforme all’erogazione di queste funzioni. Anche in questo caso, con una corretta disposizione dell’arredo e del materiale sanitario, vengono rispettati gli spazi d’uso e di passaggio per l’osservazione e la visita del paziente.

![Diagrama della disposizione degli spazi di Pronto Soccorso](image)

Figura 5.3.4. – 02 : Spazio-funzione Pronto Soccorso.

Lo spazio adibito all’attività di laboratorio, correlato a quello di Pronto Soccorso, necessita di locali per il prelievo, di locali per l’esecuzione delle analisi ed eventualmente di reparti specializzati. Il locale per il prelievo, analogamente alle precedenti zone di osservazione e visita, rientra completamente in un singolo modulo. Il locale per l’esecuzione delle analisi, invece, che per la presenza di strumentazioni voluminose richiede un’area di almeno 18 m², verrà allestito all’interno di 2 moduli congiunti.
Per il reparto di rianimazione e terapia intensiva sono richiesti locali di degenza, con una superficie minima di 9 m\(^2\) per paziente. In entrambe le situazioni, molto simili tra loro per materiale sanitario adoperato, un singolo modulo è sufficiente ad assolvere le necessità di spazio. Considerato il bisogno di un allaccio ai gas medicali, è opportuno collegare al modulo base un modulo jolly che contenga le adeguate dotazioni.
La zona per il servizio di farmacia si esplica in due principali locali: il deposito per farmaci e presidi medico-chirurgici, e il locale per le preparazioni chimiche. Il locale per preparazioni chimiche, di norma, può corrispondere ad un singolo modulo. Tuttavia, nei casi in cui l’evento catastrofico sia di natura chimica, batteriologica o epidemica, la richiesta di spazi per questa attività aumenta notevolmente; la natura modulare della costruzione garantisce un adeguamento rapido a queste richieste sanitarie. Il locale di deposito e di servizio farmacia comprende almeno 2 moduli congiunti, per contenere gli armadi e i frigoriferi adibiti alla conservazione dei medicinali e dei presidi medico-chirurgici.

![Diagram of the pharmacy zone](image)

Figura 5.3.4. – 05 : Spazio-funzione Farmacia.

Il servizio di radiologia prevede un locale visita e una sala di simulazione con bunker di radioterapia. Il primo coincide con un singolo modulo, capace di contenere la specifica strumentazione medica. Il locale simulazione richiede l’accostamento di 2 moduli, all’interno dei quali si sviluppa una zona lavoro per il personale addetto e una zona di terapia con Scanner CT.
Il reparto operatorio è costituito da varie zone, per ognuna delle quali è stato in precedenza prodotto uno schema funzionale. La zona di preparazione per gli utenti, così come quella di preparazione del personale medico, occupano un singolo modulo ciascuno. A questi è direttamente collegata la sala operatoria, che per normativa non può avere superficie inferiore a 35 m²; per questo motivo si configura con l’unione di 4 moduli, con area totale di 48 m². Inoltre, un modulo ospita il deposito presidi e strumentario chirurgico, mentre un altro modulo il deposito del materiale sporco in uscita.
Il reparto degenze si compone di stanze da letto singole o multiple. La normativa prescrive un massimo di 4 posti letto per camera, ed una superficie minima di 9 m² per paziente. In aggiunta, almeno il 10% delle stanze deve essere ad uso singolo. Dalla sintesi dell’analisi spazio-funzionale risulta che un modulo corrisponda ad un posto letto: in questo modo ogni paziente dispone di una superficie di 12 m². Si è verificato, come mostra la figura seguente, che venissero rispettati anche gli spazi di manovra di carrozze e barelle, nel caso in cui i pazienti fossero disabili o completamente privi di capacità motorie. Dall’aggregazione di 4 moduli, similmente a quanto fatto per la sala operatoria, è possibile comporre stanze multiple con 4 posti letto, indipendentemente dalle caratteristiche dei pazienti.
Il reparto sterilizzazione si compone di spazi per la ricezione, cernita, pulizia e preparazione, di una zona di sterilizzazione, e di un locale di deposito del materiale sterilizzato. Questi ambienti devono seguire un percorso univoco che vada dalla zona sporca in ingresso a quella più pulita in uscita. Inoltre si deve garantire una separazione netta tra gli ambienti per evitare la diffusione di batteri. Il reparto in totale necessita quindi di almeno 3 moduli, ad ognuno dei quali corrisponda una attività della sequenza appena descritta.
5.4. Analisi dell’area

Un ospedale da campo si configura per definizione come una struttura sanitaria mobile. Trattando di una costruzione itinerante, risulta perciò evidente l’impossibilità di condurre un’analisi specifica per un sito preciso, come succede nel caso di edifici tradizionali. Gli eventi catastrofici, per i quali si richiede l’attivazione di ospedali da campo, interessano infatti qualunque territorio del globo. Ad ogni territorio può corrispondere una distinta tipologia di evento catastrofico, in relazione alle condizioni climatiche, orografiche, la vicinanza al mare, la situazione politica e così via.

Per rendere più chiara la vastità degli scenari possibili in tema di territorio si riporta un breve studio di alcune tra le più grande catastrofi degli ultimi anni, segnalando anche zone del pianeta in cui l’allerta e il presentarsi dei fenomeni naturali disastrosi permane con costante frequenza.

Dal dicembre 2008 la città di L’Aquila (Italia) e i paesi circostanti sono scossi da ripetute azioni sismiche, le quali hanno causato il danneggiamento di numerosi edifici civili e il conseguente sfollamento della popolazione. Si stima che nel 2009 siano state colpite direttamente ed indirettamente dal disastro circa 65 000 persone, con necessità di assistenza sanitaria e sociale. Analogamente, nel 2013, l’azione sismica ha colpito i territori dell’Emilia Romagna (Italia) con 227 000 persone coinvolte nelle dinamiche di soccorso. Il territorio nazionale non è soggetto soltanto all’azione sismica, ma anche a disastri di natura idrogeologica, che colpiscono quasi ogni anno piccole porzioni di territorio, con danni a strutture e persone, anche molto ingenti.
L’azione sismica interessa inoltre molte altre aree del pianeta, in particolare quelle localizzate lungo le falde sismiche; le isole dell’Indonesia e i territori meridionali di Cile e Argentina sono interessati costantemente da attività telluriche. Di dimensioni importanti sono state le conseguenze del terremoto di Haiti nel 2010 che hanno afflitto una popolazione di 800 000 abitanti. Più recentemente, nell’aprile 2015, anche la popolazione del Nepal è stata colpita da una serie di eventi sismici, in seguito ai quali la risposta sanitaria mondiale è stata attivata.

Connessa all’azione sismica è quella dei maremoti, i quali colpiscono gli insediamenti situati lungo le coste degli oceani, come nel caso del Giappone, dove, nel 2011, circa 110 000 persone sono state supportate dai soccorsi del Comitato Internazionale della Croce Rossa.

Negli Stati Uniti d’America una delle principali cause di disastro sono i tornado, che si ripresentano annualmente con intensità crescenti. In Oklahoma, nel 2015, l’azione delle forti raffiche ha danneggiato beni e costruzioni di una popolazione di 15 000 abitanti.

L’intero continente Africano soffre ogni anno di siccità, le cui ripercussioni toccano annualmente circa 10 milioni di persone. Attualmente sono numerose le Organizzazioni Non Governative ed umanitarie che soccorrono e prevengono gli effetti di queste condizioni climatiche estreme.

Figura 5.4. – 01: Recent eventi catastrofici a scala globale.

Partendo da considerazioni più generali, ad un ospedale da campo viene richiesta la capacità di impiego in un ambiente ostile: deve essere capace di adattarsi a condizioni climatiche estreme e diversificate, e ad un contesto morfologico variabile.

In corrispondenza del verificarsi di una catastrofe, la scelta riguardante la posizione e la superficie di collocamento del presidio ospedaliero è un elemento chiave per garantire che le operazioni sanitarie
vengano compiute con tempestività ed in sicurezza. Nell’impossibilità di prevedere lo scenario dei futuri eventi catastrofici, l’analisi dell’area, in questo caso, si articola nello studio di una strategia volta a facilitare le operazioni di collocamento della struttura ospedaliera.

Le organizzazioni che operano nel campo della Medicina delle Catastrofi suggeriscono con forza che la decisione sul collocamento di un ospedale da campo venga presa in fase di pianificazione preventiva, per ridurre i tempi decisionali durante la fase emergenziale. Le amministrazioni locali, quindi, dovrebbero interessarsi alla predisposizione di piani di intervento in caso di eventi catastrofici, individuando le aree più adatte allo schieramento delle strutture campali. Tale operazione, svolta in tempo di pace, prescinde dal reale epicentro della catastrofe, ma si basa su fattori di rischio dedotti dalle diverse discipline competenti (rischio sismico per la sismologia, etc.). Da una indagine di questo tipo, seppur semplificata, si può ricavare un quadro delle zone più e meno propense ad accogliere le strutture campali, qualora ve ne fosse necessità.

Per quanto riguarda le possibili soluzioni di posizionamento, queste vanno stabilite a seconda dell’accessibilità in entrata e in uscita dell’area su cui si propone di collocare la struttura ospedaliera: dall’analisi della catena dei soccorsi risulta evidente che l’ospedale da campo, oltre a doversi collocare in una zona di sicurezza e quindi non soggetta ad effetti collaterali della catastrofe, sarà interessato da un alto flusso di persone e mezzi. L’area deve essere servita da infrastrutture veloci e sicure, che colleghino le zone colpite dall’evento in una direzione e forniscano una via d’evacuazione dall’altra.

La condizione più favorevole per una rapida installazione della struttura campale è una superficie livellata e regolare, sufficientemente estesa. In un contesto fortemente urbanizzato, come i centri storici, gli spazi idonei a questo compito sono le piazze che, nel caso specifico d’emergenza, si troveranno nelle immediate vicinanze del cantiere e dell’area di raccolta, ma in posizione di sicurezza. Nei centri urbani meno densamente edificati, i dispositivi sanitari possono essere agevolmente collocati oltre che su piazze e piazzali, anche su campi da calcio e aree sportive, grandi parcheggi, e grandi parchi. Nelle aree rurali la scelta va indirizzata principalmente sulla base di studi geologici: devono essere riconosciute delle buone proprietà del terreno di supporto, in termini di pendenza e di morfologia. Saranno in questo contesto più favorevoli le aree meno pendenti, con una superficie pianeggiante ed esente da ostacoli naturali o artificiali, di terreno compatto e resistente, lontano dall’essere soggetto a rischio di frane, smottamenti, crolli e tutto ciò che possa compromettere la sicurezza della risposta sanitaria.

Conclusa la riflessione sull’area di collocamento, si è ritenuto opportuno indagare, ancora in fase di analisi preliminare al progetto, sullo schema planimetrico e compositivo per un ospedale da campo.
5.5. Schema planimetrico – tradizione ed innovazione

La fase di ricerca bibliografica ha evidenziato grandi lacune nella letteratura sui presidi per ospedali da campo, in particolare sulla loro natura compositiva. Molto spesso infatti nella composizione dell’agglomerato campale, realizzato con tende o container, non viene seguito un layout prestabilito o standardizzato; ciò si riflette in strutture prive di una conformazione logistica che prenda in considerazione i percorsi sanitari, creando deficit nelle prestazioni di soccorso. Nemmeno la normativa offre indicazioni sull’aspetto compositivo delle strutture ospedaliere in genere; infatti, il regolamento 2010/481/UE dà indicazioni sui componenti dell’ospedale da campo solo in termini di *équipe médicale*, ma non fornisce per queste funzioni né le più adatte proporzioni spaziali (alle quali si è risaliti attraverso considerazioni di natura antropomorfica nella sintesi tra spazio e funzione per ogni locale) né tantomeno una logica compositiva volta a definire le relazioni degli spazi tra loro.

L’assenza di bibliografica, quindi, ha reso necessaria la valutazione di un’ampia casistica di ospedali da campo realmente allestiti, al fine di dedurre i principi compositivi più significativi per questa tipologia di edifici. A livello ancora teorico, questi principi sono quelli che riflettono il contesto emergenziale in cui si immerge l’opera: la composizione deve seguire lo schema logico legato all’intervento di soccorso, favorendo anche dal punto di vista spaziale il trattamento sanitario delle persone colpite. Un altro concetto fondamentale è la modularità, intesa come adattabilità spaziale del complesso alle variazioni quantitative e qualitative di richiesta sanitaria: la composizione deve saper riflettere questo principio offrendo occasioni di espansione o riduzione del complesso. Ed infine, un punto importante ma spesso trascurato nell’ambito delle costruzioni temporanee campali, è l’aspetto estetico e formale del complesso ospedaliero: le persone colpite da evento catastrofico necessitano non solo di cure mediche ma anche di sostegno e sollievo psicologico; un ambiente accogliente e sereno può riuscire ad alleviare il dramma psicologico delle vittime, o quantomeno non renderlo più accentuato con un ambiente monotono e caotico come si dimostra tradizionalmente.

Partendo da una scala di contesto urbano, l’organizzazione complessiva del sito di un ospedale da campo dovrebbe includere tre principali componenti funzionali, più uno in caso di utilizzo a sostegno bellico: i servizi clinici, il supporto amministrativo, il comparto degli alloggi, e il comando militare. La dimensione di questi componenti dipende dalla capacità richiesta dall’evento. Il complesso clinico costituisce il centro del sito, collegato efficacemente alle infrastrutture di collegamento. All’interno del complesso trovano ubicazione le funzioni medico-sanitarie descritte in precedenza. Gli ambienti del complesso clinico sono quelli che richiedono maggior sforzo progettuale: il fine è di raggiungere condizioni operative di totale salubrità e sicurezza. Il supporto amministrativo dell’ospedale da campo comprende una serie di funzioni complementari al complesso clinico. Trovano qui sede i servizi di lavanderia e di smaltimento rifiuti e la camera mortuaria. Anche la sezione tecnica fa parte
del supporto amministrativo, che include la presenza di ingegneri, carpentieri, elettricisti e idraulici. Il comparto degli alloggi ospita, oltre alle stanze da letto del personale, anche i servizi di ristorazione, le attività ricreative, e i servizi igienici. Il dimensionamento di questa componente dipende dalle necessità create dall’evento e di conseguenza dalla composizione dell’équipe medica e tecnica. Quando il personale lascia l’ospedale da campo queste strutture possono essere integrate nel complesso clinico come nuove degenze oppure usate come alloggi residenziali. Il comando militare raggruppa tutte le funzioni militari, delle quali non ci occuperemo in questa sede.

![Diagram](image)

Figura 5.3 – 01: Schema del sito di un ospedale da campo.

Nella maggior parte dei casi, durante l’allestimento di un tradizionale ospedale da campo, sia questo composto da tende o da container, non viene seguito uno schema compositivo preciso, ma piuttosto un arbitrario collocamento dei presidi a seconda dell’evenienza. Questo carattere aleatorio compromette fortemente la validità dei principi appena elencati. Infatti, uno schema planimetrico non ragionato, ostacola o rallenta le fasi di intervento sanitario, impedisce l’adeguamento alle richieste di spazio e di mezzi, e non costituisce spazio terapeutico alla salute mentale dei pazienti.

Esistono tuttavia alcuni casi che dimostrano l’intenzione, forse non ancora del tutto consapevole, di affidarsi ad un modello compositivo che sappia rispecchiare i principi guida sopra elencati. Questi complessi sanno adattare la loro disposizione e la loro dimensione alle esigenze sanitarie di
emergenze. Lo schema che ne deriva si può definire a spina centrale, ovvero un lungo spazio lineare di distribuzione ai lati del quale si ramificano i vari reparti di trattamento medico.

In fase di intervento, la difficoltà di assicurare lo scarico dei pazienti direttamente al corretto reparto di cure implica la previsione di una sola ed unica via di accesso all’edificio. L’ingresso è costituito dal locale di triage medico, dove viene valutata la gravità di ogni paziente. La “spina” diventa poi un lungo corridoio di collegamento; per rispetto delle procedure sanitarie, è considerato obbligatorio avere corridoi a due sensi di percorrenza, anche se negli ospedali da campo con richiesta limitata è difficile trovare strutture ampie abbastanza al passaggio di due barelle; oltre una capacità di 50 posti letto è assolutamente consigliato avere corridoi doppi. Si rende necessario aggiungere un’altra spina lineare all’interno dei reparti di degenza, qualora il flusso dei pazienti generi congestione nella spina centrale. Ciò viene realizzato in casi di capacità molto elevata, al di sopra dei 200 posti letto. I punti di uscita sono collocati, oltre che al termine della spina centrale, allo sbocco di ogni reparto. Si tenta di assicurare inoltre un numero sufficiente di uscite anche per ragioni di misure anti-incendio.
Nonostante lo schema compositivo ben si adatti alle dinamiche della risposta sanitaria, esso continua a trascurare una riflessione più profonda sul carattere architettonico e sociale dell’ospedale da campo. Va detto, infatti, che il presidio ospedaliero, nel periodo immediatamente successivo ad un evento catastrofico, assume un ruolo centrale nella vita quotidiana della popolazione colpita; diventa, oltre ad uno spazio di trattamento medico, il luogo di raccolta e di sostegno in un momento di estremo sconforto psico-fisico. La composizione lineare di spina centrale rischia di dimostrarsi nel lungo periodo troppo introvera ed ossessiva. Le relazioni con l’ambiente circostante vengono a mancare, e tutta l’attività si concentra all’interno di uno schema rigido e lineare.

5.5.1. Nuova soluzione compositiva

La proposta di un nuovo modello compositivo per ospedale da campo nasce con l’obiettivo di inserire questa controversa tipologia di edilizia temporanea ed itinerante all’interno di una riflessione architettonica accurata, apportando quel valore aggiunto che ancora manca alle strutture campali attuali. Per la natura modulare e ad alta prefabbricazione con cui viene concepito il progetto in essere, esso può trovare i suoi fondamenti teorici e compositivi nell’ambito dell’architettura additiva. Il termine additive architecture è stato coniato nel 1965 dall’architetto svedese Jorn Utzon, durante la costruzione della celebre Opera di Sidney. Con questo termine egli identifica un nuovo approccio progettuale: dall’addizione di singoli elementi, ben studiati, si giunge alla composizione dell’oggetto compiuto. Dalla somma totale, afferma Utzon, si genera il carattere degli edifici, nel quale ognuna di quelle parti conserva la propria piena espressione. Quindi l’uso del principio additivo garantisce il grado di libertà della progettazione offrendo allo stesso tempo soluzioni differenti. Con questo approccio Utzon affronta temi differenti, dalla scala urbana alla scala residenziale. Si riportano qui due opere a titolo di esempio con lo scopo di rendere più chiaro questo principio compositivo.
La prima opera, non realizzata, è il Jeddah Stadium, in Arabia Saudita. Il progetto, del 1967, prevede il disegno di una nuova area sportiva e ricreativa con la costruzione di uno stadio.

La progettazione si dimostra da subito attenta al contesto climatico, con l’orientamento delle sedute in ombra rivolte verso nord. In un clima estremamente caldo, è difficile lavorare con costruzioni realizzate in sito, dove le grandi masse di calcestruzzo rischiano di essere danneggiate dal rapido ritiro e dalle conseguenti fessurazioni; per questo tutte le parti del complesso sono progettate in modo tale da essere realizzate in piccoli componenti di calcestruzzo, prefabbricati in aziende manifatturiere locali. In tali condizioni, l’uso di componenti prefabbricati assicura anche una qualità superiore dell’opera e un più facile controllo della qualità stessa.

La via di accesso principale all’intero complesso può essere comparata ad un tronco d’albero, con i rami che conducono alle varie zone sportive. Questo sistema, composto di elementi tutti uguali in successione, è capace di crescere in maniera organica come un albero in una foresta; cambiamenti nella planimetria sono possibili anche dopo la fine della costruzione, poiché i componenti possono essere aggiunti in ogni combinazione desiderata.

È possibile affermare quindi che questo approccio non controlla solamente la composizione spaziale ma anche l’aspetto temporale della costruzione. Infatti, il progetto per lo Jeddah Stadium prevedeva 3 fasi distinte di avanzamento dei lavori; dalla seguente figura, che evidenzia la natura additiva di questa architettura, è possibile notare come la terza fase mostri una composizione che, ad una prima lettura, sembra quasi incompleta. Lascia infatti aperta all’immaginazione una possibile prosecuzione del contesto costruito, nel quale gli elementi già presenti si possano ripetere e ricollocare in nuove forme.
Dal punto di vista costruttivo, il complesso è progettato per essere la somma di 5 elementi strutturali ben definiti:

- **Struttura 1**: i ponti di accesso sono costituiti da un elemento ponte a due livelli; questo consiste di quattro gambe che sorreggono un primo solaio e una copertura a forma di quarto di cilindro aperta da un lato per offrire ombra e ventilazione. Questa unità è costruita in cemento che, per il fatto di essere ripetuto molte volte, viene gettato in moduli di acciaio ad alta qualità.

- **Struttura 2**: è un elemento di copertura, alto un piano, con un soffitto formato da un quarto di cilindro che si apre su un lato per garantire ombra e ventilazione naturale attraverso finestre a nastro. Esso fornisce servizi come la ristorazione, bagni per gli spettatori, uffici amministrativi, spogliatoi, etc. L’elemento è costruito alla stessa maniera del precedente.

- **Struttura 3**: la gradinata principale dello Stadio è disposta su tre livelli ben proporzionati; ogni spettatore ha una visuale perfetta del campo di gioco, e la maggior parte di loro gode di spazio ombreggiato. La soluzione costruttiva con l’uso di fini teli ripiegati offre un elegante schermo sfaccettato, enfatizzato dal gioco di luci ed ombre. Il sistema costruttivo è molto economico, dato dal facile assemblaggio di piccoli componenti.

- **Struttura 4**: è la gradinata della piscina. Esso è a singolo piano, ma corrisponde alla struttura 3 per tipologia costruttiva.

- **Struttura 5**: l’ingresso è completamente chiuso, ma anch’esso consiste in sezioni prefabbricate a struttura ripiegata. Considerata la richiesta di ombreggiamento, è stato aggiunto uno strato di copertura “tipo foglia” che garantisce ombra e ventilazione in cima alla struttura del tetto ripiegato.

La seconda opera è il sistema Espansiva, ideato da Utzon nel 1969. Il sistema Espansiva riguarda un sistema di componenti standardizzati di basso costo, per residenze rurali, basato sulla creazione di moduli ad un unico piano.

118
Il sistema si basa su moduli di 3 differenti dimensioni standard:

- 3000 x 2016 mm: bagno, vestibolo, ingresso;
- 3000 x 3216 mm: camera singola, cucina, studio;
- 3000 x 5016 mm: soggiorno, camera doppia.

Questi moduli sono piccoli padiglioni con un pilastro in corrispondenza di ogni spigolo verticale, e possiedono una copertura inclinata di 17,5°. Il sistema crea un semplice sistema di portici basato su una serie di elementi prefabbricati. L’involucro esterno si concretizza anch’esso in elementi prefabbricati di dimensioni modulari che rispettano la misura base di 120 mm. I moduli Espansiva permettono una organizzazione semplice e versatile dello spazio, creato dall’unione di più moduli base tra loro; le numerose combinazioni possibili danno vita a diverse tipologie di residenza, e di svariate dimensioni finali.
Inoltre, il principio additivo del sistema Espansiva è in grado di dare origine anche a tessuti urbani modulari, dall’aggregazione di più corpi residenziali tra loro. La modularità si estende quindi a due livelli, quello particolare-costruttivo, e quello urbano-compositivo. La sensibilità di Utzon nella gestione delle possibili combinazioni a scala urbana rivela un’importante relazione tra il volume costruito e quello non costruito: l’addizione dei moduli crea spazi pieni e, allo stesso tempo, spazi vuoti; in realtà, è proprio lo spazio vuoto ad organizzare la distribuzione dei singoli moduli, i quali si dispongono attorno ad esso rivolgendo lo sguardo al suo interno. L’agglomerato urbano gode così di spazi aperti pubblici generosi, che lentamente si trasformano in spazi verdi semi-privati, fino ad arrivare all’unità abitativa privata. Il passaggio di scala è gestito in maniera sapiente, nonostante tutto il sistema si fondi sul un principio rigido di addizione.
Con la stessa attenzione riposta da Utzon nei progetti descritti si vuole procedere alla definizione del nuovo modello compositivo per ospedali da campo, applicando il principio di addizione all’elemento base del sistema, ovvero il nuovo modulo prefabbricato di progetto. Infatti, con la nascita di elementi costruttivi prefabbricati, è oggi possibile pensare ad una architettura additiva in senso stretto.

Lo schema planimetrico dell’ospedale da campo deve, ad ogni modo, rispettare le indicazioni dell’analisi funzionale e dell’analisi dimensionale. Ciò significa che il risultato finale non sarà soltanto frutto della somma di più moduli base, ma anche della somma di più spazi-funzione, ognuno dei quali può richiedere un determinato numero di moduli per essere definito. Per di più, si ricorda che in aggiunta al modulo base viene progettato un modulo jolly, contenente parte dei dispositivi impiantistici e sanitari. Anche il modulo jolly costituisce quindi un elemento base del processo additivo.

Utilizzando l’approccio additivo al caso specifico dell’ospedale da campo si dimostra la versatilità nello spazio e nel tempo dei risultati architettonici finali. In un primo momento si è applicato il metodo di addizione per comporre con i moduli base una planimetria di tipo tradizionale:

![Diagramma di un ospedale da campo con moduli e azioni correlate](image-url)

Figura 5.5.1 – 06: Planimetria tradizionale a spina centrale con moduli di progetto.
la composizione ottenuta rispecchia perfettamente il modello a *spina centrale* descritto in precedenza, evidenziando come l’edificio finale goda di forte carattere personale, senza che l’elemento modulare perda la propria singolarità; in aggiunta, gli spazi-funzione mantengono le loro caratteristiche dimensionali ed impiantistiche. Il modulo base ed il modulo jolly dimostrano così di possedere la capacità di sapersi adattare a modelli compositivi già esistenti.

In un secondo momento, invece, l’approccio additivo è stato utilizzato per definire uno schema planimetrico rielaborato. L’obiettivo, come già anticipato, è di rendere il complesso ospedaliero un punto di riferimento architettonico nel contesto di situazioni di emergenza.

Seguendo le riflessioni del maestro Utzon, la nuova composizione ha origine da un elemento centrale vuoto: la corte. In questo modo il passaggio di scala risulta dolce, ed allo stesso tempo mediato da uno spazio aperto che funge da filtro agli ambienti ospedalieri interni. Il passaggio non viene percepito solamente in relazione alla morfologia del contesto, ma anche e soprattutto come riflesso dello stato d’animo di una vittima che si sposta dalla zona caotica e angosciante della catastrofe alla zona protetta e speranzosa dell’ospedale. Un ingresso troppo diretto, come quello dell’impianto a spina centrale, rischia invece di disorientare i pazienti durante la fase di soccorso.

Le persone colpite dalla calamità vengono accompagnate gradualmente, che non significa necessariamente più lentamente in termini di tempo, verso la fase di riabilitazione psico-fisica. I percorsi interni rimangono lineari e ed unidirezionali, per favorire la logica sequenza dei soccorsi, ma si dispongono perimetralmente alla corte, godendo così di affacci verso lo spazio aperto.

Per la zona di degenza e di soggiorno si prevede un secondo impianto a corte, adiacente a quello principale. In questo caso la corte risulta completamente delimitata dall’edificio, costituendo uno spazio aperto più intimo e riservato. L’accessibilità è garantita a pazienti e personale addetto, i quali possono beneficiare di momenti di tranquillità all’aria aperta. La sensazione che offre il patio è quella di trovarsi in un luogo sicuro e custodito; queste percezioni aiutano il paziente nel percorso di recupero fisico e mentale.

La validità dell’approccio additivo per questa tipologia edilizia risulta comprovata con ancora maggior forza se si considera che l’impianto a corte qui proposto (tra i molti possibili per dimensioni e forme) si ottiene con lo stesso numero di moduli base e moduli jolly dell’impianto a spina centrale visto sopra. Analogamente il numero di funzioni e di spazi-funzione rimane invariato, cambiando soltanto la loro disposizione all’interno del complesso. Anche la superficie di ingombro totale resta pressoché la stessa per i due distinti impianti. Dunque, lo schema compositivo proposto, senza perdere i vantaggi ottenuti fino ad oggi con la soluzione tradizionale, riesce ad incrementare le potenzialità architettoniche, diventando un simbolo forte del territorio nelle situazioni di emergenza.
La soluzione modulare prefabbricata permette anche un perfetto controllo dei tempi di installazione: come per il Jeddah Stadium di Utzon, anche l’ospedale da campo proposto riesce a pianificare il proprio percorso costruttivo ed evolutivo. Dopo la fine dei lavori è possibile aggiungere nuove parti all’edificio con estrema libertà di combinazione.

Le fasi di composizione fisica del complesso in loco devono seguire una logica prestabilita, in maniera tale da agevolare le operazioni di soccorso. Sia nel caso di schema tradizionale che in quello innovativo a corte, la prima fase dovrà interessare l’allestimento del servizio di triage e di una parte dei collegamenti. La seconda fase prevede l’allestimento dei primi reparti di trattamento medico, individuati a seconda della reale richiesta sanitaria. Nella terza fase l’impianto completa le zone dei presidi sanitari ed inserisce le prime zone di degenza con relativi collegamenti. In ultima fase si completa la zona di degenza e di permanenza, in funzione del numero di pazienti stimato dalla valutazione di triage. Addizioni o sottrazioni sono sempre possibili anche in fasi successive.
Figura 5.5.1 – 08: Planimetria tradizionale con i moduli di progetto.
5.6. Progetto Strutturale Esecutivo

Terminata l’analisi preliminare al progetto, si passa alla definizione completa del modulo, nonché elemento base della costruzione. La prima fase che viene qui descritta è quella riguardante la progettazione strutturale, senza dimenticare che nel caso di nuova progettazione le fasi che verranno descritte successivamente sono in realtà contestuali a questa durante l’iter progettuale, tanto da condizionarsi a vicenda. Ciò che viene esposto è quindi il risultato finale di una successione di riflessioni e modifiche.

In particolare, la redazione del progetto esecutivo strutturale, ha previsto: la creazione di un modello di calcolo ad elementi finiti con il programma Straus7, grazie al quale è stato condotto il dimensionamento degli elementi strutturali e le verifiche del comportamento statico e sismico; la stesura della relazione di calcolo; la redazione dell’abaco dei profili metallici, il quale descrive, per ogni trave, le dimensioni caratteristiche e la presenza di fori o tagli; la redazione del progetto esecutivo strutturale in senso proprio.

5.6.1. Dimensionamento strutturale e relazione di calcolo

5.6.1.1. Normativa di riferimento

La costruzione in esame risulta conforme alle normative vigenti in materia di progetto e verifica delle strutture in acciaio, in ambito nazionale ed internazionale.

Si fa riferimento alle seguenti normative:

- D.M. 14 gennaio 2008: Norme tecniche per le costruzioni.
- Circolare 2 febbraio 2009, n. 617: Istruzioni per l’applicazione delle “Nuove norme tecniche per le costruzioni”.
- UNI EN 1993-1-1: Eurocodice 3 – Progettazione delle strutture in acciaio – Parte 1-1: Regole generali e regole per gli edifici.
- CNR-UNI 10011: Costruzioni di acciaio – Istruzioni per il calcolo, l’esecuzione, il collaudo e la manutenzione.
5.6.1.2. Azioni sulla costruzione

Considerata la natura itinerante della costruzione in esame, ai fini della valutazione delle azioni agenti su di essa si cercherà di adottare le condizioni più sfavorevoli attraverso un ragionamento volto alla scelta dei corretti parametri caratteristici.

I siti di riferimento, dove in via ipotetica la costruzione potrebbe trovare collocazione, sono scelti in Italia, per due motivi principali: il primo è la maggior conoscenza scientifica dei fenomeni connessi alle azioni suddette, così da ottenere risultati affidabili; il secondo è legato alla natura realizzativa dell’elemento costruito, giacché ipoteticamente realizzato in azienda italiana, e a quella di utilizzo, giacché il territorio italiano, fortemente e ripetutamente colpito da eventi catastrofici, potrebbe essere il primo soggetto richiedente di tale soluzione progettuale.

Carichi permanenti

Peso proprio dei materiali strutturali (G_1)

Peso per unità di volume di acciaio $\rho = 78,50 \text{kN/mm}^3$.

Il computo esatto dei carichi viene definito direttamente dal programma di calcolo utilizzato, Straus7, attraverso la conoscenza delle geometrie della costruzione. Al modello viene assegnata una accelerazione gravitazionale di 9,81 m/s2.

Carichi permanenti non strutturali (G_2)

- **Pavimentazione**: come da progetto allegato è costituita da 2 strati di pannelli in legno-cemento del tipo “Duripanel B1” dello spessore complessivo di 40 mm, ed uno strato di rivestimento per funzioni ospedaliere. Il carico totale risulta: $57,5 \text{ kg/m}^2$.

- **Pareti**: nonostante gli elementi parete siano per progetto removibili, ai fini del calcolo strutturale vengono considerati permanenti. Sono costituiti da pannelli del tipo “Isopar®”, spessore 80 mm, del peso di 16,14 kg/m2. Vengono poi installati gli infissi con telaio in alluminio, calcolando un peso di circa 50 kg per porta e 15 kg per finestra.

Il carico viene applicato direttamente alle travi perimetrali del basamento, sulle quali poggiano le pareti, come carico uniformemente distribuito, con intensità di $0,60 \text{ N/mm}$ per pareti con porta, e di $0,50 \text{ N/mm}$ per pareti con finestre.

- **Copertura**: è realizzata con pannelli del tipo “Isocopre®” dello spessore di 80 mm. Il carico risulta di $8,15 \text{ kg/m}^2$.

Carichi accidentali d’uso (Q_2)
Per i carichi legati alla destinazione d’uso dell’opera, sono considerati quelli assegnati dalla normativa NTC 2008 alla categoria C1 (ospedali, etc.). In particolare si fa riferimento ai carichi verticali superficiali uniformemente distribuiti, con intensità $q_k = 3,00 \text{ kN/m}^2$.

All’interno del modello di calcolo vengono applicati i carichi direttamente alle travi di basamento, in forma di carichi lineari uniformemente distribuiti, secondo l’area di influenza di ciascuna trave (calcolata geometricamente a parte).

Azione del vento (Q_v)

Con le suddette motivazioni il sito di riferimento per il calcolo dell’azione del vento è la provincia di Trieste. La quota del sito sul livello del mare viene considerata inferiore ai 1500 metri, dal momento che oltre tale quota i nuclei insediativi e industriali sono così ristretti da non generare larga richiesta sanitaria in caso di catastrophe.

La velocità di riferimento del vento in zona 8 è $V_b = 30 \text{ m/s}$. Considerata la breve vita utile della struttura si calcola di riferire l’azione del vento per un tempo di ritorno di 25 anni, che riduce il precedente valore a:

$V_b = 28,8 \text{ m/s}$.

La pressione del vento è data dall’espressione $p = q_b \cdot c_e \cdot c_p \cdot c_d$, in cui la pressione cinetica di riferimento è stabilita $q_b = 518 \text{ N/m}^2$, il coefficiente di esposizione $c_e = 1,5$ (avendo considerato la categoria di esposizione V, l’altezza della costruzione minore di 12 metri, e una classe di rugosità del terreno B), il coefficiente di forma $c_p = 0,8$, e un coefficiente dinamico cautelativo $c_d = 1$.

Risulta $p = 621 \text{ N/m}^2$.

L’azione tangenziale del vento, adottando un coefficiente d’attrito $c_t = 0,1$ per la natura liscia delle pareti parallele all’azione, risulta $p_t = 78 \text{ N/m}^2$.

La copertura piana e le pareti sottovento saranno soggette ad una azione di depressione, per la quale si stabilisce $c_p = -0,4$, ottenendo un valore di $p = -310 \text{ N/m}^2$.

Azione della neve (Q_s)

Per la determinazione dell’azione della neve si fa riferimento ad un ipotetico sito in zona alpina, ad una quota di 1000 m.l.m.. Il carico della neve sulla copertura sarà valutato con la formula $q_s = \mu \cdot q_{sk} \cdot C_e \cdot C_t$.

Per suddetti requisiti territoriali il valore caratteristico del carico neve al suolo risulta $q_{sk} = 4,013 \text{ kN/m}^2$.

127
Vista la richiesta di un sito pianeggiato ed isolato, si decide di applicare un coefficiente di esposizione in ragione di questa considerazione topografica, \(C_E = 0,9 \).

In assenza di uno specifico e documentato studio sulla riduzione del carico neve a causa dello scioglimento per contatto con la copertura, si fissa \(C_t = 1,0 \).

La copertura della costruzione si presenta ad un’unica falda pressoché piana; per questo motivo il coefficiente di forma della copertura è \(q_f = 0,8 \).

Dalla moltiplicazione di questi parametri si deduce il carico di progetto: \(q = 2,90 \text{ kN/m}^2 \).

5.6.1.3. Azione sismica (E)

Vita nominale

La vita nominale di un’opera strutturale \(V_n \) è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. La tabella 2.4.I della normativa (D.M. 14 gennaio 2008) fornisce le indicazioni per la scelta di questo valore:

<table>
<thead>
<tr>
<th>TIPI DI COSTRUZIONE</th>
<th>Vita Nominale (V_n) (in anni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Opere provvisorie – Opere provvisionali - Strutture in fase costruttiva</td>
</tr>
<tr>
<td>2</td>
<td>Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale</td>
</tr>
<tr>
<td>3</td>
<td>Grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica</td>
</tr>
</tbody>
</table>

Considerata la natura provvisoria dell’opera in esame, si ritiene opportuno considerarla come tipo di costruzione 1. Inoltre, ricordando le considerazioni delle linee guida WHO-PAHO che attribuiscono agli ospedali da campo una vita operativa di due o più anni, e la possibilità di reimpiego di queste strutture mobili, si stabilisce quale vita nominale \(V_n = 10 \text{ anni} \).

Si ritiene utile, nonché necessario per normativa, effettuare le verifiche sismiche, per accertare una risposta strutturale che garantisca sicurezza in occasione di eventi catastrofici causati da terremoto.

Classe d’uso

In presenza di azioni sismiche la struttura campale diventa ricettacolo di un grande flusso di persone, mezzi e risorse. Per questo motivo rientra, secondo la normativa, in classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità.
Periodo di riferimento per l’azione sismica

Le azioni sismiche sulla costruzione vengono valutate in relazione ad un periodo di riferimento V_N, definito come prodotto algebrico tra vita nominale V_N e un coefficiente d’uso C_U corrispondente alla classe d’uso. Per la classe d’uso IV il coefficiente d’uso vale $C_U = 2,0$.

Il periodo di riferimento risulta $V_N = 20$ anni. La normativa però stabilisce un valore minimo, al di sotto del quale non è consentito fare riferimento. Si stabilisce $V_N = 35$ anni.

Per l’azione sismica il sito di riferimento viene scelto in località fortemente interessata dal fenomeno, cioè la città dell’Aquila in Abruzzo.

I dati sono stati elaborati attraverso l’utilizzo dell’applicazione “Spettri-NTC”, al quale sono state fornite le coordinate geografiche del sito prescelto e i parametri di vita nominale e coefficiente d’uso.

![Figura 5.6.1.3 – 01: individuazione della pericolosità del sito.](image_url)

In relazione agli stati limite descritti dalla normativa, si associa la probabilità di superamento nel periodo di riferimento cui riferirsi per individuare l’azione sismica agente in ciascuno di suddetti stati limite.

Stato Limite di Operatività (SLO): è associata una probabilità di superamento nel periodo di riferimento $P_{VR} = 81\%$, e secondo le caratteristiche della struttura in esame corrisponde un periodo di ritorno $T_r = 30$ anni.

Stato Limite di Danno (SLD): è associata una probabilità di superamento nel periodo di riferimento $P_{VR} = 63\%$, e secondo le caratteristiche della struttura in esame corrisponde un periodo di ritorno $T_r = 35$ anni.
Stato Limite di salvaguardia della Vita (SLV): è associata una probabilità di superamento nel periodo di riferimento \(P_{vr} = 10\% \), e secondo le caratteristiche della struttura in esame corrisponde un periodo di ritorno \(T_r = 332 \) anni.

Stato Limite di prevenzione al Collasso (SLC): è associata una probabilità di superamento nel periodo di riferimento \(P_{vr} = 5\% \), e secondo le caratteristiche della struttura in esame corrisponde un periodo di ritorno \(T_r = 682 \) anni.

La pericolosità sismica di base del sito in cui sorge la costruzione viene definita in termini di accelerazione orizzontale massima attesa \(a_g \) in situazione di campo libero su suolo di riferimento rigido con superficie orizzontale (categoria A) e in termini di ordinate dello spettro di risposta elastico in accelerazione \(S_a(T) \). Le formule spettrali che consentono di descrivere un terremoto sono ricavate a partire dai parametri spettrali:

\[a_g \] accelerazione orizzontale massima del terreno;

\[F_0 \] valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

\[T_c^* \] periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Si ricorda che nella definizione dell’azione sismica si fa ancora riferimento ad una situazione di stati limite; in altre parole si cercano i valori dell’azione sismica per cui la costruzione raggiunge gli stati limite alle condizioni imposte in precedenza.
Il sottosuolo considerato è di categoria **C**, e le condizioni topografiche in **categoria T1**; questa scelta si giustifica ricordando le prescrizioni elencati sulla scelta del sito di ubicazione di un ospedale da campo, che andrebbe fatta in fase preventiva dall’autorità locale.

Di conseguenza gli esatti valori dei coefficienti legati alla composizione del terreno sono: \(S_e = 1,500 \) e \(C_e = 1,613 \), mentre quelli di amplificazione topografica \(S_t = 1,0 \).

Questi due aspetti, sottosuolo e topografia, influiscono sullo spettro elastico di risposta dal momento che l’accelerazione spettrale massima è funzione del coefficiente, dato dall’amplificazione stratigrafica e topografica: \(S = S_e \cdot S_t = 1,50 \cdot 1,0 = 1,50 \).

5.6.1.4. Caratteristiche dei materiali

La struttura portante della costruzione, così come dettagliatamente descritta nelle tavole di progetto in allegato, è costituita da telaio in acciaio strutturale. A questo proposito, si fa riferimento alle indicazioni contenute nella normativa UNI-EN 10025-2 sui prodotti d’acciaio. Il tipo di acciaio adottato è S 275 per i prodotti laminati a caldo e sagomati a freddo, e di tipo S 275 H per i prodotti con sezione cava.

Essendo lo spessore nominare degli elementi sempre inferiore a 40 mm, le corrispondenti caratteristiche meccaniche risultano:

- Resistenza caratteristica a snervamento \(f_y = 275 \text{ N/mm}^2 \)
- Resistenza caratteristica a rottura \(f_u = 430 \text{ N/mm}^2 \)

Altri valori caratteristici ai fini del calcolo degli elementi strutturali in acciaio saranno:

- Peso per unità di volume \(\rho = 78,50 \text{ kN/mm}^3 \)
- Modulo di elasticità normale \(E = 210000 \text{ N/mm}^2 \)
- Modulo di elasticità tangenziale \(G = 80770 \text{ N/mm}^2 \)
- Coefficiente di Poisson \(v = 0,3 \)

Ove richieste, le unioni bullonate saranno eseguite con bulloni M 8.8 ad alta resistenza.

Coefficienti parziali di sicurezza dei materiali:
– Resistenza delle sezioni \(Y_{M0} = 1,05 \)
– Resistenza all’instabilità delle membrature \(Y_{M1} = 1,05 \)

5.6.1.5. **Combinazione delle azioni**

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

– Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):
\[Y_{G1} G_1 + Y_{G2} G_2 + Y_P P + Y_{Q1} Q_{k1} + Y_{Q2} \psi_{02} Q_{k2} + Y_{Q3} \psi_{03} Q_{k3} + ... \]
– Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili:
\[G_1 + G_2 + P + Q_{k1} + \psi_{02} Q_{k2} + \psi_{03} Q_{k3} + ... \]
– Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all’azione sismica E:
\[E + G_1 + G_2 + P + \psi_{21} Q_{k1} + \psi_{22} Q_{k2} + ... \]

Dove:

- \(G_1 \) valore caratteristico dei carichi permanenti strutturali
- \(G_2 \) valore caratteristico dei carichi permanenti non strutturali
- \(Q \) valore caratteristico dei carichi variabili
- \(P \) valore caratteristico della precompressione
- \(E \) azioni derivanti dai terremoti

Coefficienti parziali per le azioni o per l’effetto delle azioni nelle verifiche SLU

- \(Y_{G1} \) coefficiente parziale di sicurezza del peso proprio della struttura
- \(Y_{G2} \) coefficiente parziale di sicurezza dei pesi propri degli elementi non strutturali;
- \(Y_{Qi} \) coefficiente parziale di sicurezza delle azioni variabili

<table>
<thead>
<tr>
<th></th>
<th>Carichi permanenti (Y_{G1})</th>
<th>Carichi permanenti non strutturali (Y_{G2})</th>
<th>Azioni variabili (Y_{Qi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorevole</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>sfavorevole</td>
<td>1,3</td>
<td>1,5</td>
<td>1,5</td>
</tr>
</tbody>
</table>

\(\psi_0, \psi_1, \psi_2 \) coefficienti di contemporaneità delle azioni variabili

<table>
<thead>
<tr>
<th>Codice Carico</th>
<th>Descrizione Carico</th>
<th>(\psi_0)</th>
<th>(\psi_1)</th>
<th>(\psi_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Ambienti suscettibili di affollamento</td>
<td>0,7</td>
<td>0,5</td>
<td>0,3</td>
</tr>
</tbody>
</table>
5.6.1.6. Metodo di calcolo

Per lo studio della risposta statica e sismica della costruzione è stata effettuata la modellazione F.E.M. con il programma Straus7. Grazie all’ausilio dei dati ottenuti sono stati condotti il dimensionamento e le verifiche degli elementi strutturali.

Definizione del modello

La geometria dell’opera è descritta compitamente nelle tavole in allegato, nella corretta scala di rappresentazione, od anche nel paragrafo dedicato alla redazione del progetto strutturale esecutivo, in cui sono inserite le miniature delle suddette tavole di progetto. Strutturalmente, il modello può essere tradotto come un telaio in acciaio controventato con funi a croce di S. Andrea. All’interno del software di calcolo la geometria è stata riprodotta attraverso la definizione di elementi beam e truss. In particolare, lo scheletro portante in acciaio è costituito interamente da elementi beam, sia per le travi di solaio e copertura che per i pilastrini verticali. Ad ogni trave sono state assegnate le caratteristiche meccaniche del materiale definite in precedenza, e la corrispondente tipologia di sezione trasversale attraverso l’inserimento dei parametri geometrici.

![Figura 5.6.1.6 – 01: Modello Straus7, proprietà dell’elemento beam - omega di basamento.](image)

Le possibilità di rotazione relativa tra le travi nei loro nodi di giunzione sono state controllate attraverso l’inserimento di opportuni end release.
I piedini, che fungono da elemento di fondazione, sono stati considerati come perfettamente incastrellati al suolo; all’estremità inferiore di questi è stato definito quindi un vincolo esterno di tipo rigido mediante il fissaggio del nodo (*restraint*).

Gli elementi di controvento, sia in copertura che nelle pareti verticali, sono stati modellati come elementi *truss*, sui quali agiscono solamente sforzi assiali di compressione o trazione. Inoltre, considerato che nella realta progettuale si tratta di funi d’acciaio di diametro molto esiguo, non dotate quindi di una resistenza propria a compressione, all’interno del modello si sono inserite soltanto le diagonali effettivamente tese sotto l’azione delle forze orizzontali.

![Modello Straus7, relazione strutturale definita da elementi beam.](image)

Successivamente, in vista dell’applicazione dei carichi, sono stati inseriti elementi *plate* con proprietà di tipo *load patch* in copertura e sulle facciate verticali. In questo modo è stato possibile simulare più correttamente l’azione del vento e della neve, agenti come una pressione omogenea sulle superfici. A questi elementi è stata attribuita l’ordinatura stabilita da progetto, in maniera tale che i carichi esterni venissero scaricati sugli elementi trave incaricati a tale funzione.

Infine, lungo le travi di copertura accoppiate dalla soluzione bullonata studiata, sono stati inseriti, proprio in corrispondenza delle unioni, dei *link master slave* che permettono traslazione relativa dei due nodi in direzione Z, ma rendono le travi collaboranti in direzione X e Y.
Applicazione dei carichi

Il peso proprio della struttura metallica (G₁) è stato simulato tramite un carico inerziale posto pari alla gravità, applicato alla massa strutturale.

I carichi permanenti (G₂), che riguardano la copertura, i pannelli laterali, e la pavimentazione con le relative finiture, sono stati applicati utilizzando le intensità definite in precedenza. Il carico dovuto alla copertura è stato assegnato sotto forma di pressione normale agli elementi *load patch* che definiscono l’orizzontamento. I carichi dovuti alle pareti laterali, così come descritte nel paragrafo dedicato, sono stati inseriti come carichi lineari uniformemente distribuiti sulle travi perimetrali di basamento. Allo stesso modo il carico dovuto al pacchetto di pavimentazione è stato inserito come carico lineare gravante sulle travi ad omega del basamento; il carico superficiale è stato trasformato in lineare considerando l’ampiezza della fascia di rispetto di ogni trave.
L’azione della neve (Q_n) è stata applicata come pressione normale alle superfici di copertura, composte come già detto dagli elementi *load patch*.
L’azione del vento (Q_2) è stata scomposta in due indipendenti condizioni di carico, quella nella direzione X e quella nella direzione Y. In entrambi i casi la pressione e la depressione generati dall’azione del vento sono state applicate ai load patch.

Figura 5.6.1.6 – 06 Modello Strauss$, azione del vento in direzione X.

Figura 5.6.1.6 – 07 Modello Strauss$, azione del vento in direzione Y.

137
Il carico relativo all’azione accidentale d’uso (Q1) è stato inserito in forma lineare uniformemente distribuita sulle travi ad omega del basamento, come nel caso del carico permanente non strutturale derivante dalla pavimentazione.

![Figura 5.6.1.6 – 08 Modello Straus7, carico accidentale d’uso.]

5.6.1.7. Verifiche agli Stati Limite d’Esercizio (SLE)

La verifica agli Stati Limite d’Esercizio di una struttura in acciaio risulta spesso predominante nei confronti della verifica agli Stati Limite Ultimi; l’obiettivo è quello di ridurre gli spostamenti e le deformazioni degli elementi strutturali durante la fase di esercizio dell’opera, a maggior ragione se di carattere sanitario. Uno studio del modello, elaborato in un primo momento senza controventi laterali, ha infatti evidenziato come l’azione del vento produsse spostamenti notevoli della sommità della costruzione ed andasse quindi a compromettere la stabilità e la sicurezza delle attività interne. Si è provveduto quindi ad inserire le funi di controvento esterne a croce di S. Andrea per ridurre questo inappropriato comportamento strutturale.

In accordo con il D.M. 14 gennaio 2008 (par. 4.2.4.2) la verifica agli Stati Limite d’ Esercizio viene condotta con riferimento alla combinazione dei carichi rara:

\[G_1 + G_2 + Q_{k1} + \psi_{o2} Q_{k2} + \psi_{o3} Q_{k3} \]

Di ogni elemento strutturale è stata quindi calcolata la deformazione sotto queste condizioni di carico e confrontata con gli spostamenti ammissibili ai fini della verifica.
Travi di copertura

Per le travi di copertura il valore dello spostamento verticale considerato è quello in corrispondenza della sezione di mezzeria di ciascuna trave. Lo schema di riferimento è dedotto dalla normativa come segue:

![Diagram](image1.png)

Figura 5.6.1.7 – 01: Definizione degli spostamenti verticali per le verifiche in esercizio.

Dove:

- \(\delta_2 \): variazione dell’inflessione della trave dovuta all’applicazione dei soli carichi variabili (in questo caso il carico di neve come predominante);
- \(\delta_{\text{max}} \): freccia nello stato finale riferita alla linea retta congiungente i supporti;
- L: luce della capriata.

Dall’analisi del modello F.E.M. si ricavano i risultati degli spostamenti verticali per le assegnate condizioni di carico caratteristiche. Si nota come la trave soggetta a maggior deformazione flessionale sia la trave “TR101”. Viene quindi effettuata la verifica di deformabilità di questa trave.

![Diagram](image2.png)

Figura 5.6.1.7 – 02: Modello Straus7, spostamenti verticali massimi delle travi in copertura sotto l’azione della combinazione rara di carichi.
I risultati ottenuti sono:

\[L = 2358 \text{ mm} \]
\[\delta_2 = 5,62 \text{ mm} \]
\[\delta_{\text{max}} = 5,94 \text{ mm} \]

Considerata la copertura come non praticabile, dal prospetto 4.1 dell’ EC3 si individuano i limiti di deformabilità per le coperture in generale, che sono \(\delta_{\text{max}} < \frac{L}{200} \) e \(\delta_2 < \frac{L}{250} \). Vengono quindi messi a confronto i valori limite con i valori in precedenza ottenuti.

\[\delta_2 = 5,62 \text{ mm} < \frac{L}{200} = 11,79 \text{ mm} \]
\[\delta_{\text{max}} = 5,94 \text{ mm} < \frac{L}{250} = 9,43 \text{ mm} \]

La verifica è soddisfatta. Per comparazione la verifica viene estesa anche a tutte le altre travi della copertura.

Travi del solaio di basamento

Gli spostamenti verticali delle travi appartenenti al basamento vengono valutati con la medesima metodologia adottata sopra per le travi di copertura. La normativa indirizza però, per solai generici, a valori limite differenti: \(\delta_{\text{max}} < \frac{L}{250} \) e \(\delta_2 < \frac{L}{300} \).

Per le travi ad omega che sostengono la pavimentazione il carico accidentale predominante nella combinazione caratteristica rara è quello derivante dall’uso interno dell’edificio; mentre per le travi perimetrali sarà considerato anche il contributo secondario dell’azione del vento.
– **Travi ad omega del basamento**

Le travi con profilo ad omega più sollecitate e quindi maggiormente inflesse risultano quelle appartenenti al basamento “BAS1”, quindi la “TR007” e la “TR008”. La verifica viene effettuata sulle deformazioni di queste travi e poi estesa, se soddisfatta, anche alle travi ad omega del basamento “BAS2” e “BAS3”. Dal modello F.E.M. si ricava:

L = 2358 mm

δ_{2} = 1,41 mm

δ_{max} = 2,37 mm

Dal confronto con valori limite:

δ_{2} = 1,41 mm < L / 250 = 9,43 mm

δ_{max} = 2,37 mm < L / 300 = 7,86 mm

La verifica è soddisfatta.

– **Travi con profilo a C per passaforche**

Si verificano anche le deformazione delle travi a profilo a C, ovvero la “TR005” e “TR006”. Dal modello F.E.M. si ricava:

L = 2358 mm

δ_{2} = 1,18 mm

δ_{max} = 1,78 mm

Dal confronto con valori limite:

δ_{2} = 1,18 mm < L / 250 = 9,43 mm

δ_{max} = 1,78 mm < L / 300 = 7,86 mm

La verifica è soddisfatta.

– **Travi perimetrali a profilo speciale**

Le travi perimetrali di basamento “TR003” e “TR004” sono caratterizzate da una sezione speciale e risentono delle azioni del vento e del peso proprio delle paretì. È quindi necessaria una analisi attenta delle loro deformazioni. Dal modello F.E.M., in cui il carico del vento è introdotto con direzione +X e quindi gravante con maggior intensità sulla trave “TR003”, si ricava:

L = 2358 mm

δ_{2} = 1,52 mm

δ_{max} = 5,71 mm

Dal confronto con i valori limite:

δ_{2} = 1,52 mm < L / 250 = 9,43 mm
$$\delta_{\text{max}} = 5,71 \text{ mm } < \frac{L}{300} = 7,86 \text{ mm}$$
La verifica è soddisfatta.

Pilastrini verticali

Negli edifici gli spostamenti laterali alla sommità delle colonne per le combinazioni caratteristiche delle azioni devono generalmente limitarsi ad una frazione dell’altezza della colonna e dell’altezza complessiva dell’edificio da valutarsi in funzione degli effetti sugli elementi portati, della qualità del comfort richiesto alla costruzione, delle eventuali implicazioni di una eccessiva deformabilità sul valore dei carichi agenti.

I valori limite fanno riferimento allo schema proposto dalla normativa, e riportato qui in basso. Per edifici monopiano il valore limite da rispettare è $\delta < \frac{h}{300}$.

![Figura 5.6.1.7 – 04: Definizione degli spostamenti orizzontali per le verifiche in esercizio.](image)

La combinazione caratteristica che genera maggiori spostamenti dei punti sommitali delle colonne è quella in cui il vento in direzione +X viene considerato come azione accidentale dominante, mentre quelle d’uso e di neve come secondarie, con gli opportuni coefficienti di contemporaneità:

$$G_1 + G_2 + Q_{\text{a(X)}} + 0,7 Q_3 + 0,5 Q_3$$

![Figura 5.6.1.7 – 05: Modello Straus7, spostamenti laterali dei punti di sommità dei pilastrini sotto l’azione globale dei carichi.](image)
Dall’analisi del modello F.E.M. si nota come gli spostamenti laterali più rilevanti siano quelli nella stessa direzione X dell’azione del vento. L’entità di tale spostamento si attesta su valori mai superiori a $\delta = 4,57$ mm.

Considerato che l’altezza dei pilastri vale $h = 2078$ mm,

$\delta = 4,57 \text{ mm} < h / 300 = 6,92$ mm

La verifica è soddisfatta.

Si riporta all’attenzione come, in assenza di controventi laterali, gli spostamenti in sommità del modulo singolo diventino di entità rilevante, tanto da eccedere i limiti consentiti dalle indicazioni normative per la verifica.

![Figura 5.6.1.7 – 06: Modello Straus7, spostamenti laterali dei punti di sommità dei pilastri in assenza del sistema di controvento.](image)

5.6.1.8. Verifiche agli Stati Limite Ulimi (SLU)

Nell’analisi statica, condotta con riferimento allo Stato Limite Ultimo, viene utilizzata la Combinazione Fondamentale delle azione, riportata precedentemente. Ai carichi quindi sono associati i corrispettivi coefficienti di Combinazione e Parziali, ottenendo 8 diverse combinazioni.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1</td>
<td>1,3</td>
<td>1,3</td>
<td>1</td>
<td>1</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>1</td>
</tr>
<tr>
<td>G_2</td>
<td>1,5</td>
<td>1,5</td>
<td>0</td>
<td>0</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Q_{viso}</td>
<td>1,5</td>
<td>1,5</td>
<td>0</td>
<td>0</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Q_{neve}</td>
<td>0,75</td>
<td>0,75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,75</td>
<td>0,75</td>
</tr>
<tr>
<td>$Q_{vento X}$</td>
<td>0,9</td>
<td>0</td>
<td>0,9</td>
<td>0</td>
<td>0,9</td>
<td>0</td>
<td>0</td>
<td>0,9</td>
</tr>
<tr>
<td>$Q_{vento Y}$</td>
<td>0</td>
<td>0,9</td>
<td>0</td>
<td>0,9</td>
<td>0</td>
<td>0,9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Classificazione delle sezioni trasversali

La classe di appartenenza della sezione trasversale viene definita in funzione del rapporto dimensionale larghezza/spessore delle parti componenti della sezione, dello stato di sollecitazione e della classe di resistenza del materiale. Le parti compresse possono appartenere a classi diverse e la sezione, totalmente o parzialmente compressa, viene classificata sulla base della classe della componente meno favorevole, ossia scegliendo la classe più alta.

La struttura in esame presenta, in aggiunta, la peculiarità di essere composta da profili sagomati a freddo. La generica sezione trasversale rappresentativa del mondo dei profili sagomati a freddo è composta da elementi piano collegati tra loro con elementi curvilinei di raccordo. Un aspetto molto delicato ed importante associato alla fase progettuale è costituito dalla determinazione delle caratteristiche geometriche, resa non immediata appunto dalla presenza di componenti curvilinee di raccordo tra i lati.
Tabella 4.2.1 - Massimi rapporti larghezza spessore per parti compresse

<table>
<thead>
<tr>
<th>Classe</th>
<th>Parte soggetta a flessione</th>
<th>Parte soggetta a compressione</th>
<th>Parte soggetta a flessione e a compressione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribuzione delle tensioni nelle parti (compressione positiva)</td>
<td>f_{yA}</td>
<td>f_{yB}</td>
<td>f_{yC}</td>
</tr>
<tr>
<td>1</td>
<td>$c/t \leq 72t$</td>
<td>$c/t \leq 33t$</td>
<td>$c/t \leq 33t$</td>
</tr>
<tr>
<td></td>
<td>quando $\alpha \leq 0.5c/t \leq 0.35\alpha$</td>
<td>quando $\alpha \leq 0.5c/t \leq 0.3\alpha$</td>
<td>quando $\alpha \leq 0.5c/t \leq 0.3\alpha$</td>
</tr>
<tr>
<td>2</td>
<td>$c/t \leq 83t$</td>
<td>$c/t \leq 38t$</td>
<td>$c/t \leq 38t$</td>
</tr>
<tr>
<td></td>
<td>quando $\alpha \leq 0.5c/t \leq 0.45\alpha$</td>
<td>quando $\alpha \leq 0.5c/t \leq 0.4\alpha$</td>
<td>quando $\alpha \leq 0.5c/t \leq 0.4\alpha$</td>
</tr>
<tr>
<td>Distribuzione delle tensioni nelle parti (compressione positiva)</td>
<td>f_{yA}</td>
<td>f_{yB}</td>
<td>f_{yC}</td>
</tr>
<tr>
<td>3</td>
<td>$c/t \leq 124t$</td>
<td>$c/t \leq 42t$</td>
<td>$c/t \leq 42t$</td>
</tr>
<tr>
<td></td>
<td>quando $c/t \leq 0.23y$</td>
<td>quando $c/t \leq 0.33y$</td>
<td>quando $c/t \leq 0.33y$</td>
</tr>
</tbody>
</table>

$\varepsilon = \sqrt{\frac{235}{f_{yA}}}$

<table>
<thead>
<tr>
<th></th>
<th>235</th>
<th>275</th>
<th>355</th>
<th>420</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>1.00</td>
<td>0.92</td>
<td>0.81</td>
<td>0.75</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Figura 5.6.1.8 – 01: Criteri di classificazione dei profili secondo EC3.
Tabella 4.2.II - Massimi rapporti larghezza spessore per parti compresse

<table>
<thead>
<tr>
<th>Classe</th>
<th>Piattabande esterne</th>
<th>Piattabande esterne soggette a flessione e a compressione</th>
<th>Con estremità in compressione</th>
<th>Con estremità in trazione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Profilati laminati a caldo</td>
<td>Sezioni saldate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribuzione delle tensioni nelle parti (compressione positiva)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$c/t \leq 8\alpha$</td>
<td>$c/t \leq \frac{9\alpha}{\pi}$</td>
<td>$c/t \leq \frac{9\alpha}{\pi\sqrt{2}}$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$c/t \leq 10\alpha$</td>
<td>$c/t \leq \frac{10\alpha}{\pi}$</td>
<td>$c/t \leq \frac{9\alpha}{\pi\sqrt{2}}$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$c/t \leq 14\alpha$</td>
<td>$c/t \leq 21\alpha\sqrt{f_{yk}}$</td>
<td></td>
<td>Per K_a vedere EN 1993-1-5</td>
</tr>
</tbody>
</table>

$e = \sqrt{\frac{235}{f_{yk}}}$

<table>
<thead>
<tr>
<th></th>
<th>f_{yk}</th>
<th>235</th>
<th>275</th>
<th>355</th>
<th>420</th>
<th>460</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>1.00</td>
<td>0.92</td>
<td>0.81</td>
<td>0.75</td>
<td>0.71</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 4.2.III - Massimi rapporti larghezza spessore per parti compresse

Angolari

Riferirsi anche alle piattabande esterne (v. Tab 4.2.II)

Non si applica agli angoli in contatto continuo con altri componenti

<table>
<thead>
<tr>
<th>Classe</th>
<th>Sezione in compressione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distribuzione delle tensioni sulla sezione (compressione positiva)</td>
</tr>
<tr>
<td>3</td>
<td>$h/r < 1.5r$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sezioni Tubolari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sezione inflessa e/o compressa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>Sezione in compressione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$d/t \leq 50\alpha^2$</td>
</tr>
<tr>
<td>2</td>
<td>$d/t < 30\alpha^2$</td>
</tr>
<tr>
<td>3</td>
<td>$d/t \leq 90\alpha^2$</td>
</tr>
</tbody>
</table>

$e = \sqrt{\frac{235}{f_{yk}}}$

<table>
<thead>
<tr>
<th></th>
<th>f_{yk}</th>
<th>235</th>
<th>275</th>
<th>355</th>
<th>420</th>
<th>460</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>1.00</td>
<td>0.92</td>
<td>0.81</td>
<td>0.75</td>
<td>0.71</td>
<td></td>
</tr>
</tbody>
</table>

Figura 5.6.1.8 – 02: Criteri di classificazione dei profili secondo EC3.
Come stabilito nella sezione dedicata alle caratteristiche del materiale, l’acciaio di progetto possiede $f_y = 275 \, \text{N/mm}^2$. Di conseguenza il valore di confronto sarà $e = 0,92$.

In tutte le sezioni trasversali dei profili utilizzati le pieghe della lamina sagomata a freddo sono ad angolo retto. Inoltre, la normativa stabilisce che per raccordi aventi raggio di curvatura interno $r \leq 5t$ può essere trascurata la loro influenza sulle proprietà della sezione e si può assumere la sezione trasversale come formata da elementi piani a spigoli vivi, passando da una sezione reale ad una ideale di calcolo. Nel caso in esame la progettazione prescrive un raggio di curvatura $r = 1t = 4 \, \text{mm}$, e rientra quindi nel suddetto caso di semplificazione.
Pilastrini verticali

La sezione trasversale dei profili che costituiscono i pilastrini della costruzione è una sezione quadrata cava, composta da 4 elementi piani di uguali dimensioni.

- $b_x = 80 \text{ mm}$
- $b_x = 72 \text{ mm}$
- $t = 4 \text{ mm}$
- $A = 1216 \text{ mm}^2$

Secondo le prescrizioni per i profili sagomati a freddo ogni elemento di tale sezione deve osservare la relazione $b/t \leq 500$ (tipologia 4). Nel caso specifico $b/t = 20 \leq 500$, rispettato.

Ogni elemento della sezione è soggetto a compressione e a flessione, come evidenziato dallo studio dei parametri della sollecitazione. Si effettua quindi la classificazione dal confronto alle due condizioni:

- A flessione: $b_x/t = 18 < 72 \varepsilon = 66,24$ classe 1
- A compressione: $b_x/t = 18 < 33 \varepsilon = 30,36$ classe 1

La sezione si considera di classe 1.

Dallo studio del modello F.E.M. si deducono i valori dei Parametri della Sollecitazione agenti sulle sezioni trasversali più sollecitate. In particolare la sezione più sollecitata di ogni pilastrino risulta essere quella di incastro alla base; infatti il modello di approssimazione è quello di una mensola incastrata perfettamente alla base. In questo modo è possibile effettuare le verifiche sotto le condizioni più gravose e dimensionare correttamente i profili nel caso queste non vengano soddisfatte. Inoltre, avendo tutti i pilastrini la medesima sezione trasversale, è sufficiente considerare il caso più sfavorevole al quale effettuare le verifiche, risultando di conseguenza verificati anche tutti gli altri elementi simili ma soggetti a minori sollecitazioni. Con questo approccio saranno valutati anche i risultati legati alle verifiche delle travi ad omega di basamento, le travi perimetrali di basamento e le travi di copertura.
<table>
<thead>
<tr>
<th></th>
<th>M_1 [N mm]</th>
<th>T_1 [N]</th>
<th>M_2 [N mm]</th>
<th>T_2 [N]</th>
<th>N [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLU 1</td>
<td>1 219 702</td>
<td>776</td>
<td>21 238</td>
<td>15</td>
<td>-892</td>
</tr>
<tr>
<td></td>
<td>-539 685</td>
<td>-414</td>
<td>-20 411</td>
<td>-15</td>
<td>-4 375</td>
</tr>
<tr>
<td>SLU 2</td>
<td>833 623</td>
<td>446</td>
<td>22 401</td>
<td>13</td>
<td>-1 761</td>
</tr>
<tr>
<td></td>
<td>-809 751</td>
<td>-790</td>
<td>-57 285</td>
<td>-29</td>
<td>-3 788</td>
</tr>
<tr>
<td>SLU 3</td>
<td>583 445</td>
<td>477</td>
<td>11 723</td>
<td>9</td>
<td>1 120</td>
</tr>
<tr>
<td></td>
<td>-444 604</td>
<td>-130</td>
<td>-17 338</td>
<td>-13</td>
<td>1 202</td>
</tr>
<tr>
<td>SLU 4</td>
<td>52 371</td>
<td>26</td>
<td>13 809</td>
<td>8</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>-62468</td>
<td>-26</td>
<td>-56 956</td>
<td>-27</td>
<td>-11 27</td>
</tr>
<tr>
<td>SLU 5</td>
<td>1 044 742</td>
<td>533</td>
<td>11 440</td>
<td>9</td>
<td>846</td>
</tr>
<tr>
<td></td>
<td>-418 482</td>
<td>-218</td>
<td>-13 953</td>
<td>-11</td>
<td>-1 294</td>
</tr>
<tr>
<td>SLU 6</td>
<td>721 776</td>
<td>355</td>
<td>15 266</td>
<td>8</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>-751 003</td>
<td>-369</td>
<td>-58 408</td>
<td>-28</td>
<td>-1 459</td>
</tr>
<tr>
<td>SLU 7</td>
<td>932 902</td>
<td>476</td>
<td>18 339</td>
<td>10</td>
<td>-1 950</td>
</tr>
<tr>
<td></td>
<td>-840 208</td>
<td>-853</td>
<td>-7 657</td>
<td>-5</td>
<td>-4 192</td>
</tr>
<tr>
<td>SLU 8</td>
<td>1 203 975</td>
<td>768</td>
<td>20 909</td>
<td>15</td>
<td>-836</td>
</tr>
<tr>
<td></td>
<td>-534 578</td>
<td>-400</td>
<td>-20 358</td>
<td>-15</td>
<td>-4 249</td>
</tr>
</tbody>
</table>

Sono così determinati i valori massimi e minimi per ognuno dei Parametri della Sollecitazione agenti sulla sezione trasversale più sfavorevole. Di seguito sono illustrati i diagrammi dei P.d.S. corrispondenti alle combinazioni di carico più gravose.

Figura 5.6.1.8 – 05: Diagramma del Momento direzione 1.
Figura 5.6.1.8 – 06: Diagramma di Taglio direzione 1.

Figura 5.6.1.8 – 07: Diagramma del Momento direzione 2.
Verifica di resistenza a taglio

\(V_{ed} = 853 \text{ N} \)

Il valore di calcolo dell’azione tagliante \(V_{ed} \) deve rispettare la condizione:

\[V_{ed} / V_{c,rd} \leq 1 \]

dove la resistenza di calcolo a taglio \(V_{c,rd} \) vale:

\[V_{c,rd} = A_v \cdot f_y / \sqrt{3} \cdot \gamma_m \]

dove \(A_v \) è l’area resistente a taglio, che per profili cavi a sezione quadrata vale \(A_v = A \cdot h / (b + h) \).

Nel caso specifico quindi:
Av = 608 mm²

V_{c,Rd} = 91 936 N

V_{ed} = 853 N < V_{c,Rd} = 91 936 N \quad \text{verificato}

Inoltre si ha b/t = 18 < 72ε = 66,24 quindi non è necessario verificare l’instabilità a taglio.

Verifica di resistenza a compressione

N_{ed} = 4 375 N

Si deve rispettare la relazione N_{ed} ≤ N_{c,Rd} con N_{c,Rd} = A · f_v / \gamma_{M1}.

N_{c,Rd} = 318 476 N

N_{ed} = 4 375 N < N_{c,Rd} = 318 476 N \quad \text{verificato}

Verifica della stabilità a compressione

Nel caso più generale i pilastri si possono identificare con uno schema a mensola con incastro perfetto alla base, in entrambe le direzioni principali. Per questo motivo la lunghezza libera di inflessione risulta l_0 = 2078 mm.

Carico critico euleriano: \quad N_{cr} = \pi^2 E J / l_0^2 = 561 582 N

Rapporto di snellezza adimensionale: \quad \lambda = (A f_v / N_{cr})^{1/2} = 0,77166

Dal prospetto 5.5.3 dell’EC3 si determina il valore di \chi corrispondente a \lambda = 0,77166

\chi = 0,6805748

Dalla relazione N_{a,Rd} = \chi A f_v / \gamma_{M1} si ottiene:

N_{b,Rd} = 216 746

N_{ed} = 4 375 N < N_{b,Rd} = 216 746 \quad \text{Verificato}

Verifica di resistenza a pressoflessione

N_{ed} = 4 375 N

M_{y,ed} = 1 219 702 N mm

M_{z,ed} = 58 408 N mm

W_{ed} = 33 000 mm³ (da prontuario)

La relazione per la verifica, nel caso di flessione biassiale, è (M_{y,ed} / M_{N,y,Rd})^α + (M_{z,ed} / M_{N,z,Rd})^β ≤ 1

N_{pl,Rd} = 318 476 N
n = \frac{N_{ed}}{N_{pl,Rd}} = 0,013737
\alpha = 1,66 / (1 - 1,13n^2) = 1,66035
\beta = 1,66 / (1 - 1,13n^2) = 1,66035
M_{pl,Rd} = 8642857 N mm
M_{N,Y,Rd} = 11169665 N mm
M_{N,Z,Rd} = 11169665 N mm
0,02546 \leq 1 \quad \text{verificato}

Verifica della stabilità a pressoflessione

\frac{N_{ed}}{(\chi A f_y / \gamma_{M1}) + \frac{M_{V,Y}}{[W_y (1 - N_{ed} / N_{cr,Y}) f_y / \gamma_{M1}]} + \frac{M_{V,Z}}{[W_z (1 - N_{ed} / N_{cr,Z}) f_y / \gamma_{M1}]} \leq 1
0,02018 + 0,14223 + 0,0068 = 0,16921 \leq 1 \quad \text{verificato}

Travi ad omega del solaio di basamento

La sezione trasversale dei profili che costituiscono il solaio di basamento della struttura è una sezione aperta ad omega, composta da 5 elementi piani.

b_1 = 42 mm
b_2 = 112 mm
c = 16 mm
t = 4 mm
A = 1264 mm^2

Secondo le prescrizioni per i profili sagomati a freddo l’elemento piano interno (b_1 =50 mm) deve osservare la relazione b/t \leq 500 (tipologia 4). Nel caso specifico b/t = 12,5 \leq 500, rispettato. Per la
tipologia 2, gli elementi piani esterni (b = 120 mm, c = 20 mm) devono rispettare le relazioni b/t ≤ 60, c/t ≤ 50. Nel caso specifico b/t = 30 ≤ 60, c/t = 5 ≤ 50, rispettati.

Seguendo le indicazioni dell’EC3 e considerato che le travi di basamento sono soggette a flessione semplice, si effettua quindi la classificazione dal confronto di ogni elemento della sezione:

– Anime soggette a flessione: \[\frac{b}{t} = 28 < 72 \varepsilon = 66,24 \] classe 1
– Elemento a compressione: \[\frac{b}{t} = 10,5 < 33 \varepsilon = 30,36 \] classe 1

La sezione si considera complessivamente di classe 1.

Dall’analisi dei Parametri della Sollecitazione si evince che la sezione più sollecitata per il momento flettente di ogni elemento trave è quella in corrispondenza della mezziera della trave stessa. Infatti, ancorché le travi siano nella realtà costruttiva saldate alle loro estremità alle travi perimetrali, il modello realizzato le schematizza come in semplice appoggio, per ragioni di sicurezza. Per la stessa ragione il parametro di sforzo di taglio è massimo alle estremità della trave, con stessa intensità ma segno opposto per le due estremità della medesima trave.

<table>
<thead>
<tr>
<th></th>
<th>M [N mm]</th>
<th>T [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLU 1</td>
<td>-987 622</td>
<td>1 675</td>
</tr>
<tr>
<td>SLU 2</td>
<td>-987 622</td>
<td>1 675</td>
</tr>
<tr>
<td>SLU 3</td>
<td>-67 629</td>
<td>115</td>
</tr>
<tr>
<td>SLU 4</td>
<td>-67 629</td>
<td>115</td>
</tr>
<tr>
<td>SLU 5</td>
<td>-987 622</td>
<td>1 675</td>
</tr>
<tr>
<td>SLU 6</td>
<td>-987 622</td>
<td>1 675</td>
</tr>
<tr>
<td>SLU 7</td>
<td>-987 622</td>
<td>1 675</td>
</tr>
<tr>
<td>SLU 8</td>
<td>-967 733</td>
<td>1 640</td>
</tr>
</tbody>
</table>
Si può notare che i valori massimi e minimi dei P.d.S. appartengono alle sezioni delle due travi del basamento BAS-1. Le ragioni sono legate alla maggior lunghezza delle travi stesse, che misurano l=2278 mm, mentre quelle di BAS-2 e BAS-3 misurano tutte l=1460 mm. Le verifiche saranno condotte quindi per le travi di BAS-1 e successivamente estese a tutte le altre.

Verifica di resistenza a flessione

\[M_{Ed} = 987 \, 622 \, \text{N mm} \]

\[V_{Ed} = 1 \, 675 \, \text{N} \]
$W_{pl} = 35 \, 330 \, \text{mm}^2$

Il momento flettente di calcolo M_{Ed} deve rispettare la seguente condizione:

$$M_{Ed} \leq M_{c,Rd}$$

La resistenza di calcolo a flessione retta della sezione $M_{c,Rd}$ vale, per profili in classe 1 e 2:

$$M_{c,Rd} = M_{pl,Rd} = W_{pl} \cdot f_y / \gamma_{M0} = 9 \, 245 \, 238 \, \text{N mm}$$

$$M_{Ed} = 987 \, 622 \, \text{N mm} \leq M_{c,Rd} = 9 \, 245 \, 238 \, \text{N mm} \quad \text{verificato}$$

Verifica di resistenza a taglio

$V_{Ed} = 1 \, 675 \, \text{N}$

Il valore di calcolo dell’azione tagliante V_{Ed} deve rispettare la condizione:

$$V_{Ed} / V_{c,Rd} \leq 1$$

dove la resistenza di calcolo a taglio $V_{c,Rd}$ vale:

$$V_{c,Rd} = A_v \cdot f_v / \sqrt{3} \cdot \gamma_{M0}$$

La normativa non fa diretto riferimento al calcolo dell’area resistente a taglio per profili ad omega, perciò il calcolo considera che l’azione di taglio viene contrastata dagli elementi della sezioni paralleli ai carichi agenti, ovvero le due anime verticali.

$$A_v = 2 \cdot (b_2 \cdot t) = 896 \, \text{mm}^2$$

Dunque:

$$V_{c,Rd} = 135 \, 484 \, \text{N}$$

$$V_{Ed} = 1 \, 675 \, \text{N} < V_{c,Rd} = 135 \, 484 \, \text{N} \quad \text{verificato}$$

Essendo il valore di progetto molto inferiore al 50 % del valore resistente non è necessario ridurre il momento resistente di progetto utilizzato per la verifica a flessione.

Inoltre si ha $b_2/t = 28 < 72\varepsilon = 66,24$ quindi non è necessario verificare l’instabilità a taglio.

Travi perimetrali del solaio di basamento
La sezione trasversale dei profili che costituiscono il perimetro del basamento, fatta eccezione per i profili laterali a sezione speciale, è una sezione cava rettangolare, composta da 4 elementi piani.

\[b_e = 80 \text{ mm} \quad b_i = 72 \text{ mm} \]

\[h_e = 160 \text{ mm} \quad h_i = 152 \text{ mm} \]

\[t = 4 \text{ mm} \]

\[A = 1 856 \text{ mm}^2 \]

Secondo le prescrizioni per i profili sagomati a freddo gli elementi piani interno devono osservare la relazione \(b/t \leq 500 \) (tipologia 4). Nel caso specifico \(b_i/t = 18 \leq 500 \), e \(h/t = 38 \leq 500 \) rispettato.

Seguendo le indicazioni dell’EC3 e considerato che le travi di basamento sono soggette a flessione semplice, si effettua quindi la classificazione dal confronto di ogni elemento della sezione:

- Anime soggette a flessione: \(h/t = 38 < 72\varepsilon = 66,24 \) classe 1
- Elementi a compressione: \(b/t = 18 < 33\varepsilon = 30,36 \) classe 1

La sezione si considera complessivamente di classe 1.

Analogamente al caso precedente, le sezioni più sollecitate sono quelle in corrispondenza alla mezzerial per il momento flettente e alle estremità per lo sforzo di taglio.

<table>
<thead>
<tr>
<th>SLU</th>
<th>(M) [N mm]</th>
<th>(T) [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLU 1</td>
<td>1 959 447 (-4 008 106)</td>
<td>7 051 (-6 122)</td>
</tr>
<tr>
<td>SLU 2</td>
<td>1 401 910 (-3 973 307)</td>
<td>6 623 (-6 551)</td>
</tr>
<tr>
<td>SLU 3</td>
<td>662 590 (-605 505)</td>
<td>949 (-118)</td>
</tr>
<tr>
<td>SLU 4</td>
<td>105 054 (-322 848)</td>
<td>530 (-529)</td>
</tr>
<tr>
<td>SLU</td>
<td>1 813 147</td>
<td>7 003</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>-4 019 303</td>
<td>-6 171</td>
</tr>
<tr>
<td>SLU</td>
<td>1 255 611</td>
<td>6 574</td>
</tr>
<tr>
<td>6</td>
<td>-3 989 452</td>
<td>-6 600</td>
</tr>
<tr>
<td>SLU</td>
<td>1 408 564</td>
<td>6 628</td>
</tr>
<tr>
<td>7</td>
<td>-3 956 595</td>
<td>-6 546</td>
</tr>
<tr>
<td>SLU</td>
<td>1 925 934</td>
<td>6 894</td>
</tr>
<tr>
<td>8</td>
<td>-3 916 604</td>
<td>-5 965</td>
</tr>
</tbody>
</table>

Figura 5.6.1.8 – 14: Diagramma del Momento.

Figura 5.6.1.8 – 15: Diagramma dello Sforzo di Taglio.
Verifica di resistenza a flessione

\[M_{Ed} = 4\ 019\ 303\ \text{N mm} \]
\[V_{Ed} = 7\ 051\ \text{N} \]
\[W_{pl} = 94\ 700\ \text{mm}^2 \]

Il momento flettente di calcolo \(M_{Ed} \) deve rispettare la seguente condizione:

\[M_{Ed} \leq M_{c,Rd} \]

La resistenza di calcolo a flessione retta della sezione \(M_{c,Rd} \) vale:

\[M_{c,Rd} = M_{pl,Rd} = W_{pl} \cdot f_{yk} / Y_M = 24\ 802\ 380\ \text{N mm} \]

\[M_{Ed} = 4\ 019\ 303\ \text{N mm} \leq M_{c,Rd} = 24\ 802\ 380\ \text{N mm} \]

Verificato

Verifica di resistenza a taglio

\[V_{Ed} = 7\ 051\ \text{N} \]

Il valore di calcolo dell’azione tagliante \(V_{Ed} \) deve rispettare la condizione:

\[V_{Ed} / V_{c,Rd} \leq 1 \]

dove la resistenza di calcolo a taglio \(V_{c,Rd} \) vale:

\[V_{c,Rd} = A_{V} \cdot f_{y} / \sqrt{3} \cdot Y_M \]

La normativa non fa diretto riferimento al calcolo dell’area resistente a taglio per profili ad omega, perciò il calcolo considera che l’azione di taglio viene contrastata dagli elementi della sezioni paralleli ai carichi agenti, ovvero le due anime verticali.

\[A_{V} = A \cdot h / (b + h) = 1\ 237\ \text{mm}^2 \]

Dunque:

\[V_{c,Rd} = 187\ 047\ \text{N} \]

\[V_{Ed} = 7\ 051\ \text{N} < V_{c,Rd} = 187\ 047\ \text{N} \]

Verificato

Essendo il valore di progetto molto inferiore al 50 % del valore resistente non è necessario ridurre il momento resistente di progetto utilizzato per la verifica a flessione.

Inoltre si ha \(h_{y} / t = 38 < 72\varepsilon = 66,24 \) quindi non è necessario verificare l’instabilità a taglio.

Travi di copertura
La sezione trasversale dei profili che costituiscono il perimetro della copertura, è una sezione quadrata cava, composta da 4 elementi piani.

\[b_e = 80 \text{ mm} \]

\[b_i = 72 \text{ mm} \]

\[t = 4 \text{ mm} \]

\[A = 1216 \text{ mm}^2 \]

Secondo le prescrizioni per i profili sagomati a freddo gli elementi piani interni devono osservare la relazione \(b/t \leq 500 \) (tipologia 4). Nel caso specifico \(b/t = 18 \leq 500 \).

Seguendo le indicazioni dell’EC3 e considerato che le travi di copertura sono soggette a flessione semplice, si effettua quindi la classificazione del confronto di ogni elemento della sezione:

- A flessione: \(b_i/t = 18 < 72 \varepsilon = 66,24 \) classe 1

- A compressione: \(b_i/t = 18 < 33 \varepsilon = 30,36 \) classe 1

La sezione si considera complessivamente di classe 1.

Considerando l’orditura dei pannelli di copertura, risulta evidente che le travi soggette a maggiori sollecitazioni saranno quelle su cui la copertura stessa trasmette i propri carichi.
<table>
<thead>
<tr>
<th>SLU 5</th>
<th>244 504</th>
<th>905</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-457 393</td>
<td>-905</td>
</tr>
<tr>
<td>SLU 6</td>
<td>150 303</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>-105 942</td>
<td>-143</td>
</tr>
<tr>
<td>SLU 7</td>
<td>1 069 688</td>
<td>3 795</td>
</tr>
<tr>
<td></td>
<td>-1 967 013</td>
<td>-3 336</td>
</tr>
<tr>
<td>SLU 8</td>
<td>798 251</td>
<td>2 915</td>
</tr>
<tr>
<td></td>
<td>-1 718 874</td>
<td>-2 941</td>
</tr>
</tbody>
</table>

Figura 5.6.1.8 – 17: Diagramma del Momento.

Figura 5.6.1.8 – 18: Diagramma dello Sfondo di Taglio.

Verifica di resistenza a flesione
\[M_{Ed} = 1\,967\,013 \text{ N mm} \]
\[V_{Ed} = 3\,795 \text{ N} \]
\[W_{pd} = 33\,000 \text{ mm}^2 \]

Il momento flettente di calcolo \(M_{Ed} \) deve rispettare la seguente condizione:

\[M_{Ed} \leq M_{c,Rd} \]

La resistenza di calcolo a flessione retta della sezione \(M_{c,Rd} \) vale:

\[M_{c,Rd} = M_{pl,Rd} = W_{pl} \cdot f_y / \gamma_{M0} = 8\,642\,857 \text{ N mm} \]

\[M_{Ed} = 1\,967\,013 \text{ N mm} \leq M_{c,Rd} = 8\,642\,857 \text{ N mm} \quad \text{verificato} \]

Verifica di resistenza a taglio

\[V_{Ed} = 3\,795 \text{ N} \]

Il valore di calcolo dell’azione tagliante \(V_{Ed} \) deve rispettare la condizione:

\[V_{Ed} / V_{C,Rd} \leq 1 \]

dove la resistenza di calcolo a taglio \(V_{C,Rd} \) vale:

\[V_{C,Rd} = A_v \cdot f_y / \sqrt{3} \cdot \gamma_{M0} \]

La normativa non fa diretto riferimento al calcolo dell’area resistente a taglio per profili ad omega, perciò il calcolo considera che l’azione di taglio viene contrastata dagli elementi della sezioni paralleli ai carichi agenti, ovvero le due anime verticali.

\[A_v = A \cdot h / (b + h) = 608 \text{ mm}^2 \]

Dunque:

\[V_{C,Rd} = 91\,936 \text{ N} \]

\[V_{Ed} = 3\,795 \text{ N} < V_{C,Rd} = 91\,936 \text{ N} \quad \text{verificato} \]

Essendo il valore di progetto molto inferiore al 50 % del valore resistente non è necessario ridurre il momento resistente di progetto utilizzato per la verifica a flessione.

Inoltre si ha \(b/t = 18 < 72\varepsilon = 66,24 \) quindi non è necessario verificare l’instabilità a taglio.

Controventi

Il sistema di controventi a croce di S. Andrea è realizzato con funi di acciaio inossidabile AISI 316. Questi elementi, per loro stessa natura, possono presentare risposta strutturale alle sole forze assiali; per questo motivo sono stati modellati in ambiente F.E.M. come elementi *truss*.
Per ragioni di progettazione si è stabilito che tutte le funi di controvento, sia quelle di copertura che quelle dei telai verticali, abbiano lo stesso diametro, per agevolare le operazione di acquisto e di montaggio in loco; la verifica sarà quindi effettuata per il controvento che presenti la più alta sollecitazione in relazione al più sfavorevole caso tra le combinazioni fondamentali.

d = 5 mm

A = 78 mm²

Il parametro della sollecitazione studiato è quindi lo sforzo normale:

<table>
<thead>
<tr>
<th>SLU 1</th>
<th>N [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 555</td>
</tr>
<tr>
<td></td>
<td>-814</td>
</tr>
<tr>
<td>SLU 2</td>
<td>1 234</td>
</tr>
<tr>
<td></td>
<td>-1 408</td>
</tr>
<tr>
<td>SLU 3</td>
<td>1 297</td>
</tr>
<tr>
<td></td>
<td>-574</td>
</tr>
<tr>
<td>SLU 4</td>
<td>1 224</td>
</tr>
<tr>
<td></td>
<td>-1 169</td>
</tr>
<tr>
<td>SLU 5</td>
<td>1 265</td>
</tr>
<tr>
<td></td>
<td>-525</td>
</tr>
<tr>
<td>SLU 6</td>
<td>1 214</td>
</tr>
<tr>
<td></td>
<td>-1 120</td>
</tr>
<tr>
<td>SLU 7</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>-245</td>
</tr>
<tr>
<td>SLU 8</td>
<td>1 553</td>
</tr>
<tr>
<td></td>
<td>-812</td>
</tr>
</tbody>
</table>
Resistenza a trazione

\(N_{ed} = 1\,555 \, N \)

Per le membrature soggette a trazione assiale il valore di progetto della forza di trazione \(N_{ed} \) in corrispondenza di ciascuna sezione trasversale deve soddisfare la relazione: \(N_{ed} \leq N_{t,ld} \)

Dal momento che le funi non possono essere classificate secondo le categorie delle membrature semplici di profili in senso stretto, la verifica viene svolta attraverso un confronto con i dati forniti dai produttori e fornitori delle suddette funi.

<table>
<thead>
<tr>
<th>Formazione</th>
<th>Descrizione</th>
<th>Diametro fune</th>
<th>Peso</th>
<th>Diametro filo</th>
<th>Carico di rottura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1,004</td>
<td>0,11</td>
<td>0,53</td>
<td>0,56</td>
</tr>
<tr>
<td>1,6</td>
<td></td>
<td>0,01</td>
<td>0,17</td>
<td>1,19</td>
<td>1,27</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0,018</td>
<td>0,22</td>
<td>2,11</td>
<td>2,25</td>
</tr>
<tr>
<td>2,5</td>
<td></td>
<td>0,025</td>
<td>0,28</td>
<td>3,29</td>
<td>3,52</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0,035</td>
<td>0,33</td>
<td>4,74</td>
<td>5,06</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0,06</td>
<td>0,44</td>
<td>8,43</td>
<td>9,00</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0,10</td>
<td>0,55</td>
<td>13,2</td>
<td>14,1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0,14</td>
<td>0,66</td>
<td>19,0</td>
<td>20,3</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0,25</td>
<td>0,88</td>
<td>33,7</td>
<td>36,3</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0,39</td>
<td>1,10</td>
<td>59,7</td>
<td>56,3</td>
</tr>
</tbody>
</table>

Le funi scelte in fase progettuale sono di tipo flessibile, per poter essere riposte facilmente in fase di trasporto del modulo. Si può notare che funi del tipo 7x7 in acciaio inox AISI dal diametro di 5 mm soddisfano le necessità di resistenza richieste, rimanendo ampiamente a favore di sicurezza:

\(N_{ed} = 1\,555 \, N \leq N_{t,ld} = 14\,100 \, N \)
Copertura

Il calcolo di dimensionamento statico della copertura viene eseguito facendo riferimento ai dati tecnici forniti dai produttori dei pannelli prefabbricati sandwich utilizzati. Lo schema statico adottato è di campata singola con l’elemento in semplice appoggio alle due estremità; ciò riflette esattamente il modello progettuale e costruttivo. La luce massima viene coperta in corrispondenza della copertura COP-01, \(l = 2278 \) mm, e sarà di conseguenza questa la misura presa a riferimento per il dimensionamento. La lunghezza effettiva dei pannelli, così come descritto nelle tavole costruttive di lattoneria di copertura allegate, misura 2358 mm, per garantire un adeguato spazio di appoggio alle estremità sulle travi di copertura. Inoltre, la copertura non è praticabile; per tale ragione il carico di progetto è quello derivante dall’azione accidentale della neve \(q_0 = 2,90 \) kN/m\(^2\) e del peso proprio della copertura stessa.

Per soddisfare un limite di freccia normale di 1/200-l, e rispettare le indicazioni contenute nell’Allegato E della norma UNI EN 14509, sotto l’azione di suddetti carichi, si è stabilito di adottare una tipologia di pannello a 6 greche per metro, di spessore 80 mm, con facciata esterna in alluminio 0,6 mm e facciata interna in acciaio 0,4 mm. Le greche conferiscono resistenza flessionale al pannello che, per luci di 2,5 m, arriva a sostenere 345 kg/m\(^2\). Essendo la luce di progetto minore di 2,5 m è possibile guadagnare margini di sicurezza per eventi eccezionali. Le coperture COP-02 e COP-03, avendo luce ancora inferiore (\(l = 1460 \) mm nella direzione dell’orditura dei pannelli), risultano anch’esse comprovate ai fini della verifica statica, in favore di sicurezza.

![Diagramma copertura](image)

Figura 5.6.1.8 – 21: Dati tecnici dei pannelli di copertura da “lattonedili”.
5.6.1.9. Comportamento sismico

Lo studio del comportamento sismico è stato condotto con riferimento alla combinazione sismica delle azioni, impiegata per gli stati limite ultimi e di esercizio connessi all’azione sismica E:

$$E + G_1 + G_2 + P + \Psi_{21} Q_{k1} + \Psi_{22} Q_{k2}$$

Tale combinazione è stata applicata con riferimento al sito geografico di L’Aquila, come specificato nel paragrafo della azioni sulla costruzione, e quindi con i relativi parametri, per ognuno degli stati limite indagati.

Come prima cosa sono stati analizzati i modi di vibrare naturali della struttura, fino ad ottenere risultati nei quali la massa partecipante fosse interessata per almeno il 95%:

![Figura 5.6.1.9–01: Modo di vibrare della struttura.](image)

Si riportano, a titolo di esempio, le immagini che rappresentano i modi di vibrare n° 3 e n° 20, per i quali la consistente parte di massa partecipante è soggetta a spostamenti in direzioni Y. Il modo di vibrare n° 3 interessa principalmente la massa in copertura, con spostamenti in sommità e comportamento a mensola incastrata al suolo.
Il modo di vibrare n° 20, invece, interessa in parte maggiore la massa del basamento, generando lo spostamento di questo. È possibile notare che gli spostamenti, in entrambi i casi, sono di entità molto ridotta. Inoltre, analizzando le frequenze proprie associate a questi modi di vibrare, è possibile affermare che il modulo si comporti come un monolite molto rigido. Per ridurre la frequenza delle vibrazioni, sarebbe quindi opportuno studiare un sistema dissipativo a livello dei piedini di fondazione, dove si trasmettono le sollecitazioni di taglio derivanti dall’azione sismica.
I parametri della sollecitazione e le deformazioni per gli stati limite suddetti rimangono inoltre di valore inferiore rispetto a quelli del caso più sfavorevole causato da vento in direzione X, per il quale sono già state effettuate le verifiche.

5.6.1.10. Comportamento strutturale di un agglomerato di moduli

In questo paragrafo sono esposte alcune considerazioni sul comportamento strutturale di un piccolo agglomerato di moduli. Il complesso di un ospedale da campo, infatti, è sempre costituito dall’aggregazione di più moduli, ancorati tra loro attraverso il sistema descritto nel progetto strutturale. Risulta opportuno quindi comprendere come questa aggregazione influisca sulla risposta strutturale all’azione delle combinazioni di carichi precedentemente individuati.

Il risultato dell’aggregazione di più moduli comporta, nell’aspetto costruttivo, alcune modifiche rispetto al singolo modulo:

- l’assenza delle funi di controvento in corrispondenza dei lati concomitanti, per non ostacolare il passaggio negli spazi interni;
- la presenza di unioni bullonate tra le travi di basamento e copertura dei lati concomitanti, allo scopo di renderle collaboranti e ridurre i fenomeni di spostamenti differenziali o di martellamento tra moduli;
- la presenza di aste rigide in acciaio, con comportamento “a puntone”, che connettono i nodi in sommità delle porzioni telescopiche adiacenti, altrimenti sconnesse tra loro.

Anche le condizioni di carico subiscono alcune modifiche: rimangono inalterate le modalità di applicazione dei carichi accidentali d’uso e di neve, così come per il peso proprio (ricordando di
sottrarre i carichi permanenti non strutturali delle pareti tolte per creare lo spazio interno, mentre si reconfigura completamente l’applicazione del carico di vento. Come evidenziato dalla successiva immagine, infatti, la distribuzione dei moduli incide sull’esposizione complessiva dell’agglomerato al vento. Le superfici sulle quali si infrange l’azione del vento sono quelle del prospetto più esterno, mantenendo riparate le pareti verticali delle porzioni telescopiche nei prospetti concomitanti. L’effetto della depressione sulla copertura piana rimane comunque inalterata e proporzionale al numero di moduli utilizzati.

![Modello F.E.M. di aggregato di 4 moduli, elementi load patch](image)

Dal punto di vista delle deformazioni la combinazione rara (per gli SLE) più gravosa rimane quella legata al vento come azione dominante, in particolare quella di direzione perpendicolare al prospetto con maggior superficie (nel modello ancora direzione X).

Da un confronto diretto tra i risultati degli spostamenti sommitali nella direzione parallela a quella dell’azione del vento tra il modulo singolo e l’agglomerato di moduli, è possibile notare come dalla natura collaborativa tra i moduli in agglomerato consegua un miglior comportamento strutturale: gli spostamenti dei nodi in sommità si riducono da un massimo di 5 mm nel modulo singolo, a 3,4 mm nell’agglomerato di moduli.

Gli elementi strutturali inoltre rimangono conformi alle verifiche di resistenza e di stabilità agli Stati Limite Ultimi, essendo interessati da sollecitazioni uguali o minori rispetto a quelle riscontrate per il modulo singolarmente considerato.
Dal punto di vista dell’azione sismica, che produce deformazioni e sollecitazioni minori rispetto a quelle causate dal vento, è comunque opportuno elaborare alcune indicazioni. La mancanza di una precisa metodologia compositiva nell’aggregazione del complesso potrebbe instaurare fenomeni peggiorativi nel comportamento strutturale globale. Dunque, sotto l’ottica puramente strutturale, si consiglia di adottare layout compositivi caratterizzati da doppia simmetria di impianto. Così facendo si riduce fortemente l’effetto torsionale del complesso dovuto alle eccentricità del centro di taglio.

Conclusasi così la relazione di calcolo, è ora possibile passare alla descrizione grafica di tutti gli elementi strutturali, con cui si descrivono le grandezze caratteristiche e le lavorazioni di carpenteria metallica.
5.6.2. Fondazioni

In questo paragrafo vengono esaminate le modalità di attacco a terra della struttura. La riflessione progettuale parte dalla considerazione che il sito su cui si andrà a posizionare il presidio possa presentare una superficie irregolare, sia in termini di pendenza che di composizione del terreno. Il modulo, di natura mobile ed itinerante, può infatti doversi adattare ad un terreno montuoso in declivio, ad un terreno sabbioso e desertico, o ad un terreno pianeggiante ma alluvionato, oltre a superfici di altra natura seppur meno problematica.

Essendo molte e di vario genere le situazioni di collocamento, si sono definite più soluzioni di attacco a terra della struttura. Tutte le soluzioni però devono poter garantire una posa rapida e sicura della costruzione, per renderla operativa in tempi brevi.

La prima modalità fondazionale è il semplice appoggio a terra di ogni modulo. Questo è possibile nel caso in cui la superficie di appoggio sia compianare e solida, come nel caso di spazi pavimentati o asfaltati, o di terreni livellati e ben consolidati. Con questa modalità, di immediato impiego della struttura, i carichi vengono trasmessi a terra per mezzo delle travi perimetrali di basamento. Nonostante la leggerezza del manufatto, il peso proprio della struttura è sufficiente ad evitare fenomeni di ribaltamento dovuti a forti venti.

Dove le caratteristiche del terreno si fanno più irregolari, si adotta una modalità differente e più sicura. Si ricorre all’aiuto di piedini livellanti regolabili. Questi elementi permettono di regolare puntualmente la quota di imposta della costruzione, rendendola compianare anche su terreni pendenti. Inoltre, i piedini la mantengono interamente sollevata da terra; questo migliora notevolmente la salubrità dell’ambiente interno, annullando la risalita di umidità dal terreno.

I piedini utilizzati sono realizzati in acciaio strutturale con trattamento di zincatura per migliorare le proprietà di resistenza chimica ad agenti esterni. Sono composti di due piastre, una inferiore fissata al terreno ed una superiore su cui poggia e si ancora la struttura; entrambe le piastre hanno uno
spessore di 5 mm. Tra loro sono collegate da un fusto d’acciaio pieno filettato, capace di avvitamento lungo la camicia a cilindro saldata alla lastra inferiore. Per migliorare la stabilità del piedino e la capacità di resistenza a flessione alla camicia cilindrica sono saldati quattro fazzoletti metallici, anch’essi d’acciaio zincato di 5 mm di spessore. L’altezza minima tra le due piastre è di 15 cm, che si può estendere fino a 25 cm con la regolazione a vite del perno centrale. Nella relativa tavola di progetto strutturale in allegato sono specificate tutte le dimensioni caratteristiche, attraverso la quotatura meccanica al millimetro, comprese le forometrie della piastra superiore ed inferiore.

Le dimensioni del fusto pieno del piedino, di diametro di 3 cm, sono state valutate tramite la modellazione F.E.M. utilizzata per il dimensionamento e la verifica strutturale. In tal caso il piedino è stato assimilato ad un elemento beam e la lunghezza presa è quella di massima estensione possibile, 25 cm.

Ogni piedino viene fissato al manufatto mediante unione bullonata, in corrispondenza dei pilastri, in modo tale che questi ultimi trasmettano i carichi al terreno evitando eccentricità geometriche che potrebbero generare un peggioramento nel comportamento strutturale. In particolare ogni modulo è dotato di 8 piedini, come mostrato nella figura in basso, e come dettagliato negli elaborati grafici strutturali. In fase di trasporto i piedini possono trovare alloggio all’interno del modulo steso, oppure essere trasportati separatamente.

Figura 5.6.1 – 02: Posizionamento dei piedini alla base del modulo.
Per completare l’opera di fondazione, soprattutto in zone dove le azioni di agenti atmosferici incidono fortemente sulle prestazioni strutturali del manufatto, si rende necessario ancorare ogni piedino al terreno in maniera completa. Tre distinte soluzioni sono possibili: per picchettamento della piastra inferiore del piedino al terreno, per ancoraggio del piedino ad una platea superficiale in cemento armato appositamente realizzata, oppure per fissaggio del piedino stesso ad un plinto di fondazione. La scelta sulla soluzione fondazionale da adottare dipende principalmente dal tempo di realizzazione, in rapporto alla rapidità di intervento richiesta e alla durata di permanenza in loco dell’ospedale campale.

La prima soluzione, molto rapida, prevede la penetrazione di aghi d’acciaio nel terreno tramite battitura, in corrispondenza dei quattro fori della piastra inferiore del piedino.

La seconda soluzione richiede uno sbancamento dello strato superficiale di terreno di circa 20 cm e la successiva realizzazione di un solettone in cemento armato contro terra di spessore 15 cm. Per queste operazioni è necessario un tempo di qualche settimana, considerata l’estensione del complesso clinico e i tempi di maturazione del calcestruzzo. La soluzione si dimostra però molto valida nel lungo periodo, costituendo per la costruzione finale una base complanare e resistente, con leggere pendenze per lo scolo delle acque.

![Figura 5.6.1 – 03: Fondazione con soluzione picchettata e con soluzione a platea.](image)

La terza, invece, prevede un’opera di sbancamento localizzata, con uno scavo di profondità di circa 80 cm nei punti in cui verrà posizionato il plinto prefabbricato. Si procede con la realizzazione di un
sottofondo di regolazione in cemento magro, sopra il quale adagiare il plinto prefabbricato in calcestruzzo armato. Sulla sommità del plinto, dotato di 4 tirafondi, viene fissato il piedino con apposita bullonatura.

La soluzione con plinti di fondazione, così come quella con platea, può trovare reale applicazione nei casi in cui l’ospedale da campo venga donato ad una popolazione, oppure nei casi in cui una popolazione ancora sprovvista di strutture sanitarie locali richieda, indipendentemente da eventi catastrofici, la costruzione di una struttura ospedaliera semi-permanente.

Figura 5.6.1 – 04: Fondazione con soluzione a plinti prefabbricati. Foto di plinto prefabbricato.

In generale, dove la richiesta di intervento sanitario si rivela urgente e di immediata esplicazione, sarà sufficiente adottare la soluzione con picchetti, in maniera tale da coadiuvarne l’azione stabilizzante già garantita dal peso proprio della struttura per azioni eccezionali.

Stabilita la soluzione da adottare, il posizionamento dei piedini rispetto alla struttura in elevazione viene descritto nella “pianta fondazioni” del progetto esecutivo strutturale. Qui ne viene riproposta l’immagine in scala ridotta.
5.6.3. Struttura in elevazione

La struttura portante risulta completamente fuori terra, ancorata mediante unioni bullonate al sistema di fondazione appena descritto. Avendo già in precedenza dimensionato tutti gli elementi costruttivi, viene esposto l’elaborato grafico finale del progetto esecutivo strutturale. In allegato, alla relativa sezione, questo è rappresentato nella corretta scala 1:20, con quotatura meccanica delle misure caratteristiche.

Si compone di:

- Pianta di basamento
- Pianta del soffitto
- N° 1 Sezione longitudinale
- N° 3 sezioni trasversali
- N° 4 Prospetti esterni
Figura 5.6.2 – 01: Progetto esecutivo strutturale, pianta basamento.

Figura 5.6.2 – 02: Progetto esecutivo strutturale, pianta soffitto.
Figura 5.6.2 – 03: Progetto esecutivo strutturale, sezione longitudinale.

Figura 5.6.2 – 04: Progetto esecutivo strutturale, sezioni trasversali.
Figura 5.6.2 – 05: Progetto esecutivo strutturale, prospetto lungo.

Figura 5.6.2 – 06: Progetto esecutivo strutturale, prospetti corti.
Della struttura portante è stato sviluppato anche il progetto costruttivo, attraverso elaborati grafici ancora più dettagliati, per essere recepiti allo stadio di fabbricazione. La prefabbricazione dell’edificio infatti si articola in ambiente industriale, per mezzo di una catena di lavorazioni consequenziali, al termine delle quali si ottiene il prodotto finito.

Per rendere più esaustiva la comprensione della struttura è stato redatto l’abaco dei profili metallici, in cui viene descritta, in scala 1:10, per ogni trave: la sezione trasversale, le dimensioni caratteristiche, i tagli e le forometrie associate. Questo elaborato ha lo scopo di organizzare in modo univoco i componenti della struttura, assegnando loro una precisa nomenclatura, grazie alla quale risulta ottimizzata la fase costruttiva. Quest’ultima infatti si compone di più fasi: l’ordine del materiale, le lavorazioni su ogni singolo componente (taglio e foratura), e l’assembaggio (saldatura).

In basso vengono presentati il navigatore dei profili, ovvero il telaio in acciaio completo delle marche che identificano trave per trave, ed un tavola grafica d’esempio di una specifica trave (TR001) descritta in ogni dettaglio.
Grazie alla medesima metodologia vengono rappresentati i prodotti intermedi della catena di produzione: i basamenti (in questo caso 3: quello principale ed i due ribaltabili delle porzioni telescopiche), le coperture (anche in questo caso 3), i telai scorrevoli (nel numero di 4). Questi elementi si ottengono per saldatura dei profili metallici, ed a loro volta ottengono una specifica nomenclatura per facilitare le successive lavorazioni (basamento principale = BAS-1).
Anche questi elaborati grafici, presenti in allegato, adottano la scala di rappresentazione 1:10. Qui si espone a titolo di esempio del basamento principale BAS-1.

Figura 5.6.2 – 10: Progetto costruttivo, basamento BAS-1.
L’immagine successiva descrive l’elaborato costruttivo di uno dei telai verticali scorrevi, alla base dei quali vengono installati i rulli in poliuretano per l’estrazione telescopica.

Figura 5.6.2 – 11. Progetto costruttivo, telaio scorrevole.
Dopo aver descritto la saldatura delle coperture, analogamente al basamento portato in esempio, la successiva lavorazione descritta è l’assemblaggio della lattoneria al telaio.

Figura 5.6.2 – 12: Progetto costruttivo, copertura COP-1.
5.7. Progetto architettonico esecutivo

Il progetto architettonico esecutivo rappresenta l’ultimo livello di elaborazione e redazione del progetto; si interfaccia direttamente con il progetto strutturale e in una certa misura coordina la sintesi delle informazioni strutturali, impiantistiche e quelle proprie architettoniche.

A quello livello vengono stabilite e rappresentate le scelte relative agli elementi architettonici:

- l’involucro edilizio, con particolare riferimento all’isolamento;
- gli elementi di guarnizione delle zone di interfaccia degli elementi mobili;
- il pacchetto di pavimentazione;
- le finiture interne ed esterne;
- scossalina e gronda in copertura;
- gli infissi.

Tutto ciò viene descritto negli elaborati grafici di progetto, nell’apposita sezione, in scala 1:20.

Qui vengono riportate le miniature della pianta principale, della pianta del soffitto, delle sezioni e dei prospetti esterni.

![Figura 5.7 – 01: Progetto esecutivo architettonico, pianta principale](image-url)
Figura 5.7 – 02: Progetto esecutivo architettonico, pianta soffitto.

Figura 5.7 – 03: Progetto esecutivo architettonico, sezione longitudinale.
Figura 5.7 – 04: Progetto esecutivo architettonico, sezioni trasversali.

Figura 5.7 – 05: Progetto esecutivo architettonico, prospetto lungo di accesso.
In questa fase vengono redatte anche sezioni significative del modulo definitivo in configurazione chiusa (pianta e sezione verticale), dettagli costruttivi e di montaggio delle unioni bullonate tra moduli congiunti, e schemi di montaggio dei cassonetti di pavimentazione previsti per chiudere le guide dei telai scorrevoli e le fughe tra basamento adiacenti di moduli diversi.
Con la produzione di alcuni render tridimensionali si cerca di esprimere visivamente il risultato.
Infine, con la medesima tecnologia del modulo base, viene elaborata e descritta la progettazione del modulo fuorimisura, che verrà utilizzato come vano tecnico da anettere alla coda del modulo base.
5.8. Progetto impiantistico

Al progetto strutturale ed architettonico si affianca lo studio completo del sistema degli impianti. Questo sistema si suddivide nelle seguenti sotto-sezioni:

- impianto di climatizzazione, volto a regolare le condizioni igrotermiche dell’ambiente interno; la progettazione dell’impianto è preceduta dal calcolo dei carichi termici dell’edificio per i periodi invernale ed estivo.
- impianto idro-sanitario, che garantisca la corretta somministrazione di acqua all’utenza;
- impianto illuminotecnico, per controllare il comfort visivo dell’utenza durante lo svolgimento delle attività all’interno dell’ospedale da campo;
- impianto elettrico, volto a soddisfare la richiesta di energia per l’utilizzo dei dispositivi elettrici.

Il tema si presenta da subito piuttosto complesso, vista la particolare natura della costruzione; è stato necessario analizzare e trovare soluzioni che si adattassero al carattere temporaneo e modulare della struttura. Infatti, a differenza di un edificio tradizionale in cui la posizione e il dimensionamento degli impianti rimangono invariati, per il regime variabile in cui si trova l’ospedale da campo si dimostra necessario anche in questo caso elaborare una strategia, più che un vero e proprio progetto impiantistico.

5.8.1. Calcolo dei carichi termici invernali

Per carico termico di un edificio si intende il flusso termico che deve essere fornito dall’impianto di riscaldamento per mantenere, nell’edificio, la temperatura interna prefissata quando all’esterno si abbiano certe condizioni climatiche. In regime invernale, la temperatura esterna è sempre considerevolmente più bassa rispetto a quella interna e la radiazione solare non può che ridurre il carico termico di riscaldamento. Per questo motivo, ai fini del dimensionamento degli impianti di riscaldamento, si considera l’ipotesi di regime termico stazionario in assenza di radiazione solare. La temperatura di progetto viene prefissata a seconda della località, ma essendo l’edificio in esame di natura itinerante, si stabilisce tale temperatura in maniera arbitraria, seppur ponderata, a 0 °C.

Considerato il notevole sviluppo frontale rispetto agli spessori delle pareti, per il flusso termico attraverso l’involucro dell’edificio è possibile rientrare nell’ipotesi di monodimensionalità. Tuttavia in corrispondenza dei cosiddetti punti termici sarà opportuno dare particolare e separata trattazione.

Supposti due fluidi a diverse temperature \(t_i \) e \(t_e \) con \(t_i > t_e \), separati da una parete piana a facce parallele, in condizioni di regime termico stazionario, il flusso termico \(q \) scambiato tra i due fluidi attraverso la superficie \(S \) della parete risulta:

190
q = K \cdot S \cdot (t_i - t_e)

dove con K si indica il “coefficiente di trasmissione termica globale” o “trasmittanza” della parete.

Calcolo della trasmittanza globale

Il coefficiente K è funzione di diversi meccanismi di scambio con cui il calore viene trasmesso dal fluido caldo a quello freddo:

- lo scambio superficiale sulle due facce della parete, generalmente costituito da convezione ed irraggiamento;
- la conduzione, tra gli strati componenti la parete stessa.

Nel caso in esame, essendo l’involucro dell’edificio costituito da pannelli prefabbricati, i valori di trasmittanza sono univocamente determinati e assegnati dal produttore.

Pareti verticali

Le pareti verticali dell’involucro sono costituite da pannelli strutturali isolanti del tipo ISOPAR® di “Lattonedil”, composti da:

- 0,4 mm di lastra d’acciaio (faccia esterna)
- 80 mm di isolante in poliuretano
- 0,4 mm di lastra d’acciaio (faccia interna)

![Diagramma](image)

Figura 5.8.1 – Tabelle di trasmittanza globale per pannelli di pareti verticali.

La trasmittanza termica globale di pannelli di 80 mm di spessore, calcolata sperimentalmente con prove di laboratorio, si attesta a valori di \(K = 0,28 \text{ W/m}^2\text{K} \).

Pannelli orizzontali di copertura

La copertura è composta da pannelli strutturali isolanti del tipo Isocopre® di “Lattonedil”, composti da:
La trasmittanza termica globale di pannelli di 80 mm di spessore si attesta a valori di \(K = 0,28 \text{ W/m}^2\text{K} \).

Solaio di pavimentazione

La pavimentazione della costruzione è costituita da un sistema di strati distinti tra loro. È perciò necessario calcolare la trasmittanza termica globale considerando il contributo di ogni singolo strato. L’espressione risulta della forma:

\[
K = \frac{1}{\left(1/\alpha_i + s_1/\lambda_1 + s_2/\lambda_2 + \ldots + 1/\alpha_e \right)}
\]

Dove \(\alpha_i \) ed \(\alpha_e \) indicano i coefficienti di scambio termico superficiale interno ed esterno per convezione; \(s_n \) lo spessore di ogni strato; \(\lambda_n \) la conduttività del materiale costituente lo strato in oggetto.

La pavimentazione è composta da:

- 0,6 mm lastra di alluminio (faccia esterna)
- 80 mm di isolante in poliuretano
- 0,4 mm di lastra d’acciaio (faccia interna)
Trascursando il contributo della lamiera in alluminio, si fissano i parametri per la determinazione del valore di trasmittanza.

$\alpha_a = 5,80 \text{ W/mK}$ (superficie in aria calma, flusso discendente)

$\alpha_v = 23,20 \text{ W/mK}$ (superficie rivolta all’esterno, vento fino a 4 m/s)

$\lambda_1 = 0,040 \text{ W/mK}$ (conduttività termica lana di roccia)

$\lambda_2 = 0,35 \text{ W/mK}$ (conduttività termica pannelli Duripanel)

$\lambda_3 = 0,046 \text{ W/mK}$ (conduttività termica lastra isolante in fibra di legno)

$R_4 = 0,0525 \text{ W/mK}$ (resistenza termica pavimento vinilico)

La trasmittanza termica globale risulta quindi di $K = 0,247 \text{ W/m}^2\text{K}$.

Infissi

Per finestre e porte, la trasmittanza termica del serramento rappresenta la media pesata tra la trasmittanza termica del telaio e di quella della vetrata, più un contributo aggiuntivo. Non potendo determinare con esattezza questi valori se ne determina una stima sulla base di dati raccolti dalla letteratura in materia.

Per le finestre, con telaio in lega di alluminio e a lastra vetrata singola, una buona stima della trasmittanza risulta essere $K = 4,5 \text{ W/m}^2\text{K}$, anche per rimanere in conformità con le disposizioni della norma UNI EN ISO 10077-1 in materia di calcolo della trasmittanza termica per finestre, porte e chiusure oscuranti.

Per le porte il valore è $K = 3,8 \text{ W/m}^2\text{K}$

Temperature interne ed esterne di progetto

Per calcolare il carico termico è necessario fissate i valori delle temperature che costituiscono il potenziale di scambio. Queste temperature sono quelle dell’aria esterna, t_o, e quella dell’ambiente interno t. La scelta del valore esterno andrebbe fatta seguendo le caratteristiche climatiche del sito.
in cui sorge la struttura; non potendo essere così precisi per la natura mobile della costruzione, si assume come valore di temperatura esterna $t_s = 0 \, ^\circ C$.

La temperatura da mantenere in ambiente interno è determinata dalla normativa che regola i requisiti minimi degli ambienti sanitari, $t_i = 20 \, ^\circ C$.

I locali interni hanno tutti una altezza inferiore ai 3 m, e di conseguenza vale l’ipotesi che l’ambiente si mantenga a regime isotermo, in assenza quindi di gradiente termico tra zone diverse del locale stesso.

Superficie di scambio termico

La superficie S da considerare nell’equazione del carico termico è quella interna all’edificio. Inoltre, potendo assumere diverso orientamento a seconda delle configurazioni, ai fini del calcolo, il modulo è stato considerato esposto verso Nord con il suo prospetto più ampio.

- Parete Sud: 8,9 m2
- Parete Nord: 11,3 m2
- Parete Est: 4,73 m2
- Parete Ovest: 4,73 m2
- Copertura: 12,3 m2
- Pavimentazione: 12,3 m2
- Finestre Sud: 0,5 m2
- Finestre Nord: 0,5 m2
- Porta Sud: 2,4 m2
Al flusso termico calcolato per le pareti si associa una maggiorazione percentuale, dovuta all’orientazione delle pareti stesse. Per motivi di cautela progettuale queste correzioni vengono adottate anche per gli infissi. Esposizione:

Sud : 0 %
Nord: 17,5 %
Est: 12,5 %
Ovest : 7,5 %

Carico termico invernale totale del modulo

Come risultato dell’analisi fin qui condotta, si ottiene il valore del carico termico invernale totale del modulo pari a $q_{TOT} = 603$ W.
Il carico termico di un intero agglomerato di ospedale da campo risulterà dalla somma dei carichi termici totali di tutti i moduli che lo compongono; si noti come dall’aggregazione si perda superficie esterna in favore di spazio interno riscaldato. Per questo motivo il caso di modulo singolo è il più sfavorevole ai fini del calcolo.

5.8.2. Calcolo dei carichi termici estivi

In alcuni periodi dell’anno gli ambienti interni di un edificio non richiedono più apporto di calore, bensi che questo venga sottratto. La frequenza con cui tale situazione si verifica dipende sia dalle condizioni climatiche che dalla tipologia di edificio. Il primo passo della progettazione consiste nel calcolare l’entità dei carichi termici ai quali è necessario far fronte nelle condizioni più gravose che possono ragionevolmente verificarsi.

Ci si rende conto che la situazione cosiddetta estiva è totalmente diversa da quella relativa al calcolo dei carichi termici di riscaldamento; basti pensare che gli apporti di calori di origine solare, nel primo caso trascurati per il fatto di costituire un ausilio aleatorio all’impianto, ora costituiscono un carico termico al quale l’impianto deve far fronte. D’altra parte, anche la temperatura dell’aria esterna, assunta costante nel caso di riscaldamento, nelle condizioni più gravose per un impianto di raffrescamento assume valori che oscillano in un intorno di quella interna e dovrà quindi essere considerata nella sua variabilità. Inoltre, è bene ricordare che nel caso estivo diventa rilevante anche la presenza di umidità, che genera richiesta di un impianto in grado di deumidificare l’aria. Per questo al calcolo dei carichi termici sensibili sarà affiancato quello dei carichi termici latenti.

Condizioni climatiche di riferimento

Le condizioni climatiche alle quali è soggetto un edificio possono essere identificate tramite le variabili termoigrometriche dell’aria esterna e le condizioni di soleggiamento. Non potendo stabilire con precisione tali condizioni a causa della molteplicità dei possibili luoghi di richiesta di ospedali da campo, si decide, a titolo esemplificativo, di considerare Padova come sede di localizzazione del modulo.

Le condizioni di progetto per l’aria esterna si possono così identificare:

\[t_{ae,\text{max}} = 34,0 \, ^\circ\text{C} \quad \text{temperatura massima dell’aria esterna a bulbo secco} \]

\[t_{be,\text{max}} = 23,0 \, ^\circ\text{C} \quad \text{temperatura massima dell’aria esterna a bulbo umido} \]

\[\Delta t_{ae} = 11,0 \, ^\circ\text{C} \quad \text{escursione termica giornaliera} \]

Il valore della temperatura \(t_{ae} \) dell’aria esterna alla generica ora \(\tau \) viene poi calcolato assumendo un andamento standardizzato ed utilizzando la relazione:
t_{ae,t} = t_{ae,max} - p \cdot \Delta t_{ae}

dove la frazione p indica la quota di escursione giornaliera alle varie ore del giorno.

Metodo dei fattori di accumulo e delle differenze di temperatura equivalente

Per il calcolo dei carichi termici viene seguito in cosiddetto “metodo Carrier”.

Condizioni climatiche di progetto

- Località: Padova
- Latitudine: 40° Nord
- Mese: Luglio
- Temperatura interna: 22°C
- Temperatura esterna massima: 34°C
- Escursione termica giornaliera: 11°C

Caratteristiche termofisiche dell’edificio

- Trasmittanza delle strutture:
 - Pareti verticali: \(K = 0,28 \) W/m²K
 - Copertura: \(K = 0,28 \) W/m²K
 - Pavimento: \(K = 0,247 \) W/m²K

- Massa frontale delle pareti:
 - Pareti verticali: \(m_f = 16,14 \) Kg/m²
 - Copertura: \(m_f = 8,15 \) Kg/m²
 - Pavimento: \(m_f = 57,5 \) Kg/m²

- Massa media delle strutture: \(m_m = 104,6 \) Kg/m²

- Colore pareti: chiaro

- Durata del funzionamento dell’impianto: 24 ore giornaliere

- Caratteristiche finestre:
 - vetro ordinario singolo con veneziana chiara a 45°
 - telaio metallico
 - coefficiente Cc = 0,56
– Trasmittanza finestre: \(K = 4,5 \text{ W/m}^2\text{K} \)

Utilizzando quindi tali dati si possono ricavare i valori del carico termico alle varie ore del giorno. Si noti che non viene considerato il contributo dell’ombreggiamento, poiché il modulo essendo di forma regolare si presenta completamente esposto. Inoltre non viene qui indicato un flusso termico convettivo interno causato da persone e illuminazione per diversi motivi: l’illuminazione con tecnologia LED produce bassissimo flusso termico, mentre per le persone verrà fatta trattazione separata per la difficoltà di trovare una relazione univoca tra gli spazi e il numero di persone.

Le equazioni utilizzate sono:

– per il contributo dovuto alla differenza di temperatura \(q_{w} \):

\[
q_{w,t} = \sum_{j=1,d} K_j S_j (\Delta t_{eq})
\]

– per il contributo dovuto alla radiazione solare \(q_{b} \):

\[
q_{b,t} = \sum_{j=1,m} (q_{l,max} f_{b,t})_j
\]

dove \(m \) indica le superfici vetrate dell’ambiente ed \(f_b \) sono i cosiddetti fattori di accumulo che tengono conto delle modalità di cessione dell’energia radiante assorbita dalle strutture.

– per il carico termico globale \(q_{p} \):

\[
q_{p,t} = q_{w,t} + q_{b,t}
\]

![Tabella dei calcoli](image.png)
<table>
<thead>
<tr>
<th>ore</th>
<th>Tae,(_{\text{max}}) [°C]</th>
<th>Ti [°C]</th>
<th>22</th>
<th>K [W/m(^2)K]</th>
<th>S [m(^2)]</th>
<th>Δ(\tau_{\text{eq}}) [K]</th>
<th>fb</th>
<th>(q_{\text{f,\text{max}}}) [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>27,84</td>
<td>4,28</td>
<td>5,84</td>
<td>4,7348</td>
<td>0,28</td>
<td>8,9</td>
<td>1,9</td>
<td>4,7348</td>
</tr>
<tr>
<td>Parete Sud</td>
<td>0,28</td>
<td>8,9</td>
<td>1,9</td>
<td>4,7348</td>
<td>0,28</td>
<td>8,9</td>
<td>1,9</td>
<td>4,7348</td>
</tr>
<tr>
<td>Finestre Sud</td>
<td>4,5</td>
<td>0,5</td>
<td>5,84</td>
<td>13,14</td>
<td>0,48</td>
<td>71,09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parete Nord</td>
<td>0,28</td>
<td>11,3</td>
<td>-1,4</td>
<td>4,4296</td>
<td>0,28</td>
<td>11,3</td>
<td>-1,4</td>
<td>4,4296</td>
</tr>
<tr>
<td>Finestre Nord</td>
<td>4,5</td>
<td>0,5</td>
<td>5,84</td>
<td>13,14</td>
<td>0,82</td>
<td>15,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parete Est</td>
<td>0,28</td>
<td>4,73</td>
<td>19,2</td>
<td>26,09068</td>
<td>0,28</td>
<td>4,73</td>
<td>19,2</td>
<td>26,09068</td>
</tr>
<tr>
<td>Parete Ovest</td>
<td>0,28</td>
<td>4,73</td>
<td>19,2</td>
<td>26,09068</td>
<td>0,28</td>
<td>4,73</td>
<td>19,2</td>
<td>26,09068</td>
</tr>
<tr>
<td>Copertura</td>
<td>0,28</td>
<td>12,3</td>
<td>-0,8</td>
<td>-2,7552</td>
<td>0,28</td>
<td>12,3</td>
<td>-0,8</td>
<td>-2,7552</td>
</tr>
<tr>
<td>(q_{\text{in}}) [W]</td>
<td>(49,5738)</td>
<td>(q_{\text{in}}) [W]</td>
<td>(86,16)</td>
<td>(86,16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carico totale (q_{\text{f}}) [W]</td>
<td>135,68336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ore 11:00</th>
<th>Tae,(_{\text{max}}) [°C]</th>
<th>Ti [°C]</th>
<th>22</th>
<th>K [W/m(^2)K]</th>
<th>S [m(^2)]</th>
<th>Δ(\tau_{\text{eq}}) [K]</th>
<th>fb</th>
<th>(q_{\text{f,\text{max}}}) [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00</td>
<td>29,71</td>
<td>7,71</td>
<td>17,3475</td>
<td>0,64</td>
<td>71,09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parete Sud</td>
<td>0,28</td>
<td>8,9</td>
<td>7,4</td>
<td>18,4408</td>
<td>0,28</td>
<td>8,9</td>
<td>7,4</td>
<td>18,4408</td>
</tr>
<tr>
<td>Finestre Sud</td>
<td>4,5</td>
<td>0,5</td>
<td>7,71</td>
<td>17,3475</td>
<td>0,64</td>
<td>71,09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parete Nord</td>
<td>0,28</td>
<td>11,3</td>
<td>0,2</td>
<td>0,6328</td>
<td>0,28</td>
<td>11,3</td>
<td>0,2</td>
<td>0,6328</td>
</tr>
<tr>
<td>Finestre Nord</td>
<td>4,5</td>
<td>0,5</td>
<td>7,71</td>
<td>17,3475</td>
<td>0,87</td>
<td>15,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parete Est</td>
<td>0,28</td>
<td>4,73</td>
<td>19,2</td>
<td>25,42848</td>
<td>0,28</td>
<td>4,73</td>
<td>19,2</td>
<td>25,42848</td>
</tr>
<tr>
<td>Parete Ovest</td>
<td>0,28</td>
<td>4,73</td>
<td>19,2</td>
<td>25,42848</td>
<td>0,28</td>
<td>4,73</td>
<td>19,2</td>
<td>25,42848</td>
</tr>
<tr>
<td>Copertura</td>
<td>0,28</td>
<td>12,3</td>
<td>3,6</td>
<td>12,3984</td>
<td>0,28</td>
<td>12,3</td>
<td>3,6</td>
<td>12,3984</td>
</tr>
<tr>
<td>(q_{\text{in}}) [W]</td>
<td>(93,3172)</td>
<td>(q_{\text{in}}) [W]</td>
<td>(86,16)</td>
<td>(86,16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carico totale (q_{\text{f}}) [W]</td>
<td>179,4772</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ore 12:00</th>
<th>Tae,(_{\text{max}}) [°C]</th>
<th>Ti [°C]</th>
<th>22</th>
<th>K [W/m(^2)K]</th>
<th>S [m(^2)]</th>
<th>Δ(\tau_{\text{eq}}) [K]</th>
<th>fb</th>
<th>(q_{\text{f,\text{max}}}) [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00</td>
<td>31,47</td>
<td>9,47</td>
<td>21,3075</td>
<td>0,75</td>
<td>71,09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parete Sud</td>
<td>0,28</td>
<td>8,9</td>
<td>11,9</td>
<td>29,6548</td>
<td>0,28</td>
<td>8,9</td>
<td>11,9</td>
<td>29,6548</td>
</tr>
<tr>
<td>Finestre Sud</td>
<td>4,5</td>
<td>0,5</td>
<td>9,47</td>
<td>21,3075</td>
<td>0,75</td>
<td>71,09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parete Nord</td>
<td>0,28</td>
<td>11,3</td>
<td>1,9</td>
<td>6,0116</td>
<td>0,28</td>
<td>11,3</td>
<td>1,9</td>
<td>6,0116</td>
</tr>
<tr>
<td>Finestre Nord</td>
<td>4,5</td>
<td>0,5</td>
<td>9,47</td>
<td>21,3075</td>
<td>0,71</td>
<td>15,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parete Est</td>
<td>0,28</td>
<td>4,73</td>
<td>17,4</td>
<td>23,04456</td>
<td>0,28</td>
<td>4,73</td>
<td>17,4</td>
<td>23,04456</td>
</tr>
<tr>
<td>Parete Ovest</td>
<td>0,28</td>
<td>4,73</td>
<td>17,4</td>
<td>23,04456</td>
<td>0,28</td>
<td>4,73</td>
<td>17,4</td>
<td>23,04456</td>
</tr>
<tr>
<td>Copertura</td>
<td>0,28</td>
<td>12,3</td>
<td>8,1</td>
<td>27,8964</td>
<td>0,28</td>
<td>12,3</td>
<td>8,1</td>
<td>27,8964</td>
</tr>
<tr>
<td>(q_{\text{in}}) [W]</td>
<td>(133,19556)</td>
<td>(q_{\text{in}}) [W]</td>
<td>(86,16)</td>
<td>(86,16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carico totale (q_{\text{f}}) [W]</td>
<td>219,35556</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Tae, max [°C]</td>
<td>Ti [°C]</td>
<td>K [W/m²K]</td>
<td>S [m²]</td>
<td>Δt_ab [K]</td>
<td>fb</td>
<td>q₂_max [W]</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td>32,79</td>
<td>22</td>
<td>0,28</td>
<td>8,9</td>
<td>16,8</td>
<td>41,8656</td>
<td>0,82</td>
<td>71,09</td>
</tr>
<tr>
<td>Parette Sud</td>
<td></td>
<td></td>
<td>4,5</td>
<td>0,5</td>
<td>10,79</td>
<td>24,2775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finestre Sud</td>
<td></td>
<td></td>
<td>4,5</td>
<td>0,5</td>
<td>10,79</td>
<td>24,2775</td>
<td>0,73</td>
<td>15,07</td>
</tr>
<tr>
<td>Parette Nord</td>
<td></td>
<td></td>
<td>0,28</td>
<td>11,3</td>
<td>4,2</td>
<td>13,2888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finestre Nord</td>
<td></td>
<td></td>
<td>0,28</td>
<td>4,73</td>
<td>10,8</td>
<td>14,30352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parette Est</td>
<td></td>
<td></td>
<td>0,28</td>
<td>4,73</td>
<td>7,4</td>
<td>9,80056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parette Ovest</td>
<td></td>
<td></td>
<td>0,28</td>
<td>12,3</td>
<td>13,1</td>
<td>45,1164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copertura</td>
<td></td>
<td></td>
<td>0,28</td>
<td>12,3</td>
<td>13,1</td>
<td>45,1164</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>qₚₜₐₚ [W] = 172,92988</td>
<td>rₚₜₐₚ [W] = 86,16</td>
<td></td>
</tr>
<tr>
<td>Carico totale qₚ [W]</td>
<td>259,08988</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Tae, max [°C]</th>
<th>Ti [°C]</th>
<th>K [W/m²K]</th>
<th>S [m²]</th>
<th>Δt_ab [K]</th>
<th>fb</th>
<th>q₂_max [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>33,67</td>
<td>22</td>
<td>0,28</td>
<td>8,9</td>
<td>16,8</td>
<td>41,8656</td>
<td>0,81</td>
</tr>
<tr>
<td>Parette Sud</td>
<td></td>
<td></td>
<td>4,5</td>
<td>0,5</td>
<td>11,67</td>
<td>26,2575</td>
<td></td>
</tr>
<tr>
<td>Finestre Sud</td>
<td></td>
<td></td>
<td>4,5</td>
<td>0,5</td>
<td>11,67</td>
<td>26,2575</td>
<td>0,95</td>
</tr>
<tr>
<td>Parette Nord</td>
<td></td>
<td></td>
<td>0,28</td>
<td>12,3</td>
<td>6,4</td>
<td>8,47616</td>
<td></td>
</tr>
<tr>
<td>Finestre Nord</td>
<td></td>
<td></td>
<td>0,28</td>
<td>4,73</td>
<td>10,8</td>
<td>14,30352</td>
<td></td>
</tr>
<tr>
<td>Parette Est</td>
<td></td>
<td></td>
<td>0,28</td>
<td>4,73</td>
<td>17,5</td>
<td>60,27</td>
<td></td>
</tr>
<tr>
<td>Parette Ovest</td>
<td></td>
<td></td>
<td>0,28</td>
<td>12,3</td>
<td>17,5</td>
<td>60,27</td>
<td></td>
</tr>
<tr>
<td>Copertura</td>
<td></td>
<td></td>
<td>0,28</td>
<td>12,3</td>
<td>17,5</td>
<td>60,27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>qₚₜₐₚ [W] = 194,19948</td>
<td>rₚₜₐₚ [W] = 86,16</td>
</tr>
<tr>
<td>Carico totale qₚ [W]</td>
<td>280,35948</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Tae, max [°C]</th>
<th>Ti [°C]</th>
<th>K [W/m²K]</th>
<th>S [m²]</th>
<th>Δt_ab [K]</th>
<th>fb</th>
<th>q₂_max [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:00</td>
<td>34</td>
<td>22</td>
<td>0,28</td>
<td>8,9</td>
<td>15,2</td>
<td>37,8784</td>
<td>0,77</td>
</tr>
<tr>
<td>Parette Sud</td>
<td></td>
<td></td>
<td>4,5</td>
<td>0,5</td>
<td>12</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Finestre Sud</td>
<td></td>
<td></td>
<td>4,5</td>
<td>0,5</td>
<td>12</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Parette Nord</td>
<td></td>
<td></td>
<td>0,28</td>
<td>11,3</td>
<td>6,4</td>
<td>20,2496</td>
<td></td>
</tr>
<tr>
<td>Finestre Nord</td>
<td></td>
<td></td>
<td>0,28</td>
<td>4,73</td>
<td>6,9</td>
<td>9,13836</td>
<td></td>
</tr>
<tr>
<td>Parette Est</td>
<td></td>
<td></td>
<td>0,28</td>
<td>4,73</td>
<td>17,5</td>
<td>23,177</td>
<td></td>
</tr>
<tr>
<td>Parette Ovest</td>
<td></td>
<td></td>
<td>0,28</td>
<td>12,3</td>
<td>20,8</td>
<td>71,6352</td>
<td></td>
</tr>
<tr>
<td>Copertura</td>
<td></td>
<td></td>
<td>0,28</td>
<td>12,3</td>
<td>20,8</td>
<td>71,6352</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>αₚₜₐₚ [W] = 216,07856</td>
<td>rₚₜₐₚ [W] = 86,16</td>
</tr>
<tr>
<td>Carico totale qₚ [W]</td>
<td>302,23856</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ore 16:00</td>
<td>Tae,max °C</td>
<td>33,67 °C</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K [W/m²K]</td>
<td>S [m²]</td>
<td>Δtₑₑ [K]</td>
<td>fb</td>
<td>qₑₑ, max [W]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parete Sud</td>
<td>0,28</td>
<td>8,9</td>
<td>14,1</td>
<td>35,1372</td>
<td>0,61</td>
<td>71,09</td>
<td></td>
</tr>
<tr>
<td>Finestre Sud</td>
<td>4,5</td>
<td>0,5</td>
<td>11,67</td>
<td>26,2575</td>
<td>0,98</td>
<td>15,07</td>
<td></td>
</tr>
<tr>
<td>Parete Nord</td>
<td>0,28</td>
<td>11,3</td>
<td>7,4</td>
<td>23,4136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finestre Nord</td>
<td>4,5</td>
<td>0,5</td>
<td>11,67</td>
<td>26,2575</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parete Est</td>
<td>0,28</td>
<td>4,73</td>
<td>7,4</td>
<td>9,80056</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parete Ovest</td>
<td>0,28</td>
<td>4,73</td>
<td>21,9</td>
<td>29,00436</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copertura</td>
<td>0,28</td>
<td>12,3</td>
<td>23,6</td>
<td>81,2784</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>qₑₑ [W] = 317,30912</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ore 17:00</th>
<th>Tae,max °C</th>
<th>32,9 °C</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K [W/m²K]</td>
<td>S [m²]</td>
<td>Δtₑₑ [K]</td>
</tr>
<tr>
<td>Parete Sud</td>
<td>0,28</td>
<td>8,9</td>
<td>10,8</td>
</tr>
<tr>
<td>Finestre Sud</td>
<td>4,5</td>
<td>0,5</td>
<td>10,9</td>
</tr>
<tr>
<td>Parete Nord</td>
<td>0,28</td>
<td>11,3</td>
<td>0,9</td>
</tr>
<tr>
<td>Finestre Nord</td>
<td>4,5</td>
<td>0,5</td>
<td>10,9</td>
</tr>
<tr>
<td>Parete Est</td>
<td>0,28</td>
<td>4,73</td>
<td>7,4</td>
</tr>
<tr>
<td>Parete Ovest</td>
<td>0,28</td>
<td>4,73</td>
<td>24,7</td>
</tr>
<tr>
<td>Copertura</td>
<td>0,28</td>
<td>12,3</td>
<td>25,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ore 18:00</th>
<th>Tae,max °C</th>
<th>31,69 °C</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K [W/m²K]</td>
<td>S [m²]</td>
<td>Δtₑₑ [K]</td>
</tr>
<tr>
<td>Parete Sud</td>
<td>0,28</td>
<td>8,9</td>
<td>8,5</td>
</tr>
<tr>
<td>Finestre Sud</td>
<td>4,5</td>
<td>0,5</td>
<td>9,69</td>
</tr>
<tr>
<td>Parete Nord</td>
<td>0,28</td>
<td>11,3</td>
<td>6,4</td>
</tr>
<tr>
<td>Finestre Nord</td>
<td>4,5</td>
<td>0,5</td>
<td>9,69</td>
</tr>
<tr>
<td>Parete Est</td>
<td>0,28</td>
<td>4,73</td>
<td>7,4</td>
</tr>
<tr>
<td>Parete Ovest</td>
<td>0,28</td>
<td>4,73</td>
<td>26,3</td>
</tr>
<tr>
<td>Copertura</td>
<td>0,28</td>
<td>12,3</td>
<td>24,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carico totale qₑₑ [W]
Con l’obiettivo di valutare il carico massimo, sono stati studiati i carichi termici dalle ore 9:00 alle 19:00. Si può osservare che il carico massimo si manifesta alle ore 16:00 con il valore:

\[q_{p,\text{max}} = 317,3 \text{ W}\]

5.8.3. Scambi termici del corpo umano con l’ambiente e condizioni di benessere

Dal punto di vista termodinamico il corpo umano può essere visto come un sistema complesso, il quale interagisce con l’ambiente esterno tramite scambi di massa e di energia. Esso richiede che sia soddisfatta una condizione essenziale: per garantire i processi vitali deve infatti mantenere la propria temperatura interna ad una valore di circa 37°C. Dal punto di vista energetico globale, al corpo umano viene fornito un flusso di energia chimica sotto forma di sostanze nutritive e vengono scambiati con l’ambiente circostante flussi termici e potenza meccanica, la differenza tra i quali istante per istante corrisponde ad un flusso di energia immagazzinata dal corpo.

Gli scambi termici \(q_t\) che il corpo umano può assicurare con l’ambiente che lo circonda possono essere distinti in scambi che avvengono alla superficie esterna del corpo, \(q_{te}\), e scambi che si attuano nel cavo polmonare, \(q_{t}\). Gli scambi possono essere distinti in scambi sensibili e scambi latenti, a seconda che essi avvengano per effetto di una differenza di temperatura, oppure, a temperatura costante, per effetto di un potenziale di tipo diverso.

Scambio termico sensibile alla superficie esterna del corpo umano, \(q_{se}\)

Questo flusso si può distinguere nelle tre componenti, dovute alla conduzione, \(q_{h}\), alla convezione, \(q_{c}\), e all’irraggiamento, \(q_{r}\). Risulta quindi:

\[q_{se} = q_{h} + q_{c} + q_{r}\]

Il contributo dovuto alla conduzione, per effetto delle piccole superfici di contatto e di appoggio tra corpo e ambiente, viene normalmente trascurato rispetto agli altri termini.
Lo scambio dovuto alla convezione viene valutato mediante la relazione:

\[q_c = \alpha_c S_c (t_s - t_e) \]

dove \(S_c \) è la superficie a temperatura \(t_e \), lambita dall’aria a temperatura \(t_s \) e con \(\alpha_c \) si indica il coefficiente di convezione. La superficie di scambio assume valore minimo per alla superficie corporea \(S_c \) nel caso di corpo nudo e viene opportunamente aumentata dalla presenza degli abiti; di solito viene espressa tramite un parametro \(f \), definito “fattore di vestiario” che assume sempre valori maggiori di 1:

\[S_c = f_v S_p \]

La superficie corporea, per persone che in media misurano 1,75 m di altezza per 70 kg di peso, vale 1,85 m\(^2\). La temperatura media della superficie di scambio corrisponde alla temperatura della pelle per il corpo nudo, mentre assumerà valori minori se il corpo è coperto da abiti di diversa estensione e resistenza termica.

Il coefficiente di convezione \(\alpha_c \) che governa lo scambio termico è funzione della differenza di temperatura tra superficie e fluido, e della velocità del fluido. In generale, per persone in piedi, lo si calcola dalla relazione:

\[\alpha_c = 2,38 (t_e - t_s)^{0,25} \quad (\text{W/m}^2\text{K}) \]

All’interno di una struttura ospedaliera il personale addetto e i pazienti presenti svolgono attività di ogni genere, dal riposo all’attività frenetica di emergenza. Generalmente tutti sono abbigliati, a differenza dei pazienti che in alcune circostante, come ad esempio di visita medica o di cura, si possono trovare anche del tutto sprovviste di vestiario.

Ricordando che la temperatura di progetto in fase invernale è 20°C, per persone vestite, si fa riferimento ad una \(t_e = 25 \) °C, e si ottengono i seguenti valori di flussi termici sensibili per convezione:

- persona in piedi \(q_c = 41,62 \) W
- persona semisdraiata \(q_c = 36,07 \) W
- persona sdraiata \(q_c = 31,45 \) W
- persona sedute su sedie \(q_c = 29,60 \) W
- persona in cammino \(q_c = 88,39 \) W

Per i pazienti nudi in fase di visita o cura, la \(t_e = 37 \) °C:

- paziente semisdraiato \(q_c = 122,65 \) W
- paziente sdraiato \(q_c = 106,93 \) W
Lo scambio per irraggiamento tra il corpo umano e le superfici che lo racchiudono viene calcolato con la relazione:

\[q_r = \sigma_n F_{12} S_{\text{er}} (T_{mr}^4 - T_e^4) \]

dove \(T_e \) è la temperatura assoluta della superficie del corpo (pari ancora a quella della pelle per un corpo nudo e a quella media dei vestiti e della pelle per un corpo vestito), mentre \(T_{mr} \) è la temperatura media radiante assoluta delle superfici che circondano il corpo; \(F_{12} \) è il fattore di radiazione mutua, che vale circa 0,95 per persone vestite e 1 per persone nude. \(S_{\text{er}} \) vale circa 0,7 per persone in piedi e si riduce per posizioni più raccolte. Con \(\sigma_n \) si indica la costante di radiazione del corpo nero pari a \(5,6697 \times 10^{-8} \) W/m\(^2\)K\(^4\).

Spesso ai fini del calcolo la precedente relazione viene espressa anche come:

\[q_r = \alpha_r S_e (T_{mr} - T_e) \]

con \(\alpha_r \) che vale 3,9 W/m\(^2\)K.

Quindi risulta che ogni persona cede per radiazione un flusso termico di circa \(q_r = 13,65 \) W.

Scambio termico latente alla superficie esterna del corpo, \(q_{le} \)

Tale scambio termico corrisponde all’evaporazione, a spese del calore del corpo, di una certa quantità di sudore, alla temperatura costante \(t_p \). Il fenomeno si distingue in due meccanismi, quello dovuto all’evaporazione per diffusione attraverso la pelle, relativa normalmente a tutta la superficie corporea \(S_p \), e quello relativo all’evaporazione superficiale per una superficie compresa tra 0 e \(S_p \).

In generale, per un individuo vestito in quiete in un ambiente di 20°C e 50 % di umidità relativa, lo scambio termico dovuto a questi fenomeni incide di circa \(q_{le} = 15 \) W.

Scambio termico totale \(q_r \)

Dalla somma di tutti i contributi fin qui determinati è possibile ottenere i valori di scambio termico totale per una persona in differenti posizioni:

- **per persone vestite:**
 - persona in piedi \(q_r = 70,27 \) W
 - persona semisdraiata \(q_r = 62,72 \) W
 - persona sdraiata \(q_r = 60,10 \) W
 - persona sedute su sedie \(q_r = 58,25 \) W
 - persona in cammino \(q_r = 117,04 \) W

- **per i pazienti nudi in fase di visita o cura:**
– paziente semisdraiato \[q_T = 151,30 \text{ W} \]
– paziente sdraiato \[q_T = 135,58 \text{ W} \]

Alla luce dei risultati ottenuti, è opportuno sviluppare alcune riflessioni utili all’individuazione dei carichi termici di progetto definitivi. In questa sede ci di limita a dare un indirizzo progettuale generico ed indicativo, che volta per volta andrà approfondito sulla base della conoscenza del sito di installazione dell’ospedale da campo, dei corrispondenti parametri climatici, e delle esigenze sanitarie reali che determinano con maggior cura il numero di personale medico e di possibili pazienti.

5.8.4. Impianti di climatizzazione

Con il termine di “impianti di climatizzazione” ci si riferisce a quegli impianti che consentono di controllare non solo i parametri termici del comfort ambientale, ma anche quelli igrometrici e di ventilazione. Gli impianti di climatizzazione sono destinati a funzionare lungo tutto l’arco dell’anno e devono quindi esplicare azioni diverse a seconda delle specifiche necessità degli ambienti: ventilazione, riscaldamento, raffreddamento, umidificazione e deumidificazione.

Sulla base del comfort ambientale e sulle corrispondenti indicazioni normative, all’interno di un ospedale da campo si possono distinguere due categorie di ambienti:

– ambienti in cui le condizioni termoigrometriche non sono determinanti nei confronti delle attività svolte e quindi la normativa non fissa parametri precisi, se non quelli dettati dalla buona consuetudine;

– ambienti in cui le condizioni termoigrometriche sono di fondamentale importanza rispetto alle attività svolte e i relativi requisiti sono determinati dalla normativa.

All’interno della prima categoria ricadono i seguenti spazi funzionali:

– triage medico
– pronto soccorso
– laboratorio
– radiologia
– degenze

All’interno della seconda categoria ricadono gli spazi in cui si richiede un controllo stringente del comfort ambientale, principalmente per motivi medici e igienico-sanitari. Appartengono quindi a tale categoria i seguenti spazi funzionali:
– reparto di rianimazione e terapia intensiva
– gruppo operatorio
– farmacia
– servizio di sterilizzazione

Poiché queste due categorie presentano necessità ambientali molto diverse tra loro, si è stabilito di adottare due soluzioni impiantistiche distinte per il controllo del comfort interni: per gli ambienti della prima categoria si utilizzano climatizzatori autonomi installati all’interno del modulo jolly impiantistico collegato a ciascuno spazio; per gli ambienti con maggiori restrizioni, invece, si predispone un modulo base a centrale di trattamento aria, la quale contenga tutti i dispositivi atti al controllo dei suddetti parametri.

Climatizzatori autonomi

Con tale termine ci si riferisce normalmente a dispositivi impiantistici disponibili in commercio come unità complete e dotate di un gruppo frigorifero, di scambiatori per il trattamento dell’aria e di uno o due ventilatori (uno per la circolazione dell’aria, ed uno per il condensatore del gruppo frigorifero, se questo è raffreddato ad aria). La progettazione è stata indirizzata verso la scelta di questa tipologia di dispositivi in seguito alla valutazione dei seguenti vantaggi:

– i dispositivi sono molto comuni e possono essere riparati o eventualmente rimpiazzati velocemente e a costi ridotti;
– le dimensioni sono molto compatte e il peso è limitato, così da facilitare l’installazione e il trasporto integrato al modulo impiantistico;
– il campo di applicazione è molto ampio e consente di avere dispositivi anche molto diversi tra loro per caratteristiche prestazionali; in questo modo ogni ambiente può essere controllato e regolato autonomamente secondo le esigenze;
– sono unità semplici a sola aria che si immettono direttamente nell’ambiente evitando la presenza di condotte e altri dispositivi di dispersione;
– la stessa unità garantisce il funzionamento sia estivo che invernale, grazie all’utilizzo a pompa di calore invertendo il ciclo frigorifero;
– l’alta efficienza energetica che le nuove tecnologie hanno apportato a questo sistema.

Qualunque sia la potenzialità di progetto del climatizzatore, la soluzione proposta è quella a “split-system”: è composta da una unità di trattamento aria da installare all’interno dell’edificio (nel caso specifico di studio sarà all’interno del modulo jolly ma in contatto diretto con il modulo base) costituita dall’ evaporatore dotato di un proprio ventilatore, e da una unità motocondensante da installare all’esterno (nel caso in esame troverà anch’esso alloggio nel vano tecnico ma con contatto
diretto con l’esterno), nella quale trovano posto il condensatore, il compressore, l’organi di laminazione ed il ventilatore di raffreddamento. Le due unità sono collegate da tubazioni flessibili di una certa lunghezza, nel cui interno circola il fluido frigorifero.

![Schema tipo di impianto di climatizzazione autonomo per degenza.](image)

Centrale di trattamento aria

Per il controllo dei complessi parametri ambientali degli spazi con più elevati requisiti di comfort si è stabilita quindi la progettazione di una centrale termica completa, la quale fornisca a tutti i suddetti spazi le prestazioni richieste. Si adotta un tipo di impianto di climatizzazione a sola aria: lo scambio termico e lo scambio di massa, richiesti per mantenere le volute condizioni termoigrometriche nell’ambiente, vengono realizzati mediante una portata di aria che, immessa in condizioni opportune, viene estratta dopo che, per scambi termici e miscelazione, si sia portata alle condizioni ambientale; inoltre, facendo sì che tale portata sia, in tutto o in parte, costituita da aria esterna, anche le esigenze di ventilazione possono essere facilmente soddisfatte.

La scelta di questo tipo di impianto è stata indirizzata dai seguenti vantaggi:

- possibilità di localizzare i principali componenti di impianto in un’unica centrale di trattamento aria;
- completa assenza di tubazioni, cavi elettrici e filtri negli ambienti condizionati;
- buona possibilità di controllo delle condizioni ambientali;
- facilità di ricorso all’impiego di recuperatori.

Le condizioni al contorno sono molto variabili, sia all’interno di uno stesso locale nell’arco del tempo, sia in locali diversi nello stesso periodo. Per questo motivo, e per mancanza di competenze specifiche in materia, si rimanda la progettazione dettagliata dell’impianto in altra sede. Tuttavia, in fase
preliminare, si ritiene opportuno fornire dei suggerimenti nell’individuazione di un sistema impiantistico compatibile con le scelte architettoniche e composite del complesso per ospedale da campo. Si ritiene che l’impianto più in linea con le soluzioni fin qui adottate sia quello a “canale singolo”, eventualmente integrato da un regime di portata d’aria variabile qualora si volesse differenziare e controllare con maggior precisione la portata d’aria in ogni locale. L’impianto a canale singolo è l’impianto a tutta aria più semplice, così denominato perché un solo canale, opportunamente ramificato, connette la centrale di trattamento aria con i vari ambienti.

![Schema di impianto a tutta aria a canale singolo.](image)

La portata introdotta nei vari ambienti potrà in generale essere diversa, ma le condizioni di introduzione sono le stesse per tutti. D’altra parte, l’aria immessa in tutti gli ambienti ha lo stesso contenuto di aria esterna, determinato dalla miscelazione che avviene in centrale. Gli ambienti che in precedenza sono stati individuati come di categoria due, appartengono quindi alla medesima “zona climatizzata”.

La centrale di trattamento aria è costituita, nell’ordine, da una prima batteria di riscaldamento sensibile, da un saturatore adiabatico, da una batteria di raffreddamento con deumidificazione e da una seconda batteria di riscaldamento sensibile; sempre in centrale sono collocati anche i ventilatori (di mandata ed eventualmente di ricircolo) e la sezione di miscela con i dispositivi di filtrazione. È facile dimostrare che, utilizzando una centrale di questo tipo, opportunamente dimensionata, è possibile far sì che in ogni stagione dell’anno una miscela di aria esterna ed aria ricircolata sia portata alle volute condizioni di immissione.
Un particolare approfondimento va discusso per le condizioni ambientali interne in reparto operatorio. Questo particolare locale sanitario necessita infatti di condizioni di comfort straordinarie, descritte nella Linee Guida ISPESL 2009, in cui si stabilisce che per il reparto operatorio è obbligatorio adottare un impianto di ventilazione e condizionamento a contaminazione controllata (VCCC). L’impianto di ventilazione e condizionamento a contaminazione controllata del reparto ha le seguenti funzioni:

- mantenere condizioni termoigrometriche idonee allo svolgimento delle attività previste, conciliando le esigenze di benessere del personale con quelle primarie dell’utente;
- fornire una aerazione agli ambienti idonea a mantenere le concentrazioni ambientali di agenti anestetici, e/o di altri inquinanti gassosi, al di sotto dei limiti prefissati; la presenza di un impianto VCCC non elimina, in ogni caso, la necessità di un sistema di evacuazione degli agenti anestetici e il corretto uso e manutenzione del sistema di anestesia;
- contenere la concentrazione del particolato e della carica microbica aeroportata, in modo tale da non recare danno alla salute dei soggetti presenti nell’ambiente della sala operatoria;
- mantenere determinati gradienti di pressione tra i vari ambienti costituenti il reparto operatorio.

Per i motivi di igiene molto stringenti, le stesse Linee Guida, danno indicazioni sui dispositivi di filtrazione, che dovranno essere aggiunti alla catena di componenti della centrale di trattamento aria. Normalmente si hanno tre stadi di filtrazione:

- filtrazione primaria con efficienza EU3/EU4 interessante l’aria esterna;
– filtrazione secondaria EU8/EU9 interessante tutta l’aria in circolo;
– filtrazione finale H13/H14 interessante tutta l’aria in circolo.

Figura 5.8.4 — 04: Dispositivi di filtrazione.

Queste tre tipologie di filtri presentano perdite di carico e tempi di intasamento teorico diversi. Indicativamente, se l’impianto è stato correttamente realizzato ed è ben gestito, si ha:

– Filtri EU3/EU4: Perdita di carico iniziale 60 Pa

 Perdita di carico finale 120 Pa

 Tempo di intasamento teorico 20÷50 giorni

– Filtri EU8/EU9: Perdita di carico iniziale 120÷150 Pa

 Perdita di carico finale 250÷300 Pa

 Tempo di intasamento teorico 6÷10 mesi

– Filtri H13:
 Perdita di carico iniziale 250÷280 Pa

 Perdita di carico finale 350÷500 Pa

 Tempo di intasamento teorico 1÷2 anni

– Filtri H14:
 Perdita di carico iniziale 120÷130 Pa

 Perdita di carico finale 350÷500 Pa

 Tempo di intasamento teorico 3÷4 anni

L’efficienza del terzo stadio filtrante deve essere in ogni caso > 99,97% quando misurata in accordo alla norma UNI EN 1822:2002. I filtri del terzo stadio devono essere l’ultimo elemento della distribuzione dell’aria; devono essere allocati all’interno dei locali, o del reparto, ventilati subito prima delle griglie di immissione. Manometri differenziali devono essere installati ai capi degli stadi
filtranti per monitorarne l’intasamento. La durata di esercizio dei filtri del terzo stadio dovrà essere la seguente: sostituzione del filtro al raggiungimento delle perdite di carico limite indicate dalla scheda tecnica; sostituzione del filtro alla scadenza indicata dal fabbricante nella scheda tecnica anche in condizioni di perdite di carico nei limiti (ad esempio la Norma DIN 1946-4 richiede la sostituzione del filtro almeno dopo sette anni dalla sua installazione).

Quindi i dispositivi di filtraggio a tre stadi devono essere inseriti all’interno della centrale di trattamento aria, ad eccezione del filtro assoluto finale che trova collocazione in coda alla conduttura, nell’immediata prossimità di immissione d’aria nel locale.

![Schema tipo di centrale trattamento aria.](image)

Lo schema di distribuzione dell’aria è riassunto dal seguente elaborato grafico, presente anche in allegato nel corretto rapporto di scala. La centrale di trattamento aria viene collocata in prossimità degli ambienti che necessitano di condizioni particolari di comfort; è opportuno che già in fase di composizione dell’agglomerato gli ambienti di tale categoria vengano concentrati in determinate zone per fare in modo che le condotte siano di estensione ridotta e non risentano di forti perdite di carico. Inoltre è possibile regolare la portata d’aria di ogni locale attraverso l’inserimento di adeguate valvole, che consentono così il risparmio energetico qualora uno o più ambienti non dovessero essere utilizzati.
5.8.5. Impianto idro-sanitario

In questo paragrafo viene trattato il tema degli impianti idro-sanitari per l’ospedale da campo. Nel caso particolare verranno trattati unicamente quelli interni al fabbricato, senza considerare gli impianti di distribuzione dell’acqua e di raccolta degli scarichi all’esterno dell’edificio. Infatti, la rete degli acquedotti e la rete delle fognature dovranno essere valutate caso per caso in relazione al sito di collocamento della struttura ospedaliera, qualora tali reti siano presenti e correttamente funzionanti nel periodo successivo all’evento catastrofico. Più in generale, perseguiendo il principio di autosufficienza di un ospedale da campo, la riflessione progettuale mira ad evitare l’utilizzo di reti esterne ma di trovare soluzioni che rendano il fabbricato indipendente da queste.

Consumi di acqua

La conoscenza della quantità di acqua consumata da parte dell’utenza in un certo periodo di tempo è il dato necessario per stabilire l’approvvigionamento e le eventuali riserve di acqua per i singoli impianti. Da questi dati si potrà anche risalire alle portate massime richieste durante i periodi di massimo consumo, portate che serviranno al dimensionamento della rete di distribuzione.

Con riferimento ad alcuni degli apparecchi sanitari utilizzati, si può assumere che ad ogni volta che essi vengano usati corrisponda un consumo medio d’acqua rispettivamente pari a:

– lavabo 10 l
– bidet 10 l
– vaso 15 l
– doccia 50 l
– vasca da bagno 200 l

Talvolta i consumi vengono riferiti a valori medi giornalieri per singolo apparecchio e per singolo utente o vengono riferiti ad altre unità specifiche, ad esempio:

– lavello di cucina 15 l/(g pers)
– lavaggio biancheria 25 l/(g pers)
– lavaggio stoviglie 15 l/(g pers)

Da questi consumi si può facilmente risalire ad un consumo medio giornaliero per persona che può essere ottenuto come somma di alcuni dei consumi specifici. Il consumo medio giornaliero di una persona può essere così stimato:

– pulizie personali giornaliere 60 l/(g pers)
– usi igienici 45 l/(g pers)
– doccia 50 l/(g pers)
– vitto e lavaggio stoviglie 20 l/(g pers)
– lavaggio biancheria 30 l/(g pers)

Consumo totale: 205 l/(g pers)

Tuttavia, negli edifici pubblici, all’interno dei quali il consumo di acqua tende ad essere maggiore per la presenza di servizi e apparecchiature aggiuntivi, spesso tali consumi medi giornalieri vengono dati in base al tipo di utenza, come segue:

– caserme 300 l/(g pers)
– scuole 50 l/(g pers)
– prigioni 50 l/(g pers)
– ospizi 300 l/(g pers)
– ospedali 600 l/(g pers)
– alberghi 400 l/(g pers)
– uffici 50 l/(g pers)

Nel caso in esame di struttura ospedaliera il consumo medio giornaliero per utente può arrivare quindi a 600 l/(g pers).

Dai valori di consumo giornaliero medio si può anche risalire ai punti di massimo consumo che si possono verificare nel corso dell’anno. Per ottenere i valori massimi si operano usualmente gli aumenti percentuali sul valore medio disponibile di seguito indicati:

– +30% per il mese di massimo consumo; i mesi di massimo consumo vengono ritenuti quelli estivi, data la maggiore necessità di pulizia personale dovuta all’aumentata traspirazione, e dato il maggior uso di lavaggi di cose e superfici.

– +20% per i giorni di massimo consumo; tali giorni, valutati nell’arco settimanale, sono quelli in cui i servizi erogati operano a ritmi più elevati (in un ospedale da campo i giorni di più intensa operatività sono quelli immediatamente successivi alla catastrophe, poi il regime diventa pressoché costante durante tutta la settimana).

– +50% per le ore di massimo consumo; queste ore sono usualmente quelle che precedono le ore centrali del mattino, pomeriggio e sera, ore in cui si svolgono le attività proprie dei giorni non lavorativi.

Tali maggiorazioni sono cumulative, per cui risulta che per l’ora di massimo consumo del giorno e del mese di massimo consumo, cui corrisponde la punta di consumo annuale, si ha una maggiorazione del 234% sul valore medio, spesso arrotondato al 240%.

Il consumo massimo di punta per l’ospedale da campo risulta quindi di 60 l/h.

Acqua calda sanitaria

Parte dell’acqua che viene distribuita all’interno degli edifici viene utilizzata come acqua calda ad una temperatura che varia a seconda dell’uso, ma che rimane compresa tra 40 e 90°C. Tuttavia, l’interesse progettuale si rivolge principalmente all’acqua utilizzata per usi sanitari, per la quale si stabilisce normalmente una temperatura di utilizzo di 40°C.

Per quanto riguarda il fabbisogno di acqua calda negli edifici conviene riferirsi ai dati già esposti per l’acqua potabile in genere, utilizzando opportune percentuali per distinguere le quantità utilizzate come acqua calda. Facendo riferimento ai consumi medi per persona, si può statisticamente affermare che circa il 60% del fabbisogno totale viene utilizzato come acqua calda a 40°C. Quindi con un consumo di punta di 60 l/h per persona, come visto in precedenza per ospedali, si ritiene che 36 l/h siano utilizzati come acqua calda e 24 l/h come acqua fredda.

Somministrazione dell’acqua all’utenza

214
La somministrazione dell’acqua all’utenza si effettua normalmente prelevandola da un acquedotto. Come già anticipato, però, la struttura ospedaliera campale deve garantire la sua operatività anche nel caso in cui le reti non siano capaci di alimentare il fabbisogno della struttura, per danneggiamento o malfunzionamento. Per questo motivo, almeno in un primo periodo, il sistema si somministrazione dell’acqua all’utenza in un ospedale da campo deve trovare una soluzione alternative.

La soluzione studiata è un sistema di serbatoi di accumulo d’acqua direttamente collegati alle zone sanitarie da servire. Questi serbatoi sono costruiti di opportuno materiale che non modifichi le proprietà organolettiche dell’acqua erogata. I serbatoi di riserva devono dunque far fronte temporaneamente ad una cessata alimentazione della rete. Essi dovrebbero essere dimensionati con una capacità pari alla quantità d’acqua che si deve erogare all’utenza nel tempo di possibile mancanza di alimentazione: per l’ospedale da campo questo periodo dovrebbe corrispondere al suo stesso ciclo di permanenza in sito, ma potendo essere questo piuttosto prolungato il riferimento può anche essere di 15 giorni, come stabilito da normativa per l’autosufficienza di ospedali da campo.

Per ragioni di praticità ogni serbatoio viene nella realtà dimensionato in modo tale da essere contenuto all’interno di un modulo jolly e trasportato congiuntamente a questo. La capacità del modulo jolly permette di inserire serbatoi verticali fino a 2000 litri, come mostrato nella figura successiva. All’interno dello stesso modulo viene mantenuto lo spazio necessario all’installazione di una pompa e di uno scaldabagno elettrico per il riscaldamento dell’acqua sanitaria.

I dispositivi sanitari sono collocati all’interno di un ulteriore modulo jolly, e vengono collegati al modulo di supporto con condotte in PVC. Il collegamento deve essere effettuato in loco, così come le opere di scarico verso l’esterno di cui non si è sviluppata qui la trattazione.

![Diagram](image-url)
Figura 5.8.5 – Q1: Schema idro-sanitario ed esempio di serbatoio di accumulo acqua.
5.8.6. Impianto illuminotecnico

La disposizione di un corretto impianto illuminotecnico all’interno del modulo per ospedale da campo fa riferimento alla vigente norma UNI EN 12464-1 su “Illuminazione dei Luoghi di Lavoro”. Seguendo i criteri progettuali qui definiti, si afferma che al fine di ottenere una corretta illuminazione è necessario soddisfare tre esigenze fondamentali, quali il comfort visivo (sensazione di benessere), la prestazione visiva (svolgimento del compito anche in situazioni difficili e prostratate) e la sicurezza.

In aggiunta, essendo l’ospedale un luogo di lavoro particolare, i parametri di luminosità devono seguire gli standard per gli edifici di cura, individuati dalla normativa stessa: ogni funzione e attività richiede i propri valori di illuminamento medio E_m per garantire il comfort visivo e lo svolgimento delle attività stesse. Si può notare come le attività diagnostiche di visita e di trattamento medico, come per le sale operatorie, i valori siano i più elevati, attestandosi dai 500 ai 1000 lux.

Poiché il modulo è progettato per ospitare qualunque attività di un ospedale da campo, la progettazione dell’impianto tiene come riferimento questi valori di illuminazione media per locale; per le attività che richiedono illuminazione più tenue questa sarà soddisfatta tramite la regolazione dell’intensità luminosa dei dispositivi scelti.

![Tabella 1.7: Edifici di cura](image)

Figura 5.8.6 – 01: Norme illuminotecniche per edifici di cura.
Le caratteristiche e il numero di punti luce per un singolo modulo sono stati calcolati seguendo le indicazioni fornite dalla casa produttrice Zumtobel. La progettazione viene indirizzata su dispositivi lineari a tecnologia LED, a luce indiretta, per garantire completa illuminazione al locale e salvaguardare il comfort visivo dei pazienti. La scelta ricade sulla tipologia “Linaria LED”, per ragione di dimensioni molto compatte (1015 x 30 x 67), che permettono quindi di inserirsi nel pacchetto di copertura ribaltabile senza essere danneggiate, e per il peso ridotto, 1,4 kg. Il punto luce si inserisce in un supporto rigido in profilo di alluminio, che viene fissato alle travi di copertura del modulo. L’ottica primaria e secondaria garantiscono una perfetta dissoluzione dei punti luce LED, con luce indiretta che dà luminosità al soffitto. Il supporto è ad alta efficienza energetica per la sostenibilità ecologica e la convenienza economica. I dati tecnici di illuminazione sono:

Potenza totale: 28.2 W
Flusso luminoso apparecchio: 2310 lm.
Efficienza apparecchio: 82 lm/W

Per garantire un minimo di 500 lux per locale, come stabilito in precedenza, il numero di punti luce Linaria LED da installare in un singolo modulo di 12 m² è di 8 unità. Si noti che le indicazioni fanno riferimento a locali con soffitti di 3 m (linea rossa del grafico), mentre il modulo di progetto prevede il
collocamento dei punti luce a soli 2078 mm dalla quota di calpestio: l’illuminazione di conseguenza risentirà di un notevole aumento dei valori medi, e coprirà quindi anche il fabbisogno delle attività che richiedono 1000 lux.

Successivamente al calcolo sono stati prodotti gli elaborati grafici necessari alla figura dell’impiantista per il posizionamento dei punti luce, degli interruttori e dei cavi elettrici. Nella opportuna scala di rappresentazione 1:20 è stata realizzata la pianta del soffitto (figura sopra) e una sezione trasversale (figura in basso). Inoltre dalla redazione di uno schema assonometrico è possibile comprendere con facilità come l’impianto sia composto da 2 file in parallelo, ciascuna avente 4 punti luce in serie. Il circuito rimane in un primo momento aperto, poiché verrà chiuso solamente in fase operativa con la connessione alla rete elettrica esterna.
5.8.7. Impianto fotovoltaico

In questo paragrafo viene sviluppata una riflessione sui consumi di energia elettrica di un singolo modulo per ospedale da campo, e sul metodo di approvvigionamento di tale energia. Infatti, i punti luce, gli impianti di climatizzazione autonoma, e tutti i dispositivi medici, necessitano di una costante somministrazione di energia elettrica. Oltre a calcolare con una discreta precisione il fabbisogno, acquisisce notevole importanza anche il metodo con cui fornire l’energia all’edificio. In uno scenario colpito da evento catastrofico, molto spesso, le reti infrastrutturali risultano danneggiate e momentaneamente fuori servizio; per questo motivo ad un ospedale da campo viene richiesta una certa autonomia anche in termini energetici.

La soluzione evidenziata dalla studio dello stato dell’arte è l’utilizzo di gruppi elettrogeni, solitamente collocati all’esterno dell’edificio. Questa soluzione rimane la più indicata, perché di rapido impiego e valida in ogni zona climatica. Volendo però evidenziare uno svantaggio, si può affermare che l’utilizzo di un gruppo elettrogeno è sempre subordinato alla fornitura di carburante per poter funzionare.

Si propone, come soluzione alternativa alla precedente e nei casi in cui le condizioni climatiche lo permettano, di integrare al modulo per ospedale da campo un impianto fotovoltaico, capace di coprire totalmente o parzialmente il fabbisogno energetico dell’edificio.

Consumi di energia elettrica

Per prima cosa è stato indagato il possibile consumo di energia elettrica di un singolo modulo. Considerata l’impossibilità di determinare univocamente i dispositivi installati in un modulo, a causa della versatilità che questo offre, i consumi sono calcolati in via indicativa come somma dei seguenti contributi:

![Tabella dei consumi di energia elettrica](image)

Figura 5.8.7 – 01: Tabella dei consumi di energia elettrica.

Si ritiene che in ogni modulo siano presenti gli 8 punti luce “Linaria LED”, come da progetto, e almeno un computer con monitor. La stampante laser e il frigorifero rappresentano due dispositivi rispettivamente a basso e medio consumo di energia, in media sempre presenti tra le dotazioni
sanitarie. Il condizionatore viene inserito per evidenziare l’alto impatto sui consumi, ma va ricordato che non è necessario un condizionatore per ogni modulo, vista la superficie di soli 12 m².

Per questo motivo la stima risulta effettuata per eccesso, con un margine ampio che copre i consumi di eventuali dispositivi medici aggiuntivi. Il consumo annuale totale di un singolo modulo per ospedale da campo è considerato di 4150 kWh. I consumi tengono in considerazione la durata di attivazione dei singoli dispositivi nell’arco della giornata, per ogni mese dell’anno.

Impianto fotovoltaico

Conoscendo le necessità energetiche di un modulo è possibile procedere alla definizione di un campo fotovoltaico e confrontare la quantità di energia prodotta con quella consumata. La progettazione preliminare dell’impianto è stata realizzata con l’ausilio del software di calcolo Bluesol Design.

In prima istanza si stabilisce il sito geografico di riferimento. Anche in questo caso la scelta risulta arbitraria ma ponderata: considerando che l’utilizzo dell’impianto fotovoltaico si rivela vantaggioso in località molto soleggiate, dal database del programma si seleziona la località di Cefalù in provincia di Palermo. Della città sono definiti i parametri climatici desunti dalla norma UNI 10349.

![Parametri climatici di Cefalù.](image)

Si inseriscono poi le informazioni riguardanti il posizionamento dei pannelli fotovoltaici in copertura: il modulo ha copertura piana e i pannelli vengono installati su una sottostruttura di alluminio ad inclinazione regolabile; l’angolo più favorevole rispetto all’orizzontale è di 30° con diretta esposizione a Sud.
In seguito viene definito il modello commerciale dei pannelli fotovoltaici e dell’inverter. Quest’ultimo dispositivo elettrico ha la funzione di trasformazione la corrente continua in alternata per essere immessa nella rete. Ogni impianto fotovoltaico è dotato di uno o più inverter, in funzione del numero dei campi costituenti l’impianto stesso. A bordo dell’inverter o, nel caso di impianto con due o più inverter, con specifica apparecchiatura separata, deve essere prevista una unità di controllo delle caratteristiche dell’elettricità prodotta, quali la frequenza (50 Hz) e la tensione, in sintonia con la rete a cui è connesso l’impianto. Salvo che per i piccoli impianti di tipo domestico, è in genere prevista l’installazione di uno o più trasformatori che adattano la tensione di output degli inverter alla tensione di rete.

Il modello scelto di pannello fotovoltaico, per ragioni di dimensioni e di potenza, è il WS 31050/80 di Wurth Solar, i cui parametri tecnico sono forniti dal software come illustrato nella figura in basso. Le dimensioni di un pannello sono 1205 x 605 x 35 mm, per 13 kg di peso.

L’inverter scelto è della casa Siemens AG, modello SINVERT PVS2400 (50 Hz).
Collegando in serie un gruppo di pannelli viene realizzata la cosiddetta “stringa”, caratterizzata da parametri elettrici adeguatamente definiti. Il parametro base è la tensione di stringa, somma delle tensioni dei singoli pannelli, che deve essere compatibile con l’intervallo di tensione di alimentazione dell’inverter a cui è collegata la stringa stessa. Per motivi di dimensionamento il progetto prevedere per ogni modulo 2 stringhe da 8 pannelli fotovoltaici ciascuno. Lo schema viene rappresentato in un elaborato grafico apposito (descritto nella tav. 06 della sezione impiantistica degli allegati) la cui miniatura viene qui riportata.
Per ottenere un risultato affidabile sulla produzione di energia elettrica si è stabilito di effettuare il calcolo su due moduli base congiunti: in questo modo l’inverter è connesso ad un sistema di 4
La produzione annuale di energia ottenuta per l’impianto così descritto è di 4343 kWh, che corrisponde a circa il 70% del fabbisogno energetico di 2 moduli. Il confronto diventa però più accurato se osservato in relazione alle differenti stagioni dell’anno.

Dal seguente grafico è possibile osservare come solo una parte dell’energia prodotta venga utilizzata per l’autoconsumo, mentre la differenza viene ridistribuita nella rete. Nella stagione invernale la produzione di energia assume valori pari o superiori a quelli di consumo, mentre nel periodo estivo il consumo diventa predominante. Ad ogni modo la quota parte per l’autoconsumo oscilla tra il 40% e il 50% del valore di consumo effettivo.

L’utilizzo di un impianto fotovoltaico si rivela utile nel lungo periodo per abbattere i costi di produzione di energia elettrica, ma non sufficiente a rendere la struttura ospedaliera completamente autonoma dal punto di vista energetico; sarà necessario affiancare altri sistemi di produzione come il sopraccitato gruppo elettrogeno o, quando possibile, connettere il fabbricato alla rete locale.
Figura 5.8.7 – Confronto tra produzione e consumo di energia elettrica.
6. Conclusioni

In conclusione, la nuova soluzione modulare integrata ad alta prefabbricazione risulta capace di ridefinire la risposta sanitaria in situazioni di emergenza. Soddisfa i requisiti di rapidità d’intervento, grazia al semplice e rapido sistema di espansione. Il materiale sanitario viene organizzato in tempo di pace e trasportato congiuntamente al modulo, e rapidamente allestito all’interno del modulo in configurazione operativa. Allo stesso modo gli impianti sono organizzati e installati preventivamente nei moduli fuormisu, che a loro volta vengono velocemente annessi ai moduli base in loco, rendendo la struttura immediatamente operativa. La strategia additiva di composizione ha la capacità di controllare spazialmente e temporaneamente le dimensioni del complesso, adattandolo alla richiesta sanitaria. L’elemento base è stato progettato per resistere alle più aspre condizioni ambientali; di conseguenza l’ambiente medico interno si dimostra protetto e sicuro anche nel lungo periodo.

Un possibile ambito di sviluppo della soluzione studiata è sicuramente quello di adattare con maggior rigore il dimensionamento strutturale ed impiantistico in altri territori del pianeta, così da poterla finalmente rendere disponibile all’uso.
Figura 6 – 03: Pianta e sezione di ospedale da campo.
7. Bibliografia e citazione

Sono elencati i principali riferimenti bibliografici e sitografici di supporto alla tesi:

McLaughlin E., An introduction to portable field hospitals, Rural and remote health, 2008

Stefano Badiali, Gestione tecnico sanitaria nelle marco emergenze, Tipografia Vighierizzoli, Bologna, 2008

Giovanni Casadei e Roberto Bologna, Post-disaster reconstruction : meeting stakeholder interests : proceedings of a conference held at the Scuola di sanità militare, Florence, Italy, 17-19 May 2006

Claudio Claudi de Saint Mihiel, Strategie integrate per la progettazione e produzione di strutture temporanee per le emergenze insediative, CLEAN edizioni, 2003

MCM Bricknell, Organisation and design of regular field hospitals, J R Army Med Corps, 2001

Jorn Utzon, Logbook: v. 5: additive architecture, Edition Blondal, Copenaghen, 2009

Bettanini e Brunello, Lezioni di impianti tecnici vol. 1 e 2, Cleup, 1987

www.cri.it

www.icrc.org

www.protezionecivile.gov.it

www.eda.europa.eu

www.eurovinil.it

www.lanco.eu

www.army-technology.com

www.paginprefabbricati.com
INDICE

- ANALISI FUNZIONALE
- ANALISI DELL'AREA
- SCHEMA PLANIMETRICO
- PROGETTO STRUTTURALE ESECUTIVO
- ABACO DEI PROFILI
- PROGETTO ARCHITETTONICO ESECUTIVO
- PROGETTO COSTRUTTIVO
- MODULO JOLLY
- IMPIANTISTICA
- OSPEDALE DA CAMPO
ANALISI FUNZIONALE

TAV. 01 TRIAGE MEDICO
TAV. 02 TRIAGE MEDICO
TAV. 03 PRONTO SOCCORSO
TAV. 04 LABORATORIO
TAV. 05 RIANIMAZIONE E TERAPIA INTENSIVA
TAV. 06 FARMACIA
TAV. 07 RADIOLOGIA
TAV. 08 REPARTO OPERATORIO
TAV. 09 REPARTO OPERATORIO
TAV. 10 DEGENZE
TAV. 11 SERVIZIO STERILIZZAZIONE
Triage Medico

Sintesi Spazio-Funzione

Triage medico per:
- 30 pazienti ambulatoriali
- 2 pazienti con carrozzina
- 2 postazioni di accettazione
8 Moduli: A = 94 m²

613735
Silvano Moro
Edifici per l'emergenza sanitaria - Studio di soluzioni modulari integrate ad alta prefabbricazione per ospedali da campo

numero tavola
nome tavola
scala

UNIVERSITA' DEGLI STUDI DI PADOVA
DIPARTIMENTO DI INGEGNERIA CIVILE EDILE E AMBIENTALE
LAUREA MAGISTRALE A CICLO UNICO IN INGEGNERIA EDILE-ARCHITETTURA
Relatore: Prof. Turriti Umberto

ANALISI FUNZIONALE - TAV 02
Triage Medico
Reparto operatorio
8 Moduli: A = 94 m²

5678

11356

deposito presidi e strumentario chirurgico

deposito materiale sporco

zona preparazione personale addetto

zona preparazione utenti

sala operatoria

6 bombole per gas medicali
Ø = 203 mm, h = 978 mm

18194

Zona risveglio utenti
1 Modulo: A = 12 m²

6 bombole per gas medicali
Ø = 203 mm, h = 978 mm

2438

5678

1160

2702

7314

2702

2468

515

613735
Silvano Moro
Edifici per l'emergenza sanitaria - Studio di soluzioni modulari integrate ad alta prefabbricazione per ospedali da campo
Degeneze

Analisi dimensionale degli spazi di pertinenza

- *Schema funzionale di degenza singola*
- *Analisi dimensionale degli spazi di pertinenza*

Sintesi Spazio-Funzione

- *Sala di degenza singola per persona con facoltà motore*
- *Sala di degenza singola per persona con disabilità motorie*

Datazione minima di ambienti per la degenza

- 9 m² per posto letto
- Almeno un armadio per materiale pulito 4 posto letto
- Almeno 10% delle stanze di degenza deve ospitare un solo letto

Analisi dimensionale degli elementi di pertinenza

- *Cucina per disabili*
- *Spazio di manovra per carrozzina*
- *Spazio d'uso e di passaggio min. 50 cm*

Dimensioni

- *Sala di degenza A: 12 m²*
- *Sala di degenza A: 12 m²*

Altri

- *6 bombole per gas medicali Ø = 203 mm, h = 978 mm*
- *Carrello per la gestione delle medicazioni*

Universita' degli Studi di Padova
Dipartimento di Ingegneria Civile Edile e Ambientale
Laurea Magistrale a Ciclo Unico in Ingegneria Edile-Architettura

Relatore: Prof. Turriti Umberto

613735
Silvano Moro
Edifici per l'emergenza sanitaria - Studio di soluzioni modulari integrate ad alta prefabbricazione per ospedali da campo

Analis Funzionale - TAV 10
numero tavola: **DEGENZE**
nome tavola: **DEGENZE**
scale: **1:50**
ANALISI DELL'AREA

MAPPA DELLE RECENTI CATASTROFI
SCHEMA PLANIMETRICO

TAV. 01 TRADIZIONE - INNOVAZIONE
TAV. 02 PLANI-VOLUMETRIA PER FASI
PROGETTO STRUTTURALE ESECUTIVO

TAV. ST PE 01 PIEDINO DI FONDAZIONE
TAV. ST PE 02 DETTAGLI PIEDINO - PLINTO PREFABBRICATO
TAV. ST PE 03 DETTAGLI PIEDINO - PICCHETTI / PLATEA
TAV. ST PE 04 PIANTA FONDAZIONI
TAV. ST PE 05 PIANTA BASAMENTO
TAV. ST PE 06 PIANTA COPERTURA
TAV. ST PE 07 SEZIONE 1 - LONGITUDINALE
TAV. ST PE 08 SEZIONI 2, 3, 4 - TRASVERSALI
TAV. ST PE 09 PROSPETTO 1
TAV. ST PE 10 PROSPETTO 2
TAV. ST PE 11 PROSPETTO 3, PROSPETTO 4
plinto prefabbricato

magrone di fondo 5 cm

4 tirafondi Ø12, l = 535 mm
4 tirafondi Ø12, l = 160 mm

4 picchetti d'acciaio Ø6
Edifici per l'emergenza sanitaria - Studio di soluzioni modulari integrate ad alta prefabbricazione per ospedali da campo
613735
Silvano Moro
Edifici per l'emergenza sanitaria - Studio di soluzioni modulari integrate ad alta prefabbricazione per ospedali da campo
Edifici per l'emergenza sanitaria - Studio di soluzioni modulari integrate ad alta prefabbricazione per ospedali da campo
Edifici per l'emergenza sanitaria - Studio di soluzioni modulari integrate ad alta prefabbricazione per ospedali da campo
613735
Silvano Moro
Edifici per l' emergenza sanitaria - Studio di soluzioni modulari integrate ad alta prefabbricazione per ospedali da campo
numero tavola
nome tavola
scala
ABACO PROFILI - 15
TR-021, TR-022
1:10
Edifici per l'emergenza sanitaria - Studio di soluzioni modulari integrate ad alta prefabbricazione per ospedali da campo
PROGETTO ARCHITETTONICO ESECUTIVO

TAV. AR ES 01 PIANATA BASAMENTO
TAV. AR ES 02 PIANATA SOFFITTO
TAV. AR ES 03 SEZIONE 1 - LONGITUDINALE
TAV. AR ES 04 SEZIONE 2, 3, 4 - TRASVERSALI
TAV. AR ES 05 PROSPETTO 1
TAV. AR ES 06 PROSPETTO 2
TAV. AR ES 07 PROSPETTO 3, PROSPETTO 4
TAV. AR ES 08 UNIONE MODULI
TAV. AR ES 09 UNIONE MODULI
TAV. AR ES 10 MODULO CHIUSO
TAV. AR ES 11 RENDER
TAV. AR ES 12 ABACO ELEMENTI DA COSTRUZIONE
MODULO
W = 10,0 m
h = 2052 mm
P.W. 01

PANNELLI PARETE PREFABBRICATI
Tipo: coperti di ultivinile
0.4 mm strato acustico
80 mm spessore polistirolo
0.4 mm strato di acciaio

Posizionare i filtri antipolvere nelle sezioni 1 e 2. Speciale del travaso da parte del pannelli parete.
Edifici per l'Emergenza sanitaria - Studio di soluzioni modulari integrate ad alta prefabbricazione per ospedali da campo
Unione di 2 moduli base sul prospetto lungo

Dettaglio e sistem di montaggio

Cassettelle di pavimentazione con rivestimento superiore autoadesivo

Rivestimento vinilico sp = 3,6 mm
Lastra fibra di legno sp = 30 mm

Pannelli Durpane in legno-cemento sp = 25+18 mm
Isolante lana di roccia

Piedino in comune

Guarnizione di tenuta all'acqua lungo la giunzione delle due coperture

Scossalina di gronda in alluminio

Pannello di copertura prefabbricato
Tipo Isocore di Latronedi

Bullonatura nei punti previsti

613735
Silvano Moro
Edifici per l'emergenza sanitaria - Studio di soluzioni modulari integrate ad alta prefabbricazione per ospedali da campo

UNIVERSITA' DEGLI STUDI DI PADOVA
DIPARTIMENTO DI INGEGNERIA CIVILE EDILE E AMBIENTALE
LAUREA MAGISTRALE A CICLO UNICO IN INGEGNERIA EDILE-ARCHITETTURA
Relatore: Prof. Turriti Umberto

UNIONE MODULI
AR PE 09
numero tavola
nome tavola
scala 1:20, PARTICOLARI 1:5
PROGETTO COSTRUTTIVO

TAV. 01 BAS-1
TAV. 02 BAS-2
TAV. 03 BAS-3
TAV. 04 COP-1
TAV. 05 COP-2
TAV. 06 COP-3
TAV. 07 TELAIO SCORREVOLE 1
TAV. 08 TELAIO SCORREVOLE 2
TAV. 09 TELAIO SCORREVOLE 3
TAV. 10 TELAIO SCORREVOLE 4
TAV. 11 LATTONERIA DI COP-1
TAV. 12 LATTONERIA DI COP-2
TAV. 13 LATTONERIA DI COP-3
MODULO JOLLY

TAV. 01 PIANTA TIPO, SEZIONI, RENDER
IMPIANTISTICA

TAV. 01 CLIMATIZZATORE AUTONOMO
TAV. 02 CENTRALE TRATTAMENTO ARIA
TAV. 03 SCHEMA IMPIANTISTICO ARIA
TAV. 04 SCHEMA IDRO-SANITARIO
TAV. 05 ILLUMINOTECNICO
TAV. 06 FOTOVOLTAICO
Esempio di serbatoio di deposito acqua
Schema di Impianto Fotovoltaico

Parametri Elettrici

- **Potenza Nominali:** 2,56 kWp
- **Massima tensione DC:** 1338,61 V
- **Massima corrente DC:** 5,88 A
- **Minima tensione MPPT:** 884,65 V
- **Massima tensione MPPT:** 1018,61 V
- **Consiglio Elettricità:**
 - **Tensione nominale:** 400,0 V
 - **Connessione:** Bassa tensione - Trifase

Produzione Energia

- **Produzione annuale di energia:** 4343,71 kWh
- **Produttività annua:** 1696,76 kWh/kWp

Edifici per l'emergenza sanitaria - Studio di soluzioni modulari integrate ad alta prefabbricazione per ospedali da campo

Universita' degli Studi di Padova

Dipartimento di Ingegneria Civile Edile e Ambientale

Laurea Magistrale a Ciclo Unico in Ingegneria Edile-Architettura

Relatore: Prof. Turanini Umberto

613735

Silvano Moro

IMPIANTISTICA - TAV. 06

FOTOVOLTAICO

Numero tavola: 3

Scala: 1:20
OSPEDALE DA CAMPO

TAV. 01 PIANTA E SEZIONE DI AGGREGATO
TAV. 02 FOTOMONTAGGI
Vista a volo d'uccello dell'ospedale da campo in una simulazione di scenario colpito da sisma.

Vista frontale dell'ingresso dell'ospedale da campo in una simulazione di scenario africano colpito da siccità o epidemie.