Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Menini, Alessandro (2015) Studio biostratigrafico e risposta paleoecologica delle associazioni a Nannofossili Calcarei durante il Middle Eocene Climatic Optimum (Meco) al Site ODP 929, (Ceara Rise, AtlanticoEquatoriale). [Magistrali biennali]

Full text disponibile come:

PDF (Tesi)


This Master degree thesis aims to perform a biostratigraphic study and a paleoenvironmental reconstruction based on the response of calcareous nannofossils assemblages to the Middle Eocene Climatic Optimum (MECO). The MECO is a global and relatively long - lasting (ca. 500 kyr) warming event, occurred at about 40 Ma (Sexton et al. 2006; Bohaty et al., 2009). Up to now just few data are available on the response of calcareous nannoplankton to this profound climate change. Calcareous nannofossils are useful paleontological proxies because several taxa show different responses to paleoenvironmental conditions, such as temperature and paleofertility (e.g.: Toffanin et al., 2011). Sediments studied here were recovered during ODP Leg 154, in particular, the material comes from Site 929, Hole E. The main scientific objectives of this expedition were to construct a depth transect of coring sites distributed down the north-eastern flank of Ceara Rise (equatorial Atlantic), in order to better constrain the Cenozoic history of deep-water circulation and chemistry. A high resolution calcareous nannofossil biostratigraphy is provided and this results in precise biostratigraphic classification of the studied interval at Site 929E. The succession spans Zone NP16 and the lowermost part of NP17 (Martini, 1971). According to the biozonation of Agnini et al. (2014), the succession spans from Zone CNE14 to Zone CNE15. The biostratigraphic results at Site 929E are generally consistent with other data available from literature (Fornaciari et al., 2010; Agnini et al., 2014), reaffirming the validity of the additional events recently proposed for the middle Eocene (Fornaciari et al., 2010; Agnini et al., 2014). We also documented the presence of samples with no carbonates, which obviously are barren of nannofossils. This interval is likely related to the CCD shoaling globally recorded during the MECO event. This datum with others coming from the same area (e.g.; Site 1260) could in fact serve to depict the history of the CCD evolution of the equatorial Atlantic before, during and after the MECO.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:Biostratigrafia, Paleoecologia, Nannofossili calcarei
Subjects:Area 04 - Scienze della terra > GEO/01 Paleontologia e paleoecologia
Codice ID:50138
Relatore:Agnini, Claudia
Data della tesi:27 November 2015
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Agnini, C., Costa, A., 2014. Calcareous nannofossil changes across the Middle Eocene Climatic Optimum from IODP Site U1410 (NW Atlantic): Preliminary results. Soc. Geol. Italiana, vol. 31/2014, pp.7-8. Cerca con Google

Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., Rio, D., 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low to middle latitudes. Newsletters on Stratigraphy, vol.47/2, pp.131-181. Cerca con Google

Agnini, C., Fornaciari, E., Raffi, I., Rio, D., Tateto, F., Backman, J., Giusberti, L., 2007a. Response of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/Eocene boundary in the Venetian pre-Alps. Marine Micropaleontology. 63, 19-38. Cerca con Google

Agnini, C., Fornaciari, E., Giusberti, L., Grandesso, P., Lancia, L., Luciani, V., Muttoni, G., Pälike, H., Rio, D., Spofforth, D.J.A., Stefani, C., 2011. Integrated bio-magnetostratigraphy of Alano section (NE Italy): a proposal for defining the middle-late Eocene boundary. Geological Society of America Bullettin, vol. 123, pp. 841-872. Cerca con Google

Agnini, C., Muttoni, G., Kent, D, V., Rio, D., 2006. Eocene biostratigraphy and magnetic stratigraphy from Possagno, Italy: The calcareous nannofossil response to climate variability. Earth and Planetary Science Letters, vol. 241, pp. 815-830. Cerca con Google

Aubry, M.-P., 1998. Early Paleogene calcareous nannoplankton evolution: a tale of climatic amelioration. In: Aubry, M.-P., Lucas, S., Berggren, W. (Eds.), Late Paleocene–early Eocene Climatic and Biotic Events in the Marine and Terrestrial Record. Columbia University Press, pp. 158–203. Cerca con Google

Archer, D., Kheshgi, H., Maier-Reimer, E., 1997. Multiple timescales for neutralization of fossil fuel CO2. Geophys. Res. Lett., vol. 24(4), pp. 405-408. Cerca con Google

Backman, J., 1986. Late Paleocene to middle Eocene calcareous nannofossil biostratigraphy from the Shatsky Rise and Italy. Paleogeography, Paleoclimatology, Paleoecology, vol. 57, pp.43-59. Cerca con Google

Backman, J., 1987. Quantitative calcareous nannofossil biochronology of middle Eocene through early Oligocene sediments from DSDP Sites 522 and 523. Abhandlungen Geologischen Bundesanstalt, vol, 39, pp.21-31. Cerca con Google

Backman, J., Shackleton, N.J., 1983. Quantitative biochronology of Pliocene and early Pleistocene calcareous nannoplankton from the Atlantic Indian and Pacific Oceans. Marine micropaleontology, vol. 8, pp. 141-170. Cerca con Google

Backman, J., Raffi, I., Rio, D., Fornaciari, E., Pälike, H., 2012: Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy 45(3), pp. 221-244. Cerca con Google

Berggren, W. A., Kent, D. V., Swisher III, C. C. & Aubry, M. P., 1995. A revised Cenozoic Geochronology and chronostratigraphy. Sepm, No. 54, pp. 129-212. Cerca con Google

Berggren, W. A.; Aubry, M.P., van Fossen, M., Kent, D. V., Norris, R. D., Quillévéré, F., 2000. Integrated Paleocene calcareous plankton magnetobiochronology and stable isotope stratigraphy: DSDP Site 384 (NW Atlantic Ocean). Palaeogeography, Palaeoclimatology, Palaeoecology, 159 (12), pp. 1-51. Cerca con Google

Bohaty, S. M., Zachos, J.C., 2003. A significant Southern Ocean warming event in the late middle Eocene. Geology. v. 31, p. 1017-1020. Cerca con Google

Bohaty, S. M., Zachos, J.C., Florindo, F., Delaney, M.L., 2009. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography, vol. 24, PA2207. Cerca con Google

Boscolo Galazzo, F., Giusberti, L., Luciani, V., Thomas, E., 2013. Paleoenvironmental changes during the Middle Eocene Climatic Optimum (MECO) and its aftermath. The benthic foraminiferal record from the Alano section (NE Italy). Paleogeography, Paleoclimatology, Paleoecology, vol.378, pp.22-35. Cerca con Google

Bowen, G.J., Bralower, T.J., Delaney, M.L., Dickens, G.R., Kelly, D.C., Koch, P.L., Kump, L.R., Meng, J., Sloan, L.C., Thomas, E., Wing, S.L., Zachos, J.C., 2006. Eocene hyperthermal event offers insight into greenhouse warming. Eos 87 (17), 165–169. Cerca con Google

Bowen, G.J., Bralower, T.J., Delaney, M.L., Dickens, G.R., Kelly, D.C., Koch, P.L., Kump, L.R., Meng, J., Sloan, L.C., Thomas, E., Wing, S.L., Zachos, J.C., 2006. Eocene hyperthermal event offers insight into greenhouse warming. Eos 87 (17), 165–169. Cerca con Google

Bown, P.R., Lees, J.A. & Young, J.R. 2004. Calcareous nannofossil evolution and diversity through time. In: H.R. Thierstein & J.R. Young (Eds). Coccolithophores: From Molecular processes to global impact. Springer- Verlag: 481- 508. Cerca con Google

Bralower, T.J., 2002. Evidence for surface water oligotrophy during the Paleocene– Eocene Thermal Maximum: nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography 17 (2), 1023. Cerca con Google

Bramlette, M. N., & Sulivan, F. R., 1961. Coccolithophorids and related nannoplankton of the Early Tertiary in California. Micropaleont. Vol. 7, pp. 129-188. Cerca con Google

Bukry, D., 1970. Coccolith age determination Leg 3, Deep Sea Drilling Project. Init. Rep., DSDP, vol. 3, Nat. Sc. Found, pp. 586-611. Cerca con Google

Bukry, D., 1971. Cenozoic calcareous nannofossils from the Pacific Ocean. Trans. San Diego Soc. Nat. Hist., vol. 16, pp. 303-327. Cerca con Google

Bukry, D., 1973. Low latitude coccolith Biostratigraphic Zonation. In : Edard, N.T., Saunders, J. B. et al. Init. Rep., DSDP, vol. 15, Washington (U. S. Gout Printing Office), pp. 685-703. Cerca con Google

Bukry, D., 1975. Coccolith and silicoflagellate Stratigraphy Northwestern Pacific Ocean, Deep Sea Drilling Project, Leg 32. In: Larson, R. L., Moberly, R. et al.Init. Rep., DSDP, vol. 32, pp. 677-701. Cerca con Google

Cande, S.C., Kent, D.V., 1995. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, vol. 100 (B4, pp.6093-6093. Cerca con Google

Curry, W.B., Shackleton, N.J., Richter, C., 1994. Ocean Drilling Program Leg 154 Preliminary Report Ceara Rise. Cerca con Google

Curry, W.B., Shackleton, N.J., Richter, C., et al., 1995. Proc. ODP, Init. Repts, 154: College Station, TX (Ocean Drilling Program). Cerca con Google

Dallanave, E., Agnini, C., Muttoni, G., Rio, D., 2012. Paleocene magnetobiostratigraphy and climate-controlled rock magnetism from Belluno Basin, Tethys Ocean, Italy. Paleogeography, Paleoclimaology, Paleoecology vol. 337-338, pp. 130-142. Cerca con Google

Dickens, G.R., 2000. Methane oxidation during the late Paleocene thermal maximum. Bull.Sco. Geol. Fr., vol. 171 (1), pp.37-49. Cerca con Google

Edgar, K.M., Wilson, P.A., Sexton, P.F, Suganuma, Y., No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature, vol. 448, pp.908-911. Cerca con Google

Fornaciari, E., Agnini, C., Catanzariti, R., Rio, D., Bolla, E. M., Valvasoni, E., 2010. Mid-latitude calcareous nannofossil biostratigraphy, biochronology and evolution across the middle to late Eocene transition. Stratigraphy, vol. 7, pp. 229-264. Cerca con Google

Hay, W., Mohler, H.P., Roth, P. H., Schmidt, R. R. & Bourdeaux, H. E., 1967. Calcareous nannoplankton zonation of the Cenozoic of the Gulf Coast and Caribbean-Antillean area and transoceanic correlation Gulf Coast Assoc. Geol. Soc. Trans., vol. 17, pp. 428-480. Cerca con Google

Jovane, L., Florindo, F., Coccioni, R., Dinarès-Turell, Marsili, A., Monechi, S., Roberts, A. P., Sprovieri, M., 2007. The middle Eocene climatic optimum event in the Contessa Highway section, Umbrian Appennines, Italy. Geological Society Am. Bull., vol. 119 (3-4), pp. 413-427. Cerca con Google

Kerrick, D., Caldeira, K., 1993, Paleoatmospheric consequences of CO2 released during early Cenozoic regional metamorphism in the Tethyan orogen. Chem. Geol., vol. 108, pp. 201-230. Cerca con Google

Lourens, L. J., Sluijs A., Kroon, D., Zachos, J. C., Thomas, E., Rohl, J., Bowles, J., Raffi, I., 2005. Astronomical pacing of late Paleocene to early Eocene global warming events. Nature, vol. 435, pp. 1083-1087. Cerca con Google

Luciani, V., Giusberti, L., Agnini, C., Fornaciari, E., Rio, D., Spofforth, D. J. A., Pälike, H., 2010. Ecological and evolutionary response of Tethyan planktonic foraminifera to the middle Eocene climatic optimum (MECO) from the Alano section (NE Italy). Paleogeography, Paleoclimatology, Paleoecology, vol. 292, pp. 82-95. Cerca con Google

Lyle, M., Lyle, A. O., Backman, J., Tripati, A., 2005. Biogenic sedimentation in the Eocene in equatorial Pacific: The stuttering greenhouse and Eocene carbonate compensation depth. Proceedings of the Deep Sea Drilling Project, Scientific Results, 199, pp.1-35. Cerca con Google

Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplakton zonation. In: Proc. II Planktonic Conf. Roma, pp. 739-785. Cerca con Google

Norris, R.D., Wilson, P. A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Kumar Ghosh, A., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Kirtland Turner, S., Whiteside, J.H., Yamaguchi, T., Yamamoto, Y., 2012. Paleogene Newfoundland sediment drifts. IODP Prel. Rept., 342. Cerca con Google

Okada, H. & Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphy zonation (Bukry, 1973, 1975). Marine Micropaleontology, vol.51, pp.321-325. Cerca con Google

Pälike, H., Lyle M.W., Nishi, H., Raffi, I., et al., 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, vol. 488, pp. 609-614. Cerca con Google

Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H., Lear, C. H., Shackleton, N.J., Tripati, A.K., Wade, B. S., (2006): The Heartbeat of the Oligocene Climate System. Science, 314(5807), 1894-1898. Cerca con Google

Perch-Nielsen, K., 1985. Cenozoic calcareous nannoplankton. In: Bolli, H.M., Saunders, J. B., Perch-Nielsen, K., (Eds.), Plankton Stratigraphy, Cambridge University Press, pp. 427-554. Cerca con Google

Percival JR, S. F., 1984. Late Cretaceous to Pleistocene calcareous nannofossils from the South Atlantic, Deep Sea Drilling Project Leg 73. In: Hsü, K.J., LaBrecque, J., et al., Eds., Proceedings of the Deep Sea Drilling Project, Initial Reports, 73: pp.391-424. Washington, DC: US Government Printing Office. Cerca con Google

Peterson, L.C., Backman, J., 1990. Late Cenozoic carbonate accumulation and the history of the carbonate compensation depth in the western equatorial Indian Ocean. Proocedings of the Deep Sea Drilling Project, Scientific Results, 115, pp.467-507. Cerca con Google

Postpichal, J. J., 1991. Calcareous nannofossils across Cretaceous/Tertiary boundary at the Site 752 Eastern Indian Ocean. Proc. ODP, Sci. Res., vol. 121, pp. 395-413. Cerca con Google

Rio, D., Fornaciari, E. & Raffi, I., 1990. Late Oligocene through early Pleistocene calcareous nannofossil from western equatorial Indian Ocean (Leg 115). In: Duncan R. A., Backman, J., Peterson, L.C., et al., Proc. ODP Sci. Res., vol. 115, pp. 175-235. Cerca con Google

Roth, P. H., 1970. Oligocene calcareous nannoplankton biostratigraphy. Eclogae Geologicae Helvetiae, vol. 63, pp. 799-881. Cerca con Google

Roth, P. H., 1973. Calcareous Nannofossil. Leg 17, Deep Sea Drilling Project. In: Winterer et al., Proceedings of the Deep Sea Drilling Project, Initial Reports, 17, pp. 695-795. Cerca con Google

Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), 1997. Proc. ODP, Sci. Results, 154: College Station, TX (Ocean Drilling Program). Cerca con Google

Ruddiman, W.F., 2007. Earth’s climate, Past and Future (2nd edition). Eds. W. H. Freeman and Company, New York. Cerca con Google

Salvador, A., 1994. International Stratigraphic Guide. 2 nd ed. I.U.G.S. & Geol. Soc. Amer., Boulder, Colo., pp.214. Cerca con Google

Sexton, P.F., Wilson, P.A., Norris, R.D., 2006. Testing the Cenozoic multisite composite δ18O and δ13C curves: New monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207). Paleoceanography. Vol. 21, PA2019. Cerca con Google

Spofforth, D.J.A., Agnini, C., Pälike, H., Rio, D., Fornaciari, E., Giusberti, L., Luciani, V., Lanci, L., Muttoni, G., 2010. Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys. Paleoceanography, vol. 25, PA3210. Cerca con Google

Supko, P. R., Perch-Nielsen, K., 1977. General Synthesis of Central and South Atlantic Drilling Results, Leg 39, Deep Sea Drilling Project. In Supko, P. R., Perch-Nielsen, K. et al., 1977. Initial Reports of the Deep Sea Drilling Project, Volume 39: Washington (U.S. Government Printing Office), pp. 1099-1132. Cerca con Google

Thomas, E., Zachos, J.C., Bralower, T.J., 2000. Deep sea acidification on a warm Earth. In: Warm Climates in Earth History, Eds., Huber, MacLeod and Wing, pp. 132-160, Cambridge University Press, New York. Cerca con Google

Toffanin, F., Agnini, C., Fornaciari, E., Rio, D., Giusberti, L., Luciani, V., Spofforth, D. J.A., Pälike H., 2011. Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum: Clues from the central-western Tethys (Alano section, NE Italy). Marine Micropaleontology, 81:22-31. Cerca con Google

Toffanin, F., Agnini, C., Rio, D., Acton, G., Westerhold, T., 2013. Middle Eocene to early Oligocene calcareous nannofossil biostratigraphy at IODP Site U1333 (equatorial Pacific). Micropaleontology, vol. 59, pp.1-14. Cerca con Google

Tripati, A., Backman, J., Elderfield, H., Ferretti, P., 2005. Eocene bipolar glaciation associated with global carbon cycle changes. Nature vol. 346, Number 7049, pp. 341-346. Cerca con Google

Vanderbeghe, N., Hilgen, F. J., Speijer, R.P., 2012. The Paleogene Period. In: Gradstein, F.M., Ogg, J.G., Schmidtz, M.D., Ogg, G. M., The Geologic Time Scale 2012, vol. 1, Elsevier. Cerca con Google

Villa, G., Fioroni, C., Pea, L., Bohaty, S.M., Persico, D., 2008. Middle-Eocene-late- Oligocene climate variability: Calcareous nannofossil at Kerguelen Plateau, Site 748. Marine Micropaleontology, vol. 69(2), pp. 173-192. Cerca con Google

Villa, G., Fioroni, C., Persico, D., Roberts, A., Florindo, F., 2014. Middle Eocene to Late Oligocene Antarctic glaciation/deglaciation and Southern Ocean productivity. Paleoceanography, vol. 29, pp. 223-227. Cerca con Google

Wade, B.S., Pearson, P.N.,Bergreen, W.A., Pälike,H., 2011. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Science Reviews, vol. 104, pp. 111-142. Cerca con Google

Wei, W., Wise JR, S.W., 1989. Paleogene calcareous nannofossil magnetobiostratigraphy: results from South Atlantic DSDP 516. Marine Micropaleontology, vol.14, pp. 119-152. Cerca con Google

Wei, W., Wise JR, S.W., 1990. Biogeographic gradients of middle Eocene-Oligocene calcareous nannoplankton in the South Atlantic Ocean. Paleogeography, Paleoclimatology, Paleoecology, vol. 79, pp. 29-61. Cerca con Google

Young, J.R., 1994. Functions of coccoliths. In: Winter, A., Siesser, W.G. (Eds.), Coccolithophores. Cambridge University Press, Cambridge, pp. 63–82. Cerca con Google

Zachos, C.J., Dickens, G.R., Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse warming and carbon - cycle dynamics. Nature, vol. 451, pp. 279-283. Cerca con Google

Zachos, C. J., Kroon, D., Blum, P. et al., 2004, Early Cenozoic Extreme Climates: The Walvis Ridgge Transect. Prooceedings of the Ocean Drilling Program, Initial Report, Volume 208: College Station TX: Ocean Drilling Program, 112 pp. Cerca con Google

Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, Rhythms and Aberrations in Global Climate 65 Ma to Present. Paleocl. Review, Science, vol. 292, pp. 86-693. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record