Machine Learning approach to sport activity recognition from inertial data

Relatore: Prof. Angelo Cenedese

Correlatore: Dott. Gian Antonio Susto

Laureando: Luca Minetto

ANNO ACCADEMICO: 2015-16
In this thesis we consider an Activity recognition problem for Cross-Country Skiing; the goal of this work is to recognize different types of Cross Country techniques from inertial sensors equipped on a wearable device.

We want to apply the SAX technique to the acceleration signals, specifically on the Atomic Gestures extracted from them. SAX has been introduced in 2003 and it has been used in several fields of application. Applying SAX we work on time-based features strictly related to the time series, that imply some advantages; precisely, SAX representation allows dimensionality and numerosity reduction and it also allows distance measures to be defined on symbolic approach. We want to find some template which are the signals that best represent the aforementioned main techniques and, using them in the SAX Distance calculation, being able to recognize which activity an athlete is performing.

The thesis is organized as follows:
In Chapter 1 we introduce the argument relating to activity recognition from a scientific and commercial point of view, but in the following we focused on Sports Activity. In Chapter 2 and 3 we describe the SAX technique and the dataset in exam, respectively. In Chapter 4 we provide a recognition algorithm based on SAX that works on Atomic Gestures and in Chapter 5 we test it evaluating the classification accuracy. In Chapter 6 we test the aforementioned algorithm on a well-known dataset of Normal Day Activity. In Chapter 6.5 the conclusion of this thesis.
Alla mia famiglia e
agli amici.
CONTENTS

1 INTRODUCTION ... 1
 1.1 Overview of Activity recognition 1
 1.2 Main Techniques 8
 1.2.1 Classification Techniques 8
 1.2.2 Time-dependent Techniques 13
 1.3 Commercial Products 15

2 SAX: SYMBOLIC AGGREGATE APPROXIMATION 19
 2.1 PAA dimensionality reduction 20
 2.2 Discretization 20
 2.3 Distance Measure 21

3 CLASSIC CROSS-COUNTRY SKIING DATASET 25
 3.1 Cross-Country Skiing 25
 3.2 Classic Cross-Country Skiing Activity 28

4 SAX TECHNIQUE APPLICATION 31
 4.1 Introduction 31
 4.2 Gesture Identification 33
 4.3 Setting the Word Length 33
 4.3.1 SAX on variable period 34
 4.4 Setting the Alphabet Size 36
 4.5 Discretization Phase 38

5 ATOMIC GESTURES CLASSIFICATION 41
 5.1 Introduction 41
 5.2 DP and KDP as separated class 42
 5.3 DP and KDP as single class 42
 5.3.1 One template for DP/KDP 43
 5.3.2 Two templates for DP/KDP 43
 5.4 From Gestures to Activity recognition 47

6 NORMAL DAY ACTIVITY CLASSIFICATION 49
 6.1 Walking and walking up/down-stairs 49
 6.2 Gesture Identification 50
 6.3 Atomic Gesture Classification 51
 6.3.1 z-Axis Atomic Gestures 51
 6.3.2 y-Axis Atomic Gestures 51
 6.4 General Considerations 55
 6.5 From Gestures to Activity recognition 55

Conclusion .. 57

Appendix ... 59
 A OTHER RESULTS 61

BIBLIOGRAPHY ... 63
LIST OF FIGURES

Figure 1 Relationship between *Area* and *body position* found in the related work.

Figure 2 Diagram of employed techniques. *Red edge*: Algorithm input. *Blue edge*: Techniques.

Figure 3 Two classes (blue and in yellow) and *p* = 2. It can be seen the closest point for *k* = 3 and *k* = 6. In the first case, *x*₀ will be classified as blue, in the second case it will be classified as yellow.

Figure 4 Generic scheme that represent the classification of *x*₀ using Random Forest. Figure adapted from http://en.likefm.org/artists/images/Random+Forest.

Figure 5 Two classes (blue and purple) and *p* = 2. The two classes are not separable by a hyperplane. Figure adapted from [1].

Figure 6 *Left*: Two classes (blue and in purple), along with the maximal margin hyperplane. *Right*: An additional blue observation has been added leading to a shift in the maximal margin hyperplane (solid line). Figure adapted from [1].

Figure 7 *Left*: Euclidean distance between Signal A and Signal B. *Right*: DTW distance between Signal A and Signal B. Figure adapted from http://www.stanford.edu.

Figure 8 In the example, with *n* = 128, *w* = 8 and *a* = 3. The time series is discretized by obtaining a PAA approximation and then using predetermined breakpoints is mapped map into SAX symbols. In this way, the time series is mapped to the word *baabccbc*. Figure adapted from [2].

Figure 9 *From left to right*: Suunto Ambit3 Peak, Garmin VivoActive, Polar V800, Fitbit Surge. Adapted respectively from [3] [4] [5] [6].

Figure 10 *Left*: Brain one. *Right*: Example of Brain one on a motorcycle. Figure adapted from [7].

Figure 11 *Left*: Example of Qlipp attached on a Tennis racket. *Right*: Example of Woo attached on a Kite-surf board. Adapted from [8] and [9].
Figure 12 An example of PAA approximation of a signal. C is the original signal while \bar{C} is its PAA approximation. Figure adapted from [2].

Figure 13 In the example, with $n = 128$, $w = 8$ and $a = 3$, the time series is discretized by obtaining a PAA approximation and then using predetermined breakpoints is mapped map into SAX symbols. In this way, the time series is mapped to the word $baabccbc$. Figure adapted from [2].

Figure 14 A visual intuition of Euclidean Distance (left) and PAA Distance (right). Figure adapted from [2].

Figure 15 A visual intuition of SAX Distance. Figure adapted from [2].

Figure 16 An example of lookup table used for determinate the SAX Distance. In the example the alphabet cardinality is equal to 4, $\alpha = 4$. The distance between two symbols can be read off by examining the corresponding row and column. Then, for this example, $\text{dist}(a,b)=0$ and $\text{dist}(a,c)=0.67$.

Figure 17 From left to right, the representative steps of Double Poling technique. Figure adapted from http://skixc.com.

Figure 18 From left to right, the representative steps of Kick-Double-Pole technique. Figure adapted from http://skixc.com.

Figure 19 From left to right, the representative steps of Diagonal Stride technique. Figure adapted from http://skixc.com.

Figure 20 Mean period for all the athletes divided for class. The last bar of each class is the reference period for the particular Gesture. Notice that Athlete 3 haven’t data for class KDP and DS.

Figure 21 Mean period of each type of gesture divided for athletes. Notice that we don’t have KDP and DS data for Athlete 3.

Figure 22 Example of typical DP Atomic Gesture. The highest part of the informative content of the Gesture seems to be contained in the x-axis.
Algorithm diagram. Three colors indicate the different phases of the algorithm: in red, Gesture Identification (Section 4.2), in blue, SAX (Section 4.3, 4.4 and 4.5) and, in green, Classification (Chapter 5).

The original signal represents the data stream. Filtering the signal with a Gaussian filter, we can individuate the Atomic Gestures. In Figure, a dotted line separates two consecutive Atomic Gestures.

A DP Atomic Gesture. Word length: $w=10$, Atomic gesture period: $1.6\, s$ ($n = 160$).

A DP Atomic Gesture. Word length: $w=20$, Atomic gesture period: $1.6\, s$ ($n = 160$).

A DP Atomic Gesture. Word length: $w=30$, Atomic gesture period: $1.6\, s$ ($n = 160$). Notice that n is not divisible for w then the last PAA frame is longer than the other.

The three different Gaussian distribution, one for each Gesture Class. The word length is $w = 30$ in any case.

Gaussian distribution of 150 Atomic Gestures (50 for each class). The word length is $w = 30$.

In both examples $w = 30$. Top panel, a DP Atomic Gesture with $n = 148$ that is approximated with 37 PAA frames. Bottom panel, a DP Atomic Gesture with $n = 170$ that is approximated with 34 PAA frames.

In the example $w = 30$, $w_1 = 28$, $\alpha = 7$. A DP Atomic Gesture with $n = 148$ that is approximated with 37 PAA frames. The word $bacbabcdaggggggfcdfeffgggfdedcbbaaaaa$ is the SAX string that represent the signal in Figure; from this are extracted the w_1 central characters. These are the characters that correspond to the lighten portion of the signal.

In this experiment: $w = 30$, $w_1 = 25$ and $\alpha = 7$. Percentage of Classification accuracy for the seven Athletes. Each class of every Athlete is represented by one template. To classify them, each athlete’s gesture is confronted only with his three templates.
Figure 33 In this experiment: $w = 30$, $w_1 = 25$ and $\alpha = 7$. Percentage of Classification accuracy for the seven Athletes. Each class of every Athlete is represent by one template. To classify them, each athlete’s gesture is confronted only with his two templates. Notice that DP classification accuracy represent the percentage of DP Atomic Gesture exactly classify into DP/KDP class, not in DP class. At the same way for KDP Atomic gesture.

Figure 34 In this experiment: $w = 30$, $w_1 = 25$ and $\alpha = 4$. Percentage of Classification accuracy for the seven Athletes. Each class of every Athlete is represent by one template. To classify them, each athlete’s gesture is confronted only with his three templates. Notice that DP classification accuracy represent the percentage of DP Atomic Gesture exactly classify into DP/KDP class, not in DP class. At the same way for KDP Atomic gesture.

Figure 35 In this experiment: $w = 30$, $w_1 = 25$ and $\alpha = 7$. Percentage of Classification accuracy for the seven Athletes. Each class of every Athlete is represent by one template. To classify them, each athlete’s gesture is confronted only with his three templates. Notice that DP classification accuracy represent the percentage of DP Atomic Gesture exactly classify into DP/KDP class, not in DP class. At the same way for KDP Atomic gesture.

Figure 36 In this experiment: $w = 30$, $w_1 = 25$ and $\alpha = 10$. Percentage of Classification accuracy for the seven Athletes. Each class of every Athlete is represent by one template. To classify them, each athlete’s gesture is confronted only with his three templates. Notice that DP classification accuracy represent the percentage of DP Atomic Gesture exactly classify into DP/KDP class, not in DP class. At the same way for KDP Atomic gesture.

Figure 37 Examples of sliding window in three subsequent shifting on the Atomic Gestures sequence; $\ell_{sw} = 3$. Notice that the arrowed lines point to the central Atomic Gesture of each window.
Figure 38 Example of typical WDS Atomic Gesture. The informative content of the Gesture seems to be subdivided between the three axes.

Figure 39 Filtering the x-axis signal with a Gaussian Filter we can individuate the Atomic Gestures to extract from the z-axis signal. In Figure a dotted line separates two consecutive Atomic Gestures.

Figure 40 z-Axis Atomic Gestures. From left to right, the confusion matrix of person 1, 2 and 3, respectively.

Figure 41 y-Axis Atomic Gestures. From left to right, the confusion matrix of person 1, 2 and 3, respectively.

Figure 42 z-Axis Atomic Gestures. In this experiment: $w = 20$, $w_1 = 18$ and $\alpha = 7$. Percentage of Classification accuracy for the three Persons. Each class of every Persons is represent by one template. To classify them, each person’s gesture is confronted only with his three templates.

Figure 43 z-Axis Atomic Gestures. In this experiment: $w = 20$, $w_1 = 18$ and $\alpha = 7$. Percentage of Classification accuracy for the three Persons. Each class of every Persons is represent by one template. To classify them, each person’s gesture is confronted only with his three templates. Notice that WUS classification accuracy represent the percentage of WUS Atomic Gesture exactly classify into WUS/DS class, not in WUS class. At the same way for WDS Atomic gesture.

Figure 44 y-Axis Atomic Gestures. In this experiment: $w = 20$, $w_1 = 18$ and $\alpha = 7$. Percentage of Classification accuracy for the three Persons. Each class of every Persons is represent by one template. To classify them, each person’s gesture is confronted only with his three templates.

Figure 45 y-Axis Atomic Gestures. In this experiment: $w = 20$, $w_1 = 18$ and $\alpha = 7$. Percentage of Classification accuracy for the three Persons. Each class of every Persons is represent by one template. To classify them, each person’s gesture is confronted only with his three templates. Notice that WUS classification accuracy represent the percentage of WUS Atomic Gesture exactly classify into WUS/DS class, not in WUS class. At the same way for WDS Atomic gesture.
Figure 46 In these experiments: $w = 30$, $w_1 = 25$ and $\alpha = 7$. Percentage of Classification accuracy for the Achiever Athletes (top panel) and Recreation Athletes (bottom panel). Each class is represent by one template. To classify them, each athlete’s gesture is confronted only with the same three templates. Notice that DP classification accuracy represent the percentage of DP Atomic Gesture exactly classify into DP/KDP class, not in DP class. At the same way for KDP Atomic gesture.

Figure 47 In this experiment: $w = 30$, $w_1 = 25$ and $\alpha = 7$. Percentage of Classification accuracy for the seven Athletes. Each class is represent by one template. To classify them, each athlete’s gesture is confronted only with the same three templates. Notice that DP classification accuracy represent the percentage of DP Atomic Gesture exactly classify into DP/KDP class, not in DP class. At the same way for KDP Atomic gesture.

LIST OF TABLES

Table 1 First simple key-concepts used to categorize the related work. 1
Table 2 Possible Problem Stages for different Activity Type. 5
Table 3 Categorization of related works based on technique employed. Note that Acc. and Gyr. stand for accelerometer and gyroscope, respectively. 7
Table 4 Meaning of the major notation used in this section. 9
Table 5 Well-known commercial products in *Sports and Normal Day Activity Area*. External means that the sensor is sold separately. Note that Acc., Gyr and Mag. stand for accelerometer, gyroscope and magnetometer respectively. 17
Table 6 Meaning of the major notation used in this section. 20
Table 7 Informations about athletes considered in the dataset. Notice that A and R stand for Achiever and Recreational, respectively. 27
Table 8 Cross-Country skiing variants with the athletes that adopt each different technique. Notice that DP, KDP and DS stand for Double Poling, Kick-Double-Pole and Diagonal Stride, respectively.

Table 9 Categorization of Classic Cross-Country Skiing activity according to the key-concepts introduced in Section 1.1.

Table 10 Reference period for DP, KDP and DS Atomic Gesture Class measured in seconds and Samples Number, n, that represent the Atomic Gesture length.

Table 11 DP Atomic Gesture with reference period 1.5 s (n = 150). Different compression rate are considered. In Figure Ref. is visible the PAA signal for different w values.

Table 12 Breakpoints (B) values varying the alphabet size α). This values are obtained from the Gaussian Distribution in Figure 29 with σ = 8.616 and μ = 0.067.

Table 13 Examples of testing the classification with SAX technique varying α. At Figure ref. the classification accuracy correspondent results.

Table 14 SAX Distance between templates in the case w = 30, w₁ = 25 and α = 7. In the Table DP vs KDP stands for "SAX Distance between DP and KDP templates". In the same way, the others.

Table 15 Classification rate for the different Experiments.

Table 16 Recognized Activity time on Total Activity time varying ℓsw for DP, KDP as separated class.

Table 17 Recognized Activity time on Total Activity time varying ℓsw for DP and KDP as single class.

Table 18 Recognized Activity time on Total Activity time varying ℓsw for WUS, WDS as separated class.

Table 19 Recognized Activity time on Total Activity time varying ℓsw for WUS and WDS as single class.
INTRODUCTION

Gesture recognition refers to the mathematical interpretation of human motions using a computing device. Gesture recognition, along with facial recognition, voice recognition, eye tracking and lip movement recognition are components of what developers refer to as a perceptual user interface (PUI). The goal of PUI is to enhance the efficiency and ease of use for the underlying logical design of a stored program, a design discipline known as usability.

Initially, in this thesis we extend the gesture recognition’s concept to another more generic: Activity recognition. For this reason, in the following, when we discuss about Activity we use this as a generic term that can be referred to a set of gestures or a single gesture depending on the context.

1.1 OVERVIEW OF ACTIVITY RECOGNITION

Activities recognition is a vast topic therefore a first categorization that simplifies the concepts that will be discussed next, has been introduced in Table 1.

<table>
<thead>
<tr>
<th>Device</th>
<th>Sensor</th>
<th>Position</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wearable</td>
<td>Acc.</td>
<td>Untouched</td>
<td>Normal Day Activity</td>
</tr>
<tr>
<td>Smartphone</td>
<td>Gyr.</td>
<td>Hand-Wrist</td>
<td>Command Gesture</td>
</tr>
<tr>
<td>Vision System</td>
<td>Mag.</td>
<td>Arm</td>
<td>Sports/Dance</td>
</tr>
<tr>
<td>Dedicated Device</td>
<td>GPS</td>
<td>Waist</td>
<td>Games</td>
</tr>
<tr>
<td></td>
<td>Visual</td>
<td>Foot-Ankle</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: First simple key-concepts used to categorize the related work.

First of all, it is possible to specify device and sensors used for every single gesture recognition problem. The use of gesture as a natural interface serves as a motivating force for research in modeling, analyzing and recognition of gestures [10]. Indeed vision systems are widely used in most of previous work on gesture recognition. However the performance of such vision-based approaches depends strongly on the lighting condition and camera facing angles, which greatly restricts its applications in the smart environments. Smart environments is still a very important argument because, for example, smart home make it possible to monitoring the well-being of an oc-
cupant in a home [11] [12] [13] and to reduce energy usage [14] [15] [16]. This category includes also Microsoft Kinect that has been a key driver for a new form of hands free interaction. As a low-cost and widely available approach to human motion sensing, the Kinect and the associated open source libraries have enabled researchers to target a range of next generation novel multimedia applications, for example [17]. Kinect is principally equipped with a vision-sensor but the other sensors are used to improve the performance also in difficult conditions such as night vision.

In more recent works reported in literature, the most common devices are smartphones and wearables such as smart-watch or smart-band. In fact, with the rapid development of the MEMS (Micro Electrical Mechanical System) technology, people can easily wear or carry on this kind of sensor-equipped devices in daily life [18]. Typically, these devices are equipped with 3D-accelerometer, gyroscope, magnetometer (well-known as “inertial sensors”) and GPS. On gesture recognition, some related works need only accelerometers data [19] [20] [21] [22] [23] [24] [25] [26] [27], in [28] [29] [30] [31] accelerometers, gyroscope and magnetometer data are combined. In particular we can conclude that in all the work just cited the accelerometer is the main sensor while gyroscope and magnetometer are used to improve the gestures recognition. Only few works in literature require also the GPS data [32]. There is a fourth category of devices which is "dedicated devices". This category includes all devices developed for perform only particular tasks. For example Maxxyt[30] which is an autonomous device that can count repetitive movements during strength training in real-time or UbiFinger[33] that realizes operations of real-world devices with gestures of fingers.

The device’s position, and then the sensors’ position, is another important aspect to take into consideration. A primary distinction has been made between **untouched** and **Body position**. **Untouched** means that the device is located near the subject’s body. It isn’t attached to the body so it doesn’t move with the user. For this reason, the category **untouched** includes the majority of vision systems. In fact, in literature there are many works on home automation that use external camera network to recognize gestures [12] [34]. However, there are few examples where the body gesture input system doesn’t depend on external cameras, such as Cyclops[35], a single-piece wearable device that sees its user’s whole body postures.

Body position indicates that the sensors are attached to the user’s body, in one or more precise locations. This category includes all the wearable-devices. The most significant positions that can be found in literature are: **arm** [31] [36], **hand-wrist** [19] [37] [38] [39] [22] [40] [25] [36], **waist** [41] [35] [26] and **foot-ankle** [28] [42]. In some cases we need to recognize a lot of different gestures so it’s necessary to
place different sensors in different positions; in this way the amount of data is increased and the recognition task can be more easier. Any example can be [32] or [29] where continuous user motion is acquired from a body-worn network of inertial sensors. Obviously, the sensors’ position is closely related to the Activity and Gesture that you want to recognize. In Figure 1 relationship between Body Position and Area found in the related work.

![Figure 1: Relationship between Area and body position found in the related work.](image)

Activity recognition can be used on numerous fields of application then a macro differentiation between different area of application is shown in Table 1.

Normal day activity includes all the activity like walking, sitting, eating [32] [26] [27], cooking, sleeping [11], cycling, driving [41], writing. *Command Gestures*, as the name suggest, are all the gestures that have the purpose to command something. This kind of gesture is very common in Home Automation [43]. In this context a specific task can be assigned to a particular gesture and so, for example, a window can be opened by an hand-circular movement.

Sport and dance includes all the works that have the purpose to recognize and assess athlete’s activities [44] and in certain case provide feedback on the quality of movements, such as the swing [45] or dance steps [28].

The last category is *Games*. Then, for example, in [17] has been developed a gesture-based game for deaf/mute people using Microsoft Kinect. However Kinect is not the only device used in this context. For example, in [46] has been used a wearable sensors for real-time
recognition tasks in games of martial arts [21] or with Cyclops [35], worn at the center of the body, the user can play a racing game on the mobile phone with hand and foot interactions.

Now, we have to introduce a more precise definition of what kind of activity we want to analyze. In Table 2 it can be notice that at different Activity Type we have the possibility to face different problem stage. Continuous-Repetitive means that there is a continuous data stream which admits periods of non-activity amidst periods of activity. In this case the activity is composed by repetitive gestures such as weight training and calisthenics [44] or other sport activities [47]. Instead, in Continuous-Spot, the Activity in the continuous data stream is composed by spot gestures. Any example of spot gestures are sitting or standing up [32]. On the other hand, Isolated means that the data stream includes only an Activity period and we exactly know when the Activity starts and when it stops. It’s simple to conclude that this Activity type includes all command gestures previous cited. Anyway [43] provides an exhaustive example.

In any cases, the three Possible Problem Stages in Table 2 are not exactly noticeable; in particular, the first and the second phase can be joined in an unique phase. However, an idea of what every stage represent may be the following:

1. **Finding Activity amidst periods of non-Activity.** This is the first stage for Activity type with a continuous data stream. In literature, it’s possible to find some example of segmentation techniques used for solve this problem [48]. For example, in [44] is used a 5-second sliding window, for each window, 224 features is computed, and the resulting feature matrix is used to train an L2 linear support vector machine which predicts either “exercise” or “non-exercise” for each 5-second window. An Automatic segmentation technique based on Signal Energy is provided in [49]. In [50] the ”Activity finding” procedure is based on the observation that humans tend to keep their hands in rest positions and any gesture starts from one rest position and terminates at another rest position.

2. **Recognizing the Activity.** This is the main stage for every Activity Type and it is necessary for understand which gesture is being performed. To recognize a gesture from the captured data, researchers have applied diverse machine learning, pattern recognition techniques:
 - Dynamic Time Warping (DTW) [51]
 - Hidden Markov Model (HMM) [52]
 - Support Vector Machine (SVM) [1] [53] [54] [55]
 - Decision Tree (DT) and Random Forest (RF) [1] [53]
<table>
<thead>
<tr>
<th>Activity Type</th>
<th>Possible Problem Stage</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuos-Repetitive</td>
<td>1) Finding Activity amidst periods of non-Activity.</td>
<td>We consider a swimmer in a pool. First we want to know when he is swimming and when he is stopped in rest position. Second, for each Activity period, we want to recognize what style he is swimming. Third, we want to know how many strokes he does for each Activity period.</td>
</tr>
<tr>
<td></td>
<td>2) Recognizing the Gesture in the Activity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Counting the repetitions.</td>
<td></td>
</tr>
<tr>
<td>Continuos-Spot</td>
<td>1) Finding Activity amidst periods of non-Activity.</td>
<td>We consider a tennis player during a match. First we want to know when he is stopped in rest position or when he is servicing, he is smashing,... For each Activity period, we want to recognize exactly what stroke fundamental has been executed.</td>
</tr>
<tr>
<td></td>
<td>2) Recognizing the Activity.</td>
<td></td>
</tr>
<tr>
<td>Isolated</td>
<td>1) Recognizing the Gesture in the Activity.</td>
<td>We consider this situation: an user is subject to a computer questionnaire. The user can answer to each question only with a body gestures. So, after each questions appear on computer’s screen, an user’s movement will be performed and this gesture must be recognized to proceed with other questions.</td>
</tr>
</tbody>
</table>
• Bayesian networks (BN)
• K-Nearest Neighbor (k-NN) \[1\] \[53\]
• String Matching (SM) \[56\] \[2\] \[57\]

In Table 3 we present a categorization of related works based on technique employed. In any case, in this stage, after the gesture recognizing it’s provided a "gesture’s characterization". For example, we recognize a crawl armful in a swimming Activity and then we provide a quality report of the movement such as "overly energetic", "too slow", "too fast", etc.

3. **Counting the repetitions.** This stage is needed only if an Activity involving repetitive movements. In particular, when an activity is detected and recognized we need to count how many repetitions of this movement there are in this Activity. For example the Counting challenge has been fronted with "peak detection". Precisely, in \[30\], after a comparison of particular smoothing techniques follow that the smoothed signal’s peaks correspond to each repetition in the Activity. Also with RecoFit \[44\] this stage is well delineated.
<table>
<thead>
<tr>
<th>Technique</th>
<th>Ref.</th>
<th>Year</th>
<th>Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTW</td>
<td>[58]</td>
<td>2015</td>
<td>Kinect</td>
</tr>
<tr>
<td></td>
<td>[34]</td>
<td>2014</td>
<td>Vision</td>
</tr>
<tr>
<td></td>
<td>[22]</td>
<td>2012</td>
<td>Acc.</td>
</tr>
<tr>
<td></td>
<td>[23]</td>
<td>2009</td>
<td>Acc.</td>
</tr>
<tr>
<td>HMM</td>
<td>[59]</td>
<td>2015</td>
<td>Kinect</td>
</tr>
<tr>
<td></td>
<td>[40]</td>
<td>2010</td>
<td>Acc.</td>
</tr>
<tr>
<td></td>
<td>[12]</td>
<td>2009</td>
<td>Vision</td>
</tr>
<tr>
<td></td>
<td>[18]</td>
<td>2009</td>
<td>Acc.</td>
</tr>
<tr>
<td></td>
<td>[60]</td>
<td>2006</td>
<td>Acc.</td>
</tr>
<tr>
<td></td>
<td>[41]</td>
<td>2009</td>
<td>Acc.</td>
</tr>
<tr>
<td>BN</td>
<td>[60]</td>
<td>2006</td>
<td>Acc.</td>
</tr>
<tr>
<td></td>
<td>[61]</td>
<td>2012</td>
<td>Vision</td>
</tr>
</tbody>
</table>

Table 3: Categorization of related works based on technique employed. Note that Acc. and Gyr. stand for accelerometer and gyroscope, respectively.
1.2 MAIN TECHNIQUES

Before discussing about how each single technique works, it’s important to distinguish what algorithm input each technique needs to work properly. In Figure 2 it’s possible to see that some techniques used for recognizing data work with time-series data or time-based features. In fact, usually, DTW is used directly with the sensor’s output signal while SAX works with a particular signal representation that can be intended as feature sequence. Anyway this type of features is strictly connected with the original signal time sequence. For this techniques see Section 1.2.2. Instead other techniques work with signal’s features, like signal’s energy, that lose the time sequence of the signal. For these reasons, techniques like k-NN, SVM, DT/RF firstly need a setup phase commonly named "feature extraction". For this techniques see Section 1.2.1. The term Other in Figure 2 includes all the classification techniques that will be not discussed in the following chapters because considered less important in this thesis. For example Other includes also Bayesian Network.

Figure 2: Diagram of employed techniques. Red edge: Algorithm input. Blue edge: Techniques.

1.2.1 Classification Techniques

In gesture recognition context response variables (output variables) take on values in one of K different classes, or categories. Examples of qualitative variables may be swimming style (crawl, butterflystroke, breaststroke, backstroke and medley) or a person activities like walk or run. We tend to refer to problems with a qualitative response as classification problems. In that kind of problem we have a set of training observations \((x_1, y_1), \ldots, (x_n, y_n)\) that we can use to build a classifier. Where \(x_i = (x_{i1}, x_{i2}, \ldots, x_{ip})\) means that we’re considering \(p\) features while \(y_i\) is the response associated to the observation \(x_i\). Table 4 summarizes the major notation used in this section.
Notation and Meaning

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>number of different classes</td>
</tr>
<tr>
<td>n</td>
<td>number of observation</td>
</tr>
<tr>
<td>x_i</td>
<td>i-th observation, taking value in X</td>
</tr>
<tr>
<td>x_0</td>
<td>query point</td>
</tr>
<tr>
<td>p</td>
<td>number of features</td>
</tr>
<tr>
<td>X_j</td>
<td>Generic feature</td>
</tr>
<tr>
<td>X_{ji}</td>
<td>j-th feature of i-th observation</td>
</tr>
</tbody>
</table>

Table 4: Meaning of the major notation used in this section.

1.2.1.1 k-NN: k-Nearest-Neighbor Classifiers

K-NN is a lazy learning method so the generalization beyond the training data is delayed until a query is made to the system. k-NN classifiers are memory-based, and require no model to be fit. In this way the classification of a query point x_0 is made to the class of the closest training observations. Precisely, given a query point x_0, we find the k training points closest in distance to x_0, and then classify using majority vote among the k neighbors. The concept behind k-NN is shown, for two different value of k, in the example in Figure 3. Despite its simplicity, k-nearest-neighbors has been successful in a large number of classification problems, including handwritten digits, satellite image scenes and EKG patterns.

![Figure 3](image.png)

Figure 3: Two classes (blue and in yellow) and $p = 2$. It can be seen the closest point for $k = 3$ and $k = 6$. In the first case, x_0 will be classified as blue, in the second case it will be classified as yellow.
1.2.1.2 DT: Decision Tree/RF: Random Forest Classifiers

Also DT/RF are *lazy learning method*. Tree-based methods partition the feature space into a set of rectangles, and then fit a simple model (like a constant) in each one. In order to make a prediction for a given observation, we typically use the mean or the mode of the training observations in the region to which it belongs. Since the set of splitting rules used to segment the predictor space can be summarized in a tree, these types of approaches are known as decision tree methods. Tree-based methods are simple and useful for interpretation. However, they typically are not competitive with the best supervised learning approaches.

A classification tree is used to predict a qualitative response; we predict that each observation belongs to the most commonly occurring class of training observations in the region to which it belongs. It's commonly used recursive binary splitting to grow a classification tree. The *classification error rate* is used as a criterion for making the binary splits. Since we plan to assign an observation to the most commonly occurring class of training observations in that region, the *classification error rate* is simply the fraction of the training observations in that region that do not belong to the most common class.

Random forests have been developed by Breiman in 2001 and they are a large collection of *decorrelated trees*. Random forests are simple to train and tune. As a consequence, RF are popular and they are implemented in a variety of packages. When used for classification, a Random Forest obtains a class vote from each tree, and then classifies using majority vote.

![Generic scheme that represent the classification of x_0 using Random Forest.](http://en.likefm.org/artists/images/Random+Forest)
1.2.1.3 SVM: support vector machine

Support vector machine is an approach for classification that was developed in the computer science community in the 1990s and that has grown in popularity since then. SVM is a further extension of the Support Vector Classifier in order to accommodate non-linear class boundaries. An overview of the Support Vector Classifier is the following.

In Figure 5 is shown an example in which the observations that belong to two classes are not necessarily separable by a hyperplane. In fact, even if a separating hyperplane does exist, then there are instances in which a classifier based on a separating hyperplane might not be desirable because this type of classifier will necessarily perfectly classify all of the training observations; this can lead to sensitivity to individual observations. In fact, the addition of a single observation in the right-hand panel of Figure 6 leads to a dramatic change in the maximal margin hyperplane. The resulting maximal margin hyperplane is not satisfactory for one thing, it has only a tiny margin. This is problematic because the distance of an observation from the hyperplane can be seen as a measure of our confidence that the observation was correctly classified. Moreover, the fact that the maximal margin hyperplane is extremely sensitive to a change in a single observation suggests that it may have overfit the training data. In this case, we might be willing to consider a classifier based on a hyperplane that does not perfectly separate the two classes but guarantees:

- Greater robustness to individual observations
- Better classification of most of the training observations

![Figure 5: Two classes (blue and purple) and p = 2. The two classes are not separable by a hyperplane. Figure adapted from [1].](image)
In this way, the support vector classifier could be worthwhile to misclassify a few training observations in order to do a better job in classifying the remaining observations. Rather than seeking the largest possible margin so that every observation is not only on the correct side of the hyperplane but also on the correct side of the margin, we instead allow some observations to be on the incorrect side of the margin, or even the incorrect side of the hyperplane. An observation can be not only on the wrong side of the margin, but also on the wrong side of the hyperplane. In fact, when there is no separating hyperplane, such a situation is inevitable. Observations on the wrong side of the hyperplane correspond to training observations that are misclassified by the support vector classifier.

Figure 6: Left: Two classes (blue and in purple), along with the maximal margin hyperplane. Right: An additional blue observation has been added leading to a shift in the maximal margin hyperplane (solid line). Figure adapted from [1].

The support vector machine classifier is an extension of this idea, where the dimension of the enlarged space is allowed to get very large, infinite in some cases. So far, our discussion has been limited to the case of binary classification: that is, classification in the two-class setting. However we can extend SVMs to the more general case where we have some arbitrary number of classes. The two most popular proposal for extending SVMs to the K-class are the one-versus-one and one-versus-all approaches.
1.2.2 Time-dependent Techniques

Contrary to techniques previously discussed, DTW and SAX have not been developed for classification problem. In the same way aren’t born for solve gesture recognition’s problem. However they were used often in pattern recognition problems because they don’t need feature extraction or other special setup for work properly.

1.2.2.1 DTW: Dynamic Time Warping

Dynamic time warping is a well-known technique to find an optimal alignment between two given time-dependent sequences under certain restrictions. Intuitively, the sequences are warped in a non-linear fashion to match each other. Originally, DTW has been used to compare different speech patterns in automatic speech recognition. In fields such as data mining and information retrieval, DTW has been successfully applied to automatically cope with time deformations and different speeds associated with time-dependent data.

The objective of DTW is to compare two time-dependent sequences. These sequences are discrete signals (time-series) or, more generally, continues signals sampled at equidistant points in time. To compare two different signals DTW make use of a local cost measure, sometimes named as local distance measure. Typically, this is "low cost" (small value) if the signals are similar to each other and else is "high cost" (large value). Then DTW search the optimal warping path between the two sequences (signals) which is a warping path having minimal total cost among all possible warping paths. The DTW distance between the two sequences is then defined as the total cost of the optimal warping path. Figure 7 shows a comparison between Euclidean distance and DTW distance.

![Figure 7: Left: Euclidean distance between Signal A and Signal B. Right: DTW distance between Signal A and Signal B. Figure adapted from http://www.stanford.edu.](image-url)
1.2.2.2 **SAX: Symbolic Aggregate approXimation**

In 2003, has been introduced a new symbolic representation of time series. SAX representation allows dimensionality and numerosity reduction, and it also allows distance measures to be defined on the symbolic approach that lower bound corresponding distance measures defined on the original series. SAX allows a time series of arbitrary length \(n \) to be reduced to a string of arbitrary length \(w \) with \(w < n \), typically \(w \ll n \). The alphabet size is also an arbitrary integer \(\alpha \), where \(\alpha > 2 \). The discretization procedure is unique in that it uses an intermediate representation between the raw time series and the symbolic strings. We first transform the data into the *Piecewise Aggregate Approximation (PAA)* representation and then symbolize the PAA representation into a discrete string. There are two important advantages to doing this \([2]\):

- **Dimensionality Reduction**: We can use the well-defined and well-documented dimensionality reduction power of PAA, and the reduction is automatically carried over to the symbolic representation.

- **Lower Bounding**: Proving that a distance measure between two symbolic strings lower bounds the true distance between the original time series is non-trivial. The key observation that allows to prove lower bounds is to concentrate on proving that the symbolic distance measure bounded from below the PAA distance measure.

The distance between two SAX representations of a time series requires looking up the distances between each pair of symbols, squaring them, summing them, taking the square root and finally multiplying by the square root of the *compression rate* \((\frac{n}{w}) \). Figure 8 synthesizes the method to obtain a string from a signal.

![Figure 8: In the example, with \(n = 128 \), \(w = 8 \) and \(\alpha = 3 \). The time series is discretized by obtaining a PAA approximation and then using predetermined breakpoints is mapped into SAX symbols. In this way, the time series is mapped to the word *baabcbc*. Figure adapted from [2].](image-url)
As already said, recent advancements in microelectronics and other technologies mean that inertial sensors are gaining popularity to monitor human movements in a number of sporting and everyday activities. MEMS sensing technology is already integrated by default into many consumer devices. Virtually every smartphone, smartband and smartwatch are equipped with them. In Table 5 and in Figure 9 and 11, some example of well-known commercial products which use MEMS inertial sensing technology in Sports and Normal Day Activity Area.

MEMS inertial sensors are being widely used in motion capture research due to the following reasons [62]:

- They are miniaturized and lightweight so they can be placed on any part or segment of a human body without hindering performance.
- The cost of such sensors is falling dramatically as they start to persuade mass market consumer devices.
- They can be utilized to capture human movement/actions in real unconstrained environments (e.g. outdoor environments with variable lighting conditions) to obtain accurate results.
- They can be used to provide real time or near real time feedback.

Figure 9: From left to right: Suunto Ambit3 Peak, Garmin VivoActive, Polar V800, Fitbit Surge. Adapted respectively from [3] [4] [5] [6].

Suunto [3], Garmin [4], Polar [5] and Fitbit [6] are examples of brand of smartwatches and smartbands known in activity tracking, precisely in Normal Day Activity/Sport Area. The most of product reported in Table 5 are equipped with few sensors which are not sufficient to perform excellently all the recognition functions in Table 5. For this reason, other sensors is sold separately. For example, Suunto Ambit3 Peak®, Garmin VivoActive® and Polar V800® need a strap with Heart rate monitor to measure the heart rate. For the Activity like Swimming are needed some accessories that permit to recognize the style
and measure the cadence of strokes. In the same way, for Cycling Polar V800® needs Cadence Sensor Bluetooth Smart for pedaling cadence measurement. All this external accessories interact with the main device with Bluetooth technology. More generally, all the device are pedometer-equipped useful for a non-accurate 24-hours recognition of Activity like walking and running with calories consumed reports. In the other hand, Fitbit® aims for selling a product already equipped with the sensors useful for recognize the activities reported in Table 5 at the expense of accuracy in some specific function like step cadence. In fact, it can be seen that there aren’t sensors labeled as external.

Nowadays, Brain One [7] is a dedicated device for Sport like Gokarting and Motorcycling, but in general it is useful in the majority of action sports. It’s compact and easy to attach for example on the motorcycle and all its sensors are embedded. Obviously, the heart rate monitor must be attached to the athlete, also the vision system (such as an action camera) is external but both interact with Brain One with wireless technology. Also Woo [9] and Qlipp [8] are dedicated devices but only for Kite-surfing and Tennis, respectively. Attached to the kitesurf board, Woo tracks every jump, including jump height and airtime in a Kite-surf session. At the same way, Qlipp attached to the tennis racket, detect and analyze every stroke. All the products aforementioned provide software for post-training characterization useful to improve the training quality.
<table>
<thead>
<tr>
<th>Device</th>
<th>Inertial Sensors</th>
<th>Other Sensors</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUUNTO AMBIT³ PEAK®</td>
<td>Acc.</td>
<td>GPS, Altimeter,</td>
<td>Normal Day Activity/Sport: Cycling, Running, Gym, Free Skiing, Swimming</td>
</tr>
<tr>
<td></td>
<td>Gyr. (external)</td>
<td>Heart rate monitor (external)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GARMIN VIVOACTIVE®</td>
<td>Acc.</td>
<td>GPS,</td>
<td>Normal Day Activity/Sport: Cycling, Running, Golf, Swimming</td>
</tr>
<tr>
<td></td>
<td>Gyr. (external)</td>
<td>Heart rate monitor (external)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLAR V800®</td>
<td>Acc.</td>
<td>GPS, Altimeter</td>
<td>Normal Day Activity/Sport: Running, Fitness exercises, Cycling, Swimming</td>
</tr>
<tr>
<td></td>
<td>Gyr. (external)</td>
<td>Heart rate monitor (external)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FITBIT SURGE®</td>
<td>Acc.</td>
<td>GPS, Altimeter</td>
<td>Normal Day Activity/Sport: Running, Fitness exercises, Cycling</td>
</tr>
<tr>
<td></td>
<td>Gyr.</td>
<td>Heart rate monitor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAIN ONE®</td>
<td>Acc.</td>
<td>GPS, Barometer</td>
<td>Sport: Go Karting, Motorcycling</td>
</tr>
<tr>
<td></td>
<td>Gyr.</td>
<td>Heart rate monitor (external)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag.</td>
<td>Vision (external)</td>
<td></td>
</tr>
<tr>
<td>WOO®</td>
<td>Acc.</td>
<td></td>
<td>Sport: Kite-surfing</td>
</tr>
<tr>
<td></td>
<td>Gyr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLIPP®</td>
<td>Acc.</td>
<td></td>
<td>Sport: Tennis</td>
</tr>
<tr>
<td></td>
<td>Gyr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Well-known commercial products in Sports and Normal Day Activity Area. *External* means that the sensor is sold separately. Note that Acc., Gyr and Mag, stand for accelerometer, gyroscope and magnetometer respectively.
In this chapter we describe in detail SAX, a symbolic representation of time series that has been introduced in 2003. Since 2003, SAX has been used in several fields of application, such as classification and clustering problems applied on telemedicine time series [63] or entomological problems [64], financial data mining [65] or anomaly detection [66] [67]. Recently, two follow-ups of SAX has been introduced, that are iSAX, used to index massive datasets encountered in science, engineering, and business domains [57] and HOT SAX, used to find unusual time series subsequence [68]. These variants has been introduced principally for indexing and anomaly detection problems.

With this technique we work on time-based features that imply some advantages compared to the other techniques that works with time series, such as DTW. Precisely, SAX representation allows dimensionality and numerosity reduction [2], and it also allows distance measures to be defined on the symbolic approach. Specifically, SAX allows a time series of arbitrary length \(n \) to be reduced to a string of arbitrary length \(w \), with \(w < n \), typically \(w \ll n \); the ratio of \(n \) to \(w \) is known as compression rate. The string of length \(w \) is composed by \(w \) characters from the alphabet set. The alphabet size is also an arbitrary integer \(\alpha \), where \(\alpha > 2 \). For example, if \(\alpha = 2 \) then the alphabet is the set \{a, b\} and an example of string with length 4 can be abaa. The discretization procedure is unique: in order to transform the raw time series in the symbolic strings we need an intermediate representation; first, the data is transformed into the Piecewise Aggregate Approximation (PAA) representation and then the PAA representation is symbolized into a discrete string; the procedure will be detailed in the following Sections. There are two important advantages to doing this [2]:

- **Dimensionality Reduction**: the dimensionality reduction power of PAA is the well-defined and well-documented [69] [70], and the reduction is automatically carried over to the symbolic representation.

- **Lower Bounding**: Proving that a distance measure between two symbolic strings is lower bound for the true distance between the original time series. The key observation that allows to prove lower bounds is to concentrate on proving that the symbolic distance measure bounded from below the PAA distance measure.
In order to simplify the thesis reading, Table 6 summarizes the major notation used in this section.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Time-series length</td>
</tr>
<tr>
<td>C</td>
<td>Time-series $C = c_1, ..., c_n$</td>
</tr>
<tr>
<td>w</td>
<td>Number of PAA segments representing C</td>
</tr>
<tr>
<td>\bar{C}</td>
<td>PAA of the time-series C: $\bar{C} = \bar{c}_1, ..., \bar{c}_w$</td>
</tr>
<tr>
<td>α</td>
<td>Alphabet cardinality (size)</td>
</tr>
<tr>
<td>$\hat{\mathcal{C}}$</td>
<td>Symbolic representation of C: $\hat{\mathcal{C}} = \hat{c}_1, ..., \hat{c}_w$</td>
</tr>
</tbody>
</table>

Table 6: Meaning of the major notation used in this section.

2.1 PAA DIMENSIONALITY REDUCTION

The concept behind the Piecewise Aggregate Approximation is that a time series C of length n can be represented in a w-dimensional space by a vector $\bar{C} = \bar{c}_1, ..., \bar{c}_w$. In order to do this, the original data is divided into w equal sized frames and the mean value of the data, \bar{c}_i falling within the i-th frame is calculated. A visual example of PAA signal’s approximation is illustrated in Figure 12.

![Figure 12](image)

Figure 12: An example of PAA approximation of a signal. C is the original signal while \bar{C} is its PAA approximation. Figure adapted from [2].

2.2 DISCRETIZATION

To obtain a discrete representation a further transformation must be applied to the PAA signal. It is desirable to have a discretization technique that will produce symbols with equiprobability. This is easily achieved if we supposed that the time series in exam have a Gaussian distribution; in [2] is demonstrated that the aforementioned assumption is reasonable. For this reason, given an alphabet cardinality α, the breakpoints for the discretization can be simply determined by finding
the \(\alpha + 1 \) points that will produce \(\alpha \) equal-sized areas under the Gaussian curve.

Formally, the breakpoints are a sorted list of numbers \(B = \beta_0, \ldots, \beta_\alpha \) such that the area under the Gaussian curve from \(\beta_i \) to \(\beta_{i+1} \) is equal to \(\frac{1}{\alpha} \). Obviously, \(\beta_0 \) and \(\beta_\alpha \) are defined as \(-\infty \) and \(+\infty \), respectively.

In brief, a time-series can be discretized in the following manner. First, a PAA is obtained from the original time series and then all PAA coefficients that are below the smallest breakpoint are mapped to the symbol \(a \), all coefficients greater than or equal to the smallest breakpoint and less than the second smallest breakpoint are mapped to the symbol \(b \) etc. The concatenation of these subsequent symbols that represent the signal is called word. In Figure 13 an explanatory example of the discretization step is provided.

The SAX representation procedure can be summarized as follows. Starting from a subsequence \(C = c_1, \ldots, c_n \) let \(\bar{C} = \bar{c}_1, \ldots, \bar{c}_w \) and let \(\alpha_i \) denote the \(i^{th} \) element of the alphabet. The mapping from the PAA approximation to the correspondent word \(\hat{C} = \hat{c}_1, \ldots, \hat{c}_w \) of length \(w \) is obtained as follow:

\[
\hat{c}_i = \alpha_j \quad \text{iff} \quad \beta_{j-1} \leq \bar{c}_i < \beta_j
\]

2.3 DISTANCE MEASURE

After introducing the SAX representation, a new distance measure can be defined on it. The most common distance measure for time series is the Euclidean distance, but is not the only one. For the subsequent considerations, let \(Q = q_1, \ldots, q_n \) and \(C \) be two time-series of same length \(n \). Let \(\hat{C} \) and \(\hat{Q} \) represent the PAA approximation of \(C \) and \(Q \), respectively and \(\hat{C} \) and \(\hat{Q} \) be their SAX symbolic representation. In the following, we detail three distances between the time series in exam.
• Euclidean Distance:

\[D(Q, C) = \sqrt{\sum_{i=1}^{n} (q_i - c_i)^2} \]

(2)

• PAA Distance:

\[D_{PAA}(\bar{Q}, \bar{C}) = \sqrt{\frac{n}{w} \sum_{i=1}^{w} (\bar{q}_i - \bar{c}_i)^2} \]

(3)

• SAX Distance:

\[D_{SAX}(\hat{Q}, \hat{C}) = \sqrt{\frac{n}{w} \sum_{i=1}^{w} \text{dist}(\hat{q}_i, \hat{c}_i)^2} \]

(4)

A visual intuition of these measures is provided in Figure 14 and 15.

![Figure 14](image)

Figure 14: A visual intuition of Euclidean Distance (left) and PAA Distance (right). Figure adapted from [2].

![Figure 15](image)

Figure 15: A visual intuition of SAX Distance. Figure adapted from [2].

The Equation (3) represents a proved lower bounding approximation of the Euclidean distance between the original subsequences \(Q \) and \(C \). The Equation (4) resembles Equation (3) except for the fact that the distance between the two PAA coefficients has been replaced with the sub-function \(\text{dist}(\cdot, \cdot) \) that weights the distance between couple of symbols. The \(\text{dist}(\cdot, \cdot) \) function can be implemented using a lookup table like the one in Figure 16; it can be noticed that the distance between two adjacent symbols is equal to 0 and the lookup table is symmetric. Formally, the value in \(\text{cell}_{(r,c)} \), with \(r \) row index and \(c \) column index, for any lookup table can be calculated by the following expression:

\[\text{cell}_{(r,c)} = \begin{cases} 0 & \text{if } |r-c| \leq 1 \\ \beta_{\max(r,c)} - \beta_{\min(r,c)} & \text{otherwise} \end{cases} \]

(5)
The distance between two SAX representations of a time series requires looking up the distances between each pair of symbols, squaring them, summing them, taking the square root and finally multiplying by the square root of the compression rate. For example, using the lookup table in Figure 16, the SAX Distance between the two string in Figure 15 is

\[D_{SAX}(\hat{Q}, \hat{C}) = \sqrt{\frac{n}{w} \sqrt{0 + 0 + 0 + 0 + 0.67^2 + 0 + 0 + 0.67^2}} \]

In conclusion it can be noticed that there is a clear tradeoff between the parameter \(w \) controlling the number of approximating elements, and the value \(\alpha \) controlling the granularity of each approximating element. The SAX technique is highly data dependent thus it’s difficult to determine a tradeoff analytically, but it must be found ad hoc empirically.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0.67</td>
<td>1.34</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0.67</td>
<td>0</td>
<td>0.67</td>
</tr>
<tr>
<td>c</td>
<td>0.67</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>1.34</td>
<td>0.67</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 16: An example of lookup table used for determinate the SAX Distance. In the example the alphabet cardinality is equal to 4, \(\alpha = 4 \). The distance between two symbols can be read off by examining the corresponding row and column. Then, for this example, \(\text{dist}(a,b)=0 \) and \(\text{dist}(a,c)=0.67 \).
CLASSIC CROSS-COUNTRY SKIING DATASET

The activity recognition problem considered in this thesis is composed by 8 athletes that perform 3 particular techniques of Cross-Country Skiing. We want to create an activity recognition algorithm that allow to discriminate between these three techniques. In this chapter we provide a brief description of Cross-Country Skiing and its techniques.

3.1 CROSS-COUNTRY SKIING

Skiing started as a technique for traveling cross-country over snow on skis, starting almost five millennia ago in Scandinavia. Cross-country skiing evolved from a utilitarian means of transportation to being a world-wide recreational activity and sport, which branched out into other forms of skiing starting in the mid-1800s. Early skiers used one long pole or spear in addition to the skis.

Cross-country skiing has two basic propulsion techniques, which apply to different surfaces:

- **Classic**, with surface as undisturbed snow and tracked snow.
- **Skate Skiing**, with firm and smooth snow surfaces.

The *classic technique* relies on wax or texture on the ski bottom under the foot for traction on the snow to allow the skier to slide the other ski forward in virgin or tracked snow. With the *skate skiing technique* a skier slides on alternating skis on a firm snow surface at an angle from each other in a manner similar to ice skating. Both techniques employ poles with baskets that allow the arms to participate in the propulsion. Specialized equipment is adapted to each technique and each type of terrain.

In this thesis work it has been considered only the *classic technique of Cross-Country Skiing*. The classic style is often used on prepared trails that have pairs of parallel tracks cut into the snow, but it is also the most usual technique where no tracks have been prepared. Following this technique, each ski is pushed forward from the other stationary ski in a striding and gliding motion, alternating foot to foot. With the *diagonal stride variant* the poles are planted alternately on the opposite side of the forward-striding foot; with the *kick-double-pole variant* the poles are planted simultaneously with every other stride. At times, especially with gentle descents, *double poling* is the sole means...
of propulsion. On uphill terrain, techniques include the side step for steep slopes, moving the skis perpendicular to the fall line, the herringbone for moderate slopes, where the skier takes alternating steps with the skis splayed outwards, and, for gentle slopes, the skier uses the diagonal technique with shorter strides and greater arm force on the poles.

In brief the variant of classic technique considered in the following are double poling (DP), kick-double-pole (KDP) and diagonal stride (DS) which are illustrated in Figure 17, 18 and 19, respectively.

Figure 17: From left to right, the representative steps of Double Poling technique. Figure adapted from http://skixc.com.

Figure 18: From left to right, the representative steps of Kick-Double-Pole technique. Figure adapted from http://skixc.com.

Figure 19: From left to right, the representative steps of Diagonal Stride technique. Figure adapted from http://skixc.com.

Given that Cross-Country Skiing is a world-wide recreational activity and sport, this technique can be performed at different skill levels. Thus for the 8 athletes considered, in Table 7, is reported the correspondent skill level in addition to the athletes’ gender. Precisely there are two skill levels: recreational (R) and achiever (A) and so the dataset consist in four athletes A and four R. From Table 8 it can be noticed that Athlete 3 performs only the DP variant and this aspect will be discussed more deeply at the end of this Chapter. All the other athletes perform DP, KDP and also DS. These informations permit to develop
some hypotheses on the final results. For example, it is reasonable to think that an achiever athlete performs the different variants of the technique (DP, KDP, DS) better and more consistently than a recreational one.

<table>
<thead>
<tr>
<th>Athlete</th>
<th>Gender</th>
<th>Skill Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>Female</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>Female</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>R</td>
</tr>
</tbody>
</table>

Table 7: Informations about athletes considered in the dataset. Notice that A and R stand for Achiever and Recreational, respectively.

<table>
<thead>
<tr>
<th>Technique</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>KDP</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DS</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 8: Cross-Country skiing variants with the athletes that adopt each different technique. Notice that DP, KDP and DS stand for Double Poling, Kick-Double-Pole and Diagonal Stride, respectively.
3.2 Classic Cross-Country Skiing Activity

Referring to the *Activity Categorization* introduced in Section 1.1 in this paragraph we want to describe the Classic Cross-Country Skiing intended as Activity that we want to recognize. Following the guideline concepts in Table 1, in this work, the *Classic Cross-Country Skiing activity* can be described as reported in Table 9.

<table>
<thead>
<tr>
<th>Device</th>
<th>Sensor</th>
<th>Position</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wearable</td>
<td>Accelerometer</td>
<td>Hand-Wrist</td>
<td>Sport Activity</td>
</tr>
</tbody>
</table>

Table 9: Categorization of Classic Cross-Country Skiing activity according to the key-concepts introduced in Section 1.1.

Specifically the device used is a smartwatch that permit to collect accelerometer, gyroscope and magnetometer data at sampling frequency 100 Hz while an Athlete is performing Classic Cross-Country Ski. For simplicity, this thesis work we consider only the 3-axial accelerometer data. As Section 1.1 suggests, other activity categorization can be evaluated. Classic Cross-Country Skiing can be classified as *Continuous-Repetitive Activity* given that this Activity turns in continuous data streams which admits periods of non-activity amidst periods of activity. Furthermore the activity is composed by repetitive gestures: *DP gestures*, *KDP gestures* and *DS gestures*.

Now, a definition of *Atomic Gesture* must be introduced:

- **Atomic Gesture**: In this situation we consider Atomic Gesture, one single gesture of type DP, KDP or DS whose phases are respectively illustrated in Figure 17, 18 and 19. So the data stream, apart from non-activity periods, is a succession of Atomic Gesture.

The first aspect analyzed with the Atomic Gesture is the *Period*.

- **Period**: We consider period of the Atomic Gesture, the duration of a single gesture of type DP, KDP or DS; usually it is measured in seconds.

Analyzing the athletes period we can get some conclusions on each athlete and we can notice some difference between DP, KDP and DS. In Figure 20 we can easily see the mean period of each Athlete for the three different gestures. In this way, we can identify which athlete perform the specific technique faster or slower than the others. For example, *Athlete 6* is the fastest DP performer while *Athlete 7* is the slowest. A general conclusion can be that *Athlete 6* is the fastest in performing all the techniques and the average value calculated in each
Table 10: Reference period for DP, KDP and DS Atomic Gesture Class measured in seconds and Samples Number, n, that represent the Atomic Gesture length.

<table>
<thead>
<tr>
<th>Atomic Gesture Class</th>
<th>Reference Period</th>
<th>Samples Number (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>1.50 s</td>
<td>150</td>
</tr>
<tr>
<td>KDP</td>
<td>1.60 s</td>
<td>160</td>
</tr>
<tr>
<td>DS</td>
<td>1.42 s</td>
<td>142</td>
</tr>
</tbody>
</table>

Figure 20: Mean period for all the athletes divided for class. The last bar of each class is the reference period for the particular Gesture. Notice that Athlete 3 haven’t data for class KDP and DS.

Figure 21: Mean period of each type of gesture divided for athletes. Notice that we don’t have KDP and DS data for Athlete 3.

The consideration that KDP atomic gesture is slower than the DP and DS is better observable in Figure 21 where is reported the mean period of each type of gesture divided for athletes. It is clear that despite the velocity between the athletes is different, each athlete takes longer to perform a KDP gesture rather than his DP gesture. On the other hand, each athlete takes less time to perform a DS gesture rather than his DP or KDP gesture. However this first analysis don’t permit to un-
nderstand which athlete performs the techniques with a better quality of movement.

In the previous analysis it can be noticed that Athlete 3 hasn’t data associated to KDP and DS techniques. This is a problem for the following consideration. For this person a comparison between gestures can’t be provided and thus, also the DP class data, must be considered inconsistent. For this reason Athlete 3 data are not included in future discussion. With this dataset restriction the Athletes included in the dataset remain 7, all with consistent data for the three class of Gesture: DP, KDP and DS.
4.1 INTRODUCTION

In the previous chapter we have discuss the dataset. The goal of this thesis is to apply the SAX technique, widely described in Chapter 2, on the Classic Cross-Country Skiing dataset and to be able to classify the technique performed by the Athletes. In order to use SAX Distance for classification only one acceleration data has to be used. SAX Distance must be calculated on two strings for which the comparison makes sense. For example, it would not be reasonable to compare a string obtained from x-acceleration data with a string obtained from y or z-acceleration data. Specifically, we consider only the x-axis acceleration data because it is the most informative signal in the dataset in exam. In fact, the axes y and z data stream represent a signal with a high noise level. For this reason we chose to not consider y and z acceleration. In Figure 22 an example of DP atomic gesture where it is apparent the higher informative content in the x-axis than the other accelerometer signal. In Figure 23 we show a diagram of the proposed algorithm.

![Graph of acceleration data](image)

Figure 22: Example of typical DP Atomic Gesture. The highest part of the informative content of the Gesture seems to be contained in the x-axis.
Figure 23: Algorithm diagram. Three color indicate the different phase of the algorithm: in red, Gesture Identification (Section 4.2), in blue, SAX (Section 4.3, 4.4 and 4.5) and, in green, Classification (Chapter 5).
4.2 GESTURE IDENTIFICATION

Starting from the x-acceleration data stream we extract the Atomic Gestures of each Athlete using a Gaussian Filter created ad hoc [71]. In Figure 24 is illustrated how the Gaussian Filter allows to isolate each single gesture amidst the data stream.

In brief, we want to apply the SAX technique on all this Atomic Gestures and then find the most representative Atomic Gesture for each class (DP, KDP and DS). These most representative Atomic Gesture are called templates and they will be useful to solve the classification problem with SAX Distance. SAX needs a setting phase in which find optimal values for the parameters \(w \) (word length) and \(\alpha \) (alphabet size). For this reason Section 4.3 and Section 4.4 details the steps taken to search, respectively, \(w \) and \(\alpha \) optimal values. While in Chapter 5 are reported some considerations on the templates choice with the correspondent classification results.

4.3 SETTING THE WORD LENGTH

The Word Length \(w \) is closely connected to the signal PAA. For this reason, we search \(w \) in such a way that a trade-off between the two following objectives is achieved:

1. The PAA approximated signal well represents the original signal trend.
2. The PAA approximated signal reduces the noise effect on the signal.

It is clear that increasing \(w \) the PAA approximated signal represent more precisely the original signal movement. But we want to maintain \(w \) much lower than the Atomic Gesture signal length (\(n \)). In Table 11 are summarized some examples obtained varying the value of \(w \);
the signal in the example, depicted in Figure 25, 26 and 27, represent a DP Atomic Gesture so the reference period is 1.5 s corresponding to 150 samples (n=150).

<table>
<thead>
<tr>
<th>Atomic Gesture</th>
<th>Word Length</th>
<th>Compression Rate</th>
<th>Figure Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>10</td>
<td>~ 15</td>
<td>Figure 25</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>~ 8</td>
<td>Figure 26</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>~ 5</td>
<td>Figure 27</td>
</tr>
</tbody>
</table>

Table 11: DP Atomic Gesture with reference period 1.5 s (n = 150). Different compression rate are considered. In Figure Ref. is visible the PAA signal for different w values.

The signal shows high noise at the beginning and at the end of the Atomic Gesture. Figure 25, 26 and 27 prove that higher compression rate values imply more noise filtered. On the other hand, the PAA signal results less adherent to the than the original signal. These conclusions can be easily appreciated in Figure 25. In this application we retain more important that the PAA signal evolution follow at the best the original signal evolution thus we chose a length word $w = 30$. A value of w high enough to follow the original signal, but with a reasonable dimensionality reduction effect.

In this paragraph we have considered the reference period 1.5 s to simplify the argument. Actually, as in Section 3.2, the period is different between different Atomic Gestures also if they are in the same Gesture class and executed by the same Athlete. For example, it’s not strange find DP Atomic gesture with period 1.3 s even though the reference period for DP Atomic Gesture is 1.5 s.

4.3.1 SAX on variable period

Working on Atomic Gestures it is necessary to consider the period information. For this reason, even if the word length is fixed, the number of samples considered in each PAA frame vary with the signal period. For example, with $w = 30$, if the Atomic Gesture signal length is 150 (period=1.5 s) then the number of samples in each PAA frame is about 5 else if the Atomic Gesture signal length is 120, in each PAA frame there are 4 samples. This is not a problem in the proposed framework because we may think if an Athlete performs a Gesture faster then the signal maintains the same shape but proportionally scaling it.

So the length of each PAA frame is proportional to the Atomic Gesture period, but usually differs from one gesture to another. For this reason we calculate the number of samples in each PAA frame as $n = \frac{n}{w}$ rounded down to the nearest integer. In most cases n is not
4.3 Setting the Word Length

Figure 25: A DP Atomic Gesture. Word length: \(w = 10 \), Atomic gesture period: \(1.6 \text{ s} \) (\(n = 160 \)).

Figure 26: A DP Atomic Gesture. Word length: \(w = 20 \), Atomic gesture period: \(1.6 \text{ s} \) (\(n = 160 \)).

Figure 27: A DP Atomic Gesture. Word length: \(w = 30 \), Atomic gesture period: \(1.6 \text{ s} \) (\(n = 160 \)). Notice that \(n \) is not divisible for \(w \) then the last PAA frame is longer than the other.
divisible by \(w \) and then the rest of this fraction indicate the number of samples not considered in the PAA approximation. With \(w = 30 \) the rest could be an integer in the interval between 0 and 29. At this point, two options have been evaluated:

1. Not to consider the excess samples.
2. To include the samples in excess in the last PAA frames calculation.

With the first solution we have an uncontrollable information loss; in fact we eliminate a signal’s portion of length variable from an Atomic Gesture to another. Also the second option has some problems; in this case the last PAA frame includes a variable number of samples, for this reason is different from the other PAA frame in the same Atomic Gesture. By increasing the word length the aforementioned problems are accentuated.

To avoid information loss and last PAA frames too different from the others, we use the period information as follow.

1. We calculate the PAA frame length \((\ell) \) as \(\frac{n}{w} \) rounded down to the nearest integer.
2. We calculate the rest of \(\frac{n}{w}, r \), that is an integer between 0 and \(w - 1 \).
3. We calculate how many other PAA frames could be created with the \(r \) excess samples as \(\frac{r}{\ell} \) rounded down to the nearest integer.
4. We calculate the rest of \(\frac{r}{\ell} \), that is an integer between 0 and \(\ell - 1 \).

The last rest represents the real number of samples neglected that, at worst, is still significantly less than \(w - 1 \). In fact, with this method it’s obvious that increasing \(w \) then the final number of excess samples tends to 0. In this way we get that all of the Atomic Gesture signals could be approximated with a PAA signal formed by \(w + \lfloor \frac{r}{\ell} \rfloor \) frames of equal size. In this way, however, the number of frames vary from an Atomic Gesture to another and depends from the period thus leading to having some Atomic Gestures with word length greater than \(w \). This kind of problem will be discuss in Section 4.5 where PAA signal translation into SAX string will be detailed.

4.4 Setting the Alphabet Size

The first step to choose the alphabet size \((\alpha) \) is fitting the PAA signals obtained as depicted in Section 4.3.1 with a Gaussian distribution. This distribution is strictly connected to the word length and to which Atomic Gestures are considered in the training phase. For example,
in Figure 28 we consider separately the DP, KDP and DS Atomic Gestures generating three different Gaussian distribution, one for each Gestures Class. The goal is to have a discretization technique that will produce symbols with equiprobability. The Gaussian distributions just described, however, could well represent only one Gestures Class.

![Figure 28](image1)

Figure 28: The three different Gaussian distribution, one for each Gesture Class. The *word length* is $w = 30$ in any case.

![Figure 29](image2)

Figure 29: Gaussian distribution of 150 Atomic Gestures (50 for each class). The *word length* is $w = 30$.

It’s reasonable to think the three class having equal probability. For this reason, in the following, we consider the Gaussian Distribution generated fitting data from the same number of DP, KDP and DS Atomic Gestures converted PAA approximated. An example of this Gaussian Distribution obtain from 150 Atomic Gestures (50 for each class) is illustrated in Figure 29 and it is characterized by *standard deviation* $\sigma = 8.616$ and *mean* $\mu = 0.067$. Once the reference Gaussian is fixed the *breakpoints* $B = \beta_1, ..., \beta_{\alpha - 1}$ can be calculated such that the
area under the Gaussian curve from β_i to β_{i+1} is equal to $\frac{1}{\alpha}$. In Table 12 B is reported varying the alphabet size obtained from the Gaussian in Figure 29.

<table>
<thead>
<tr>
<th>Alphabet size</th>
<th>Breakpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>[-8.26 -3.64 0.067 3.77 8.40]</td>
</tr>
<tr>
<td>7</td>
<td>[-9.13 -4.80 -1.48 1.61 4.94 9.26]</td>
</tr>
<tr>
<td>8</td>
<td>[-9.84 -5.74 -2.67 0.067 2.81 5.87 9.97]</td>
</tr>
<tr>
<td>9</td>
<td>[-10.45 -6.52 -3.64 -1.13 1.27 3.77 6.65 10.58]</td>
</tr>
<tr>
<td>10</td>
<td>[-10.97 -7.18 -4.45 -2.11 0.067 2.25 4.58 7.31 11.10]</td>
</tr>
</tbody>
</table>

Table 12: Breakpoints (B) values varying the alphabet size α). This values are obtained from the Gaussian Distribution in Figure 29 with $\sigma = 8.616$ and $\mu = 0.067$.

4.5 DISCRETIZATION PHASE

After establishing the word length and the alphabet size as suggested in the previous Sections, we have to obtain the SAX string from the PAA signal; in order to achieve that, all the PAA coefficients that are below the smallest breakpoint are mapped to the symbol a, all coefficients greater than or equal to the smallest breakpoint and less than the second smallest breakpoint are mapped to the symbol b, etc. However, as mentioned in Section 4.3.1, the PAA signals have a variable number of coefficients that changes from one Atomic Gesture to another, but is lower bounded by w. For this reason after the discretization phase we obtain one SAX string for each Atomic Gesture, but the length of this word is greater or equal than the word length desired. In Figure 30 an example of two DP Atomic Gestures with different period are reported; it can be noticed that, although w is the same, the number of PAA frames (coefficients) differs between them, leading to have SAX strings with different lengths. To calculate SAX distance between two strings we need words of the same length; for this reason, we need to extract a particular substring from the SAX string just obtained.

In Section 4.3 we explained that the original signals show a lot of noise at the beginning and the end of the signal itself. A PAA signal obtained with an high value of w is preferable but it suffers more this noise problem because it follow better the original signal trend. For this reason the first and the last PAA frames and the correspondent character in the SAX word carry less information than the others. To find the most important substring we proceed in the following way:
1. We first consider an Atomic Gesture with period \(n \) that is divisible by \(w \) and so we obtain the correspondent word with length \(w \). In this situation we can evaluate how many characters to consider important and we extract them from the SAX string. Given the previous consideration, the most important characters are the central ones. These \(w_1 \) extracted characters form the substring that represent the Atomic Gesture.

2. At point \(t \) we found a substring of length \(w_1 \). Even if for some Atomic Gesture \(n \) is not divisible by \(w \), and so the word is longer than \(w \), we can simply extract the \(w_1 \) central character.

![Figure 30](image1.png)

Figure 30: In both examples \(w = 30 \). Top panel, a DP Atomic Gesture with \(n = 148 \) that is approximated with 37 PAA frames. Bottom panel, a DP Atomic Gesture with \(n = 170 \) that is approximated with 34 PAA frames.

In Figure 31 we provide a visual intuition of the aforementioned procedure with an example of DP Atomic Gesture in which \(n \) is not divisible for \(w \). With this procedure we obtain a SAX string that represent better the original signal because \(w \) is high and we eliminated the characters correspondent to the portion of original signal more affected by noise and, therefore, less informative. At this point, the SAX distance can be calculated between two substring that have the same length \(w_1 \). Being \(w_1 < w \) it is required less memory occupation if we need to memorize the SAX string.
Figure 31: In the example $w = 30$, $w_1 = 28$, $\alpha = 7$. A DP Atomic Gesture with $n = 148$ that is approximated with 37 PAA frames. The word $bacbbabcdegggggfdddgggagggfedcbbaaaaa$ is the SAX string that represents the signal in Figure; from this are extracted the w_1 central characters. These are the characters that correspond to the lighten portion of the signal.
5.1 INTRODUCTION

As previously stated, we consider 7 Athletes that perform 3 different Cross-Country Skiing techniques. Each technique represent a class of Gestures:

- DP
- KDP
- DS

For all the Atomic Gesture extracted using the Gaussian Filter, we want to be able to recognize the Atomic Gesture and so classify it in the correct class of Gesture. In order to do this, each Atomic Gesture must be converted into SAX Substring as explained in the previous Sections. Then we have to calculate the SAX Distance between the Atomic Gesture that we want to classify and some reference strings (templates). Initially, each template matches one class of Gesture, so we have a template that represents DP Atomic Gesture, one KDP Atomic Gesture and another DS Atomic Gesture. Finally, we classify the Atomic Gesture in the nearest class of Gestures, where the metric distance is provided by SAX.

We test this procedure on the dataset where the Atomic gestures are already labeled as DP, KDP or DS. In this way we exactly know in which class each Atomic Gesture is included and we can calculate the classification accuracy.

- Percentage of Classification accuracy: The classification accuracy represent the number of gestures that results correctly classified in the class indicated on their label. The percentage will be calculated as ratio between number of gestures correctly classified and total number of gestures in exam.

In the following Sections we reported some classification results obtained with $w = 30, w_1 = 25$; these values allow to follow the original signal evolution, but with a reasonable dimensionality reduction effect and noise attenuation that is showed at beginning and at the end of the Atomic Gesture. Initially, $\alpha = 7$, in this way we can immediately give some impression on the particular templates choice and the logic behind the classification. However, in Section 5.3.2, we will change this value for further evaluations.
5.2 DP and KDP as Separated Class

The first step for the classification is to find the three templates, one for each class of gestures. Initially we are interested to classify the Atomic Gestures for one Athlete at a time. In fact, the Athletes differs for gender and skills level and thus it’s thinkable that even if we consider the same class, but different Athletes, probably the gestures are still different. Moreover, in this way it’s possible to verify how precise and similar are, between them, the gestures of a single class performed by a single Athlete.

In Figure 32 we reported the classification accuracy for the seven athletes obtained with \(w = 30, w_1 = 25 \) and \(\alpha = 7 \); it can be noticed that only Athlete 4 reaches an elevated percentage of classification accuracy in all his techniques performed. Many Athletes show an higher percentage for DS Gestures rather than their DP and KDP Gestures. This consideration means that many DP or KDP Atomic Gestures are misclassify as KDP or DP gestures, respectively and thus DP and KDP are hardly distinguishable. Furthermore, in general, we can’t be satisfied by these results. For these reasons in Section 5.3 we try other ways which could improve the results.

5.3 DP and KDP as Single Class

With the experiments in Section 5.2 we noticed that a lot of DP Atomic Gestures are misclassified as KDP and vice versa. Given the device position, this misclassification seems reasonable and it may be due to a sensor-placement limitation. In fact, a sensor placed on the ankle may ensure a more realistic data collection that could represent better the "kick action", distinguishing better DP from KDP and guaranteeing also a better classification. For this reason in the following we try to consider DP and KDP as a single class. In Section 5.3.1 we reported
the results obtained with a single template that represent the single class DP/KDP while in Section 5.3.2 we reported the results obtained with two template that represent the single class DP/KDP.

5.3.1 One template for DP/KDP

As in Section 5.2 we want to find a number of templates equal to the number of class considered. Given that we want to consider DP and KDP as single class, it is necessary to find two templates, one that represent DP/KDP class and another that represent the DS class. In this way we classify an Atomic Gesture as DP if the SAX Distance between it and the DP/KDP template is lower than the SAX Distance from the DS template and vice versa.

In Figure 33 we report the percentage of Classification accuracy for the seven Athletes. It can be noticed that the percentages results not good for the majority of Athletes. With other values of α the situation doesn’t improve, but we can observe that Athlete 7 is the best Athlete in terms of Gestures similarity inside each his class.

Figure 33: In this experiment: $w = 30$, $w_1 = 25$ and $\alpha = 7$. Percentage of Classification accuracy for the seven Athletes. Each class of every Athlete is represent by one template. To classify them, each athlete’s gesture is confronted only with his two templates. Notice that DP classification accuracy represent the percentage of DP Atomic Gesture exactly classify into DP/KDP class, not in DP class. At the same way for KDP Atomic gesture.

5.3.2 Two templates for DP/KDP

In this section, we want to find three templates, one for DP, one for KDP and another for DS; only at a later time we consider DP and KDP as single gesture class. Specifically when we have to classify an Atomic Gesture, we evaluate which is the nearest class using the three templates. But whether the nearest class is DP or KDP, the Atomic Gesture in exam will be classified in the DP/KDP class. In this way we admit that we are unable to distinguish DP from KDP Atomic
Gesture but we reduce the misclassification percentage between DP or KDP and DS gestures. Also in these experiments we individually evaluate the Athletes so we find three templates for each Athlete. Now, we discuss about this situation varying α, with $w = 30$ and $w_1 = 25$; three examples are summarized in Table 13 and are illustrated in Figure 34, 35 and 36.

<table>
<thead>
<tr>
<th>α</th>
<th>w</th>
<th>w_1</th>
<th>Figure ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>30</td>
<td>25</td>
<td>Figure 34</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>25</td>
<td>Figure 35</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>25</td>
<td>Figure 36</td>
</tr>
</tbody>
</table>

Table 13: Examples of testing the classification with SAX technique varying α. At Figure ref. the classification accuracy correspondent results.

In Figure 34 it can be noticed that the percentages of classification accuracy are not good for the majority of Athletes. It depends from α that is too small. This consideration confirm that the alphabet size that allows to obtain the higher percentage of classification accuracy must be greater or equal than 7.

In Figure 35 and 36, it can be noticed that Athlete 4 and Athlete 7 reach the best classification accuracy. For this reason we think that they execute the gestures always in the same manner. The skill level is different between the two athletes because Athlete 4 is an Achiever but Athlete 7 is a Recreational one. We think that the skill level influences more the movement quality rather than the similarity between Atomic Gesture
included in a specific class performed by an athlete. This consideration explains why the other Achiever Athletes don’t reach elevated accuracy percentage instead of what we could expect. It’s also possible that a Recreational Athlete execute the Gesture always at the same manner because he doesn’t personalize the technique instead an Achiever can afford to be less rigorous on the technique.

Finally, comparing Figure 35 with Figure 33 the hypothesis that with one template to represent the class DP/KDP a lot of DP Atomic Gestures are misclassified as KDP and vice versa seems correct. In fact,
in both methods the DS accuracy remains the same while the DP and KDP accuracy intensely improve. In Table 14 we reported the Sax Distance calculated between the three templates of each Athlete in the case of $\alpha = 7$. From this distance values we can’t deduce interesting conclusions, but it can be noticed that, for each Athlete, the distance between DP and KDP templates is the smallest. This fact confirms that with an accelerometer placed only on the wrist, DP and KDP gestures seems indistinguishable.

<table>
<thead>
<tr>
<th>Athlete</th>
<th>Skill Level</th>
<th>DP vs KDP</th>
<th>DP vs DS</th>
<th>KDP vs DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>34.12</td>
<td>27.04</td>
<td>28.62</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>16.03</td>
<td>24.75</td>
<td>17.36</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>28.80</td>
<td>56.75</td>
<td>35.76</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>11.68</td>
<td>30.82</td>
<td>24.70</td>
</tr>
<tr>
<td>6</td>
<td>R</td>
<td>27.52</td>
<td>41.98</td>
<td>44.11</td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td>7.78</td>
<td>34.18</td>
<td>34.71</td>
</tr>
<tr>
<td>8</td>
<td>R</td>
<td>6.95</td>
<td>29.13</td>
<td>25.43</td>
</tr>
</tbody>
</table>

Table 14: SAX Distance between templates in the case $w = 30$, $w_1 = 25$ and $\alpha = 7$. In the Table DP vs KDP stands for “SAX Distance between DP and KDP templates”. In the same way, the others.

In Appendix A we provide the results of three experiments done with 3 templates in common between subset of Athletes in exam. In the first experiment we consider only Achiever Athletes, in the second only the Recreational ones, and in the last we consider all the Athletes. In Table 15 we summarized the results obtained in the different experiments, introducing a classification rate calculated as average between the classification accuracy of all the Athletes.

<table>
<thead>
<tr>
<th>Experiment ref.</th>
<th>Classification Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 32</td>
<td>67.93</td>
</tr>
<tr>
<td>Figure 33</td>
<td>83.36</td>
</tr>
<tr>
<td>Figure 34</td>
<td>77.85</td>
</tr>
<tr>
<td>Figure 35</td>
<td>86.02</td>
</tr>
<tr>
<td>Figure 36</td>
<td>87.47</td>
</tr>
</tbody>
</table>

Table 15: Classification rate for the different Experiments.
5.4 FROM GESTURES TO ACTIVITY RECOGNITION

In the previous sections we have detailed the performances achieved in classifying each atomic gesture. However, it has to be reminded that we are dealing with an activity recognition problem and not with a gesture recognition one; even tough in some activity types the users may be interested in having a detailed description/classification of each gesture, in cross-country skiing performing a classification on a gesture level seems to be an excessive and superfluous target. As a consequence, in the following we will show how the proposed classification procedure performs in an activity recognition prospective.

In the following, we consider only 2 Athletes:

- An Achiever: Athlete 4
- A Recreational: Athlete 7

We simulated a training session in which, each Athlete, has to perform the three techniques DP, KDP and DS, for the same time. We want to use additional information provided from a group of subsequent Atomic gestures for the following reason: considering continuous-repetitive activities, it’s reasonable to think that if an Athlete performs a particular techniques, he will perform it continuously for a considerable number of subsequent Atomic Gestures.

In order to consider a group of subsequent gesture, we use a sliding window approach that allows to evaluate the sequence the Atomic Gestures related to the training session simulation and already classified as in Section 4. In this way, we consider a sliding window of fixed size ℓ_{sw} that includes ℓ_{sw} subsequent Atomic Gestures at a time. Calculating the mode between the class of these ℓ_{sw} Atomic gestures, we find the the activity that represent the window in exam.; we memorize that the athlete has performed this activity for the period of the central Atomic Gesture of the window. After, we shift the sliding window of one position, considering other ℓ_{sw} Atomic gestures and so on. In Figure 37 we illustrated an example of three sliding window shifting, considering $\ell_{sw} = 3$.

![Figure 37: Examples of sliding window in three subsequent shifting on the Atomic Gestures sequence; $\ell_{sw} = 3$. Notice that the arrowed lines point to the central Atomic Gesture of each window.](image)

We tested this approach with different sliding window size: $\ell_{sw} = 3$, $\ell_{sw} = 7$ and $\ell_{sw} = 11$. Values of ℓ_{sw} greater than 11 seem too ele-
vated because we consider reasonable that after 11 gestures of one technique, an athlete change activity. In Table 16, for each Athlete, we summarized three experiments executed considering the Atomic Gesture classification with the three class DP, KDP and DS, as in Section 5.2. In this way we show how time of Activity is recognized compared to the total time of Activity. It can be noticed that the Activity recognition works better increasing ℓ_{sw}. For Athlete 4 the activity recognition works better than Athlete 7; it means that in order to obtain great results of activity recognition, we need a classification accuracy of Atomic Gestures $>50\%$ in each class.

Instead, in Table 17, for each Athlete we summarized three experiments executed considering the Atomic Gesture classification with the two class DP/KDP and DS, as in Section 5.3.2; it can be noticed that the total activity time is recognized for $\ell_{sw} \geq 7$ for both the Athlete; in this case in fact, the classification accuracy of Atomic Gestures $>50\%$ in each class.

<table>
<thead>
<tr>
<th>Athlete</th>
<th>ℓ_{sw}</th>
<th>Recognized Activity time/ Total Activity time</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>10’ 41” / 11’ 41”</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>11’ 15” / 11’ 41”</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11’ 19” / 11’ 41”</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>6’ 42” / 11’ 36”</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6’ 59” / 11’ 36”</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>7’ 06” / 11’ 36”</td>
</tr>
</tbody>
</table>

Table 16: Recognized Activity time on Total Activity time varying ℓ_{sw} for DP, KDP as separated class.

<table>
<thead>
<tr>
<th>Athlete</th>
<th>ℓ_{sw}</th>
<th>Recognized Activity time/ Total Activity time</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>11’ 33” / 11’ 41”</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>11’ 41” / 11’ 41”</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11’ 41” / 11’ 41”</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>11’ 29” / 11’ 36”</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>11’ 36” / 11’ 36”</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11’ 36” / 11’ 36”</td>
</tr>
</tbody>
</table>

Table 17: Recognized Activity time on Total Activity time varying ℓ_{sw} for DP and KDP as single class.
In this Chapter we want to test the algorithm detailed in the previous Chapters, with Normal Day Activity. We consider a well-known and well-documented dataset, a reduced version of the UCI Human Activity Recognition Using smartphones Dataset [72]. The dataset includes data from experiments that were carried out with a group of 30 volunteers within an age bracket of 19-48 years. They performed a protocol of activities composed of six basic activities: three static postures (standing, sitting, lying) and three dynamic activities (walking, walking downstairs and walking upstairs). The experiment also included postural transitions that occurred between the static postures. These are: stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie, and lie-to-stand. All the participants were wearing a smartphone, Samsung Galaxy S II, on the waist during the experiment execution. In the experiments 3-axial linear acceleration and 3-axial angular velocity have been captured at a constant rate of 50 Hz using the embedded accelerometer and gyroscope of the device.

6.1 Walking and Walking Up/Down-Stairs

We are interested only to Continuous-Repetitive Activity so we consider only the data that correspond to walking (WLK), walking upstairs (WUS) and walking downstairs (WDS) disregarding also the postural transitions. Furthermore, each activity is composed by repetitive gestures: WLK Atomic Gestures, WUS Atomic Gestures and WDS Atomic Gestures. For simplicity, we consider only 3 persons randomly extracted from the 30 volunteers. We want to test the activity recognition algorithm in order to discriminate between WLK, WUS and WDS using only the only the 3-axial accelerometer data. However, for the reasons reported in Section 4.1 we have to choose only one acceleration axis. In Figure 38 an example of WDS gesture; it can be noticed that all the axes seems to contain informative content of the Gesture. However, we think that, given the sensor position, y or z axis can better discriminate between the Activities thus we test the algorithm firstly with z-axis acceleration data and then with y-axis acceleration data.
50 NORMAL DAY ACTIVITY CLASSIFICATION

Figure 38: Example of typical WDS Atomic Gesture. The informative content of the Gesture seems to be subdivided between the three axes.

6.2 GESTURE IDENTIFICATION

Starting from the x-acceleration data stream we can obtain information about the Atomic Gesture periods using a Gaussian Filter created ad hoc. The x-acceleration data stream show a periodicity more remarked than the other axes. For this reason the filter works better on x-axis and it is easier to find the beginning and the end of the Atomic Gestures. In Figure 39 is illustrated how the Gaussian Filter allows to isolate each single gesture amidst the data stream. Each beginning and end allow to extract one Atomic Gesture signal from z-axis acceleration data stream (in the same way if we consider y-acceleration data stream).

Figure 39: Filtering the x-axis signal with a Gaussian Filter we can individuate the Atomic Gestures to extract from the z-axis signal. In Figure a dotted line separates two consecutive Atomic Gestures.
6.3 ATOMIC GESTURE CLASSIFICATION

In this Section we test the recognition algorithm, resetting ad hoc the parameters \(w, w_1 \) and \(\alpha \). Following the considerations reported in the previous Chapters, in this situation we consider \(w \) as high as possible. The sampling rate is 50Hz and the minimum period for an Atomic Gesture is almost 1s, for this reason it doesn’t seems reasonable to choose a value of \(w > 20 \). Furthermore, the signal doesn’t seems affected by noise and so we can set \(w_1 = 18 \). The results showed in the following are obtained with \(\alpha = 7 \). For each person we selected three template that represent the 3 class of gestures: WLK, WUS, WDS and we evaluate the classification accuracy. In Section 6.3.1 we consider Atomic Gestures extracted from z-axis data stream while in Section 6.3.2 we consider Atomic Gestures extracted from y-axis data stream.

6.3.1 z-Axis Atomic Gestures

In this Section we consider the Atomic Gestures extracted from the z-axis data stream, we test the recognition algorithm evaluating the classification accuracy for the three persons in exam. In Figure 42 it can be noticed that only Person 3 reaches an elevated percentage of classification accuracy, over 70%, in all his activities. The other Persons show an higher percentage for WLK Gestures rather than their WUS and WDS Gestures. This consideration can mean that many WUS or WDS Atomic Gestures are misclassify as WDS or WUS gestures, respectively. This fact is confirmed by the confusion matrix reported in Figure 40. Trying to solve the misclassification problem we consider WUS and WDS as single class of Gestures (WUS/DS), but using always the same three templates. In Figure 43 can be appreciated the results; it can be noticed that the percentage of classification accuracy is increased reaching a good level of activity recognition. However, in this way we can distinguish only between walking and walking up or down-stairs.

6.3.2 y-Axis Atomic Gestures

In this Section we consider the Atomic Gestures extracted from the y-axis data stream, we test the recognition algorithm evaluating the classification accuracy for the three persons in exam. In Figure 44 it can be noticed that an elevated percentage of WDS gestures of each Person are misclassified. As in Section 6.3.1, the confusion matrix in Figure 41 confirms that many WUS Atomic Gestures are misclassify WDS gestures and vice versa. In Figure 45 can be appreciated the results obtained considering WUS and WDS as single class. However, also in this case, we can’t distinguish between walking up-stairs and walking down-stairs.
Figure 40: z-Axis Atomic Gestures. From left to right, the confusion matrix of person 1, 2 and 3, respectively.

Figure 41: y-Axis Atomic Gestures. From left to right, the confusion matrix of person 1, 2 and 3, respectively.
6.3 ATOMIC GESTURE CLASSIFICATION

Figure 42: z-Axis Atomic Gestures. In this experiment: $w = 20$, $w_1 = 18$ and $\alpha = 7$. Percentage of Classification accuracy for the three Persons. Each class of every Persons is represent by one template. To classify them, each person’s gesture is confronted only with his three templates.

Figure 43: z-Axis Atomic Gestures. In this experiment: $w = 20$, $w_1 = 18$ and $\alpha = 7$. Percentage of Classification accuracy for the three Persons. Each class of every Persons is represent by one template. To classify them, each person’s gesture is confronted only with his three templates. Notice that WUS classification accuracy represent the percentage of WUS Atomic Gesture exactly classify into WUS/DS class, not in WUS class. At the same way for WDS Atomic gesture.
Figure 44: y-Axis Atomic Gestures. In this experiment: $w = 20$, $w_1 = 18$ and $\alpha = 7$. Percentage of Classification accuracy for the three Persons. Each class of every Persons is represented by one template. To classify them, each person’s gesture is confronted only with his three templates.

Figure 45: y-Axis Atomic Gestures. In this experiment: $w = 20$, $w_1 = 18$ and $\alpha = 7$. Percentage of Classification accuracy for the three Persons. Each class of every Persons is represented by one template. To classify them, each person’s gesture is confronted only with his three templates. Notice that WUS classification accuracy represents the percentage of WUS Atomic Gesture exactly classify into WUS/DS class, not in WUS class. At the same way for WDS Atomic gesture.
It is impossible to choose only one axis-data stream, but for apply the recognition algorithm and, more in general, the SAX technique, we had to make a choice. In Sections 6.3.1 and 6.3.2 we notice that we are not able to well distinguish between WUS and WDS. Person 3 who shows the best classification accuracy of Atomic Gestures obtained from z-axis, is that one who obtain the worst accuracy considering y-axis data. From these results we think that a classification based only on one axis data stream is too limited.

6.5 From Gestures to Activity Recognition

As in Section 5.4 we used the Gesture classification to solve the activity recognition problem in exam. In the following, we consider only the gesture classification based on z-axis acceleration data. We simulated a session in which, each Person, has to walk, walk up-stairs and walk down-stairs, for the same time. We tested this approach with different sliding window size: $\ell_{sw} = 3$, $\ell_{sw} = 5$ and $\ell_{sw} = 7$. In Table 18, for each Athlete, we summarized three experiments executed considering the Atomic Gesture classification with the three class WLK, WUS and WDS, as in Section 6.3.1. In this way we show how time of Activity is recognized compared to the total time of Activity. Instead, in Table 19, for each Athlete, we summarized three experiments executed considering the Atomic Gesture classification with WUS and WDS as single class.

<table>
<thead>
<tr>
<th>Person</th>
<th>ℓ_{sw}</th>
<th>Recognized Activity time/ Total Activity time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3' 30" / 4' 48"</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3' 42" / 4' 48"</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3' 49" / 4' 48"</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3' 05" / 3' 42"</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3' 06" / 3' 42"</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3' 09" / 3' 42"</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3' 18" / 3' 40"</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3' 28" / 3' 40"</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3' 29" / 3' 40"</td>
</tr>
</tbody>
</table>

Table 18: Recognized Activity time on Total Activity time varying ℓ_{sw} for WUS, WDS as separated class.
<table>
<thead>
<tr>
<th>Person</th>
<th>ℓ_{sw}</th>
<th>Recognized Activity time/ Total Activity time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4′ 07″ / 4′ 48″</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4′ 15″ / 4′ 48″</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4′ 26″ / 4′ 48″</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3′ 14″ / 3′ 42″</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3′ 14″ / 3′ 42″</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3′ 15″ / 3′ 42″</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3′ 22″ / 3′ 40″</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3′ 29″ / 3′ 40″</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3′ 29″ / 3′ 40″</td>
</tr>
</tbody>
</table>

Table 19: Recognized Activity time on Total Activity time varying ℓ_{sw} for WUS and WDS as single class.
CONCLUSION

In this thesis we focused on activity recognition, a vast topic that is widely discuss in the engineering area of interest. First, we documented about the main techniques employed in recognition problems and we retained DTW, HMM, SVM, DT/RF, BN and k-NN the most diffused. We also provided a general Activity description which introduce some key-concepts that characterize an Activity, such as device and sensors used to capture the data and theirs positions. Viewing the related works we understood that the sensors positions are strictly related to the specific Activities in exam; in some one cases sensor in one place is not adequate, but we need a sensors network to guarantee consistent data streams. We provided a new categorization of Activity defining three Activity Type: Continuos-Repetitive, Continuos-Spot and Isolated.

Later, we considered an activity recognition problem that concern the Cross-Country Skiing. The dataset in exam is a new collection of data obtained from the smartwatch on the wrist of 8 athletes that perform 3 different techniques of Classic Cross-Country Skiing: DP, KDP and DS that we considered as Continuos-Repetitive Activities. All the inertial sensors were embedded in the smartwatch and we didn’t receive data from other devices. In our activity recognition algorithm we considered only data derived from the 3-axial accelerometer. After giving a definition of Atomic Gesture and Period, we analyzed the Atomic Gesture periods for each different techniques in exam, obtaining one reference period for DP, one for KDP and another for DS. From this first analysis we found out that KDP Atomic Gesture is slower than the others while DS Atomic Gesture is the fastest. Furthermore, we decided to overlook Athlete 3 due to lack of data.

Our activity recognition algorithm is composed by 3 phases: Gesture Identification, SAX and Classification. In the Gesture Identification phase we extracted from the x-acceleration data stream the Atomic Gestures of each Athlete using a Gaussian Filter that allows to isolate each single gesture amidst the data stream. The algorithm core is SAX, a symbolic representation used in several fields of application that allows dimensionality reduction. We applied SAX to the Atomic Gestures setting the parameters w and α. We noticed that $w = 30$ is a value high enough to follow the original signal evolution and with a reasonable dimensionality reduction effect. However, working on Atomic Gesture it was necessary to consider the period information that differs from one to another. For this reason, we changed the common SAX technique introducing a new parameter: w_1 that represent the length of the main part of the SAX Sting. The value $w_1 = 25$
allowed to reduce the noise that is showed at beginning and at the end of the Atomic Gesture. In the classification phase, we tested the algorithm on the Atomic Gestures in the dataset in exam fixing $\alpha = 7$. We obtained poor recognition results for every Athletes, but this was reasonable because the device/sensor position don’t allow to distinguishing between DP from KDP. For this reason, we considered DP and KDP as single class. With this consideration and $w = 30$, $w_1 = 25$ and $\alpha = 10$ we obtained the best results with percentages of accuracy $> 70\%$ and for two Athletes $> 90\%$. Then, we showed how the proposed classification procedure performs in an activity recognition prospective. We used a sliding window approach; we tested this method with different window size, obtaining great results also in the case of DP and KDP considered as separated class. We recognized 11’19” of Activities on a total Activity time of 11’41” while, if we consider DP/KDP as single class, all the activities have been correctly recognized.

In the last part, we tested the aforementioned algorithm on a well-known dataset. We considered 3 continuos-repetitive normal day Activities, played by 3 persons: Walking, Walking Up-stairs and Walking Down-stairs. In this case we had some difficulty to choose the main accelerometer axial because the informative content of the Gesture seemed to be subdivided between the three axes. For this reason we tested the algorithm firstly with z-axis acceleration data and then with y-axis acceleration data. In both cases we obtained poor recognition results. In this situations Walking Up-stairs and Walking Down-stairs seemed indistinguishable. In fact, considering this two activity as single class of gesture, with $w = 20$, $w_1 = 18$ and $\alpha = 7$ we obtained results with percentages of accuracy $> 70\%$. Applying the sliding window approach we obtained good results of Activity recognition.

A follow-up of this thesis can be the creation of a metrics that allows to measure the SAX Distance considering more than one acceleration axis. In this way, for example in the second dataset considered, combining the information obtained from y and z axes we may improve the recognition accuracy. Furthermore, we can can introduce an improved decision policy based on the classification performed on different axes.
In This Appendix we reported other classification results omitted in the previous chapters. In Figure 46 we illustrate the results obtained evaluating separately Achiever and Recreational Athletes; we chose three templates, in common between the Athletes in exam, that represent DP, KDP and DS, respectively. However we considered DP and KDP as single class. In Figure 47 we illustrate the results obtained evaluating all the Athletes; we chose three templates, in common between all the Athletes, that represent DP, KDP and DS, respectively. However, also in this experiment, we considered DP and KDP as single class.

Figure 46: In these experiments: \(w = 30, w_1 = 25 \) and \(\alpha = 7 \). Percentage of Classification accuracy for the Achiever Athletes (top panel) and Recreation Athletes (bottom panel). Each class is represent by one template. To classify them, each athlete’s gesture is confronted only with the same three templates. Notice that DP classification accuracy represent the percentage of DP Atomic Gesture exactly classify into DP/KDP class, not in DP class. At the same way for KDP Atomic gesture.
Figure 47: In this experiment: $w = 30$, $w_1 = 25$ and $\alpha = 7$. Percentage of Classification accuracy for the seven Athletes. Each class is represented by one template. To classify them, each athlete's gesture is confronted only with the same three templates. Notice that DP classification accuracy represents the percentage of DP Atomic Gesture exactly classified into DP/KDP class, not in DP class. In the same way for KDP Atomic gesture.

[72] [Online]. Available: https://sites.google.com/site/harsmartlab/
