Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Martinelli, Mattia (2015) Structural analysis and 3D modeling of a potential analogue of hydrocarbon reservoir: The Jurassic synsedimentary structure of Monte Testo (Southern Alps, Italy). [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF (Tesi)
12Mb
[img]
Preview
PDF (Carta geologica)
9Mb

Abstract

Structural traps created by synsedimentary extensional tectonics events can hold very interesting hydrocarbon accumulation and for this reason, they are a main target for the hydrocarbon exploration. Furthermore, the faults generated during extensional events can favour the circulation of dolomitaizing fluids, leading to the formation of fault related dolomitized bodies that can strongly improve the porosity framework. In the last few years, this type of bodies received particularly attention by the hydrocarbon industry, due to the decrease of conventional reservoir discoveries. However, structural network, porosity distribution, shape and geometry of the fault related dolomitized bodies and the porosity evolution of these types of reservoirs are difficult to predict only on the bases of well-logs and seismic information. The study of outcrop analogues can help to solve these issues. In this work I focused my attention to the carbonate platform of the Calcari Grigi group (formed by Monte Zugna, Loppio and Rotzo Formations), located on the Trento platform in the Southern Alps, which was extensively affected by synsedymentary extensional tectonic during the Early Jurassic. This tectonic event led to the tilting of the Loppio Formation and caused abruptly change of thickness in the Rotzo Formation. The extension ceased during the deposition of the upper part of the Rotzo Formation, which seals the Jurassic faults. During the late Paleocene-early Eocene, the Alpine tectonics reactivated, with a strike slip movement, the Jurassic faults allowing the circulation of dolomitizing fluids and leading to the formation of secondary fault-related dolomitized bodies. A Jurassic synsedimenatry structure affected by secondary dolomitization is spectacularly exposed near the Monte Testo on the Asiago Plateau. In this work a geological map, structural studies, porosity analysis, 3D photogrammetric model and 3D geomodel were realized in order to reconstruct the tectonic evolution, porosity distribution and reservoir potential of M.Testo structure and better understand geometry, shape and porosity of the fault-related dolomititized bodies. Moreover, this multi-approaching analysis allows to reconstruct the complex porosity evolution of the potential reservoirs. The final results have shown that during the Jurassic, the early cemented tilted and high porous (8%) blocks of the Loppio Formation were put in contact laterally and above with the low porous (0%) Rotzo Formation, creating important potential hydrocarbon traps on the upper part of the tilted blocks. At that time the Zugna Formation likely had a porosity given only by fracturing (1%), hence fluids might have circulated from depth up to potential Loppio reservoir following the extensional fault network. Starting from this moment onwards the porosity of the Loppio Formation began to decrease due to cementation. During Late Paleocene-Early Eocene, the formation of the fault-related dolomitized bodies within reactivated fault zones gave a new chance to the reservoir potential of the M. Testo structure. Indeed, these bodies have a porosity ranging from 0% to 10,6% with a mean of 4,7%. The higher porosity values are concentrated along the breccia fault zones enclosed within low porous and low permeable formations, confirming the strong relationship between late dolomitization and the structural network as well as the great potential of these bodies for hydrocarbon accumulation.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:3D modeling, Hydrocarbon reservoir, Synsedimentary structure, Dolomitized bodies, Geologica mapping, Structural analysis, Porosity analysis, Photogrammetry
Subjects:Area 04 - Scienze della terra > GEO/03 Geologia strutturale
Codice ID:50697
Relatore:Massironi, Matteo
Correlatore:Franceschi, Marco and Di Cuia, Raffaele
Data della tesi:27 November 2015
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Bosellini, A. Castellarin, G.V. Dal Piaz e M. Nardin, 1999. Carta geologica del Trentino Cerca con Google

Avanzini, M. (1994) Tettonica distensiva e controllo di facies nel Giurassico del Monte Pasubio (Trentino Sudorientale): l’esempio di Alpe Alba. Stud. Trentini Sci. Natur. Acta Geol., 69, 71–79. Cerca con Google

Avanzini, M. and Masetti, D. (1992) Il filone sedimentario giurassico di Alpe Alba (M. Pasubio, Trento): un indicatore di tettonica distensiva polifasica. Att.Tic.Sc.Terra, 35, 47–52. Cerca con Google

Avanzini M., Masetti D., Romano R., Podda F., Pontono M., 2002. Carta Geologica d’Italia 1:50:000-elenco delle formazioni-Calcari Grigi. Cerca con Google

Aydin, A. and Reches, Z., 1982. Number and orientation of fault sets in the field and in experiments. Geology, 10, 107–112. Cerca con Google

Bertotti, G., Picotti, V., Bernoulli, D., Castellarin, A., 1993. From rifting to drifting: tectonic evolution of the Southalpine upper crust from the Triassic to the Early Cretaceous. Sedimentary Geology 86 (1/2), 53e76. Cerca con Google

Bosellini A. and Hsu K.J., 1973 - Mediterranean Plate Tectonics and Triassic Palaeogeography. Nature, v. 249, n.5412, 144-146. Bosellini A., Gianolla P. and Stefani M., 2003 – Geology of the Dolomites. Episodes, v.26, 181-185. Cerca con Google

Bosellini A., Masetti D. and Sarti M., 1981 - A Jurassic “Tongue of the Ocean” infilled with oolitic sands: the Belluno Trough, Venetian Alps, Italy. Marine Geology, v.44, 59-95. Cerca con Google

Bosellini, A. and Broglio Loriga, C. (1971) I ‘‘Calcari Grigi’’ di Rotzo (Giurassico inferiore, Altopiano di Asiago) e loro inquadramento nella paleogeografia e nella evoluzione tettono-sedimentaria delle Prealpi Venete. Ann. Univ. Ferrara, 5(1), 1–61. Cerca con Google

Bosellini, A., and Hardie, L.A. (1988) Facies e cicli della Dolomia Principale delle Alpi Venete. Soc. Geol. Ital. Mem., 30, 245-266 Cerca con Google

Cannarozzo, R., Cucchiarini L., Mestieri W. , 2012. Le forme del rilievo Cerca con Google

Castellarin A. 2010. Basic stratigraphy and tectonics of the Southern Alps around the Giudicarie Lineament (Southern Alps, Italy) Ital.J.Geosci. (Boll.Soc.Geol.It.), Vol. 128, No. 2 (2009), pp. 409-417, 7 Cerca con Google

Castellarin, A. and Picotti, V., 1990. Jurassic tectonic framework of the eastern border of the Lombardian basin. Eclogae Geol. Helv., 83, 683–700. Cerca con Google

Castellarin, A., 1972. Evoluzione paleotettonica sinsedimentaria del limite tra Piattaforma Veneta e Bacino Lombardo a nord di Riva del Garda. Giorn. Geol., 38, 11–212. In Italian. Cerca con Google

Clari P. (1976) - Caratteristiche sedimentologiche e paleontologiche di alcune sezioni dei Calcari Grigi del Cerca con Google

Coward M. P., Daltaban T. S., Johnson H. (1998) Structural geology in reservoir characterization, Geological Society, London, Special Publications, 127. Cerca con Google

D.Wiprut and M.D.Zoback , 2002. Fault reactivation, leakage potential, and hydrocarbon column heights in the northern North Sea. NPF Special Publication 11, pp. 203-219, Cerca con Google

Dal Piaz G.V., Bistacchi A., Massironi M., (2003). Geological outline of the Alps. EPISODES, vol.26; p.175-180, ISSN: 0705-3797 Cerca con Google

Davies, G.J., and L.B. Smith, 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview: AAPG Bulletin, v. 90, p. 1641-1690 Cerca con Google

Delvaux, D., Sperner, B., (2003). Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. In: New Insights into Structural Interpretation and Modelling (D. Nieuwland Ed.). Geological Society, London, Special Publications 212, 75-100. Cerca con Google

Di Cuia, R., Riva, A., Scifoni, A., Moretti, A., Spotl, C, Caline, B., 2011. Dolomite characterisitic and diagenetic model of the Calcari Grigi Group (Asiago Plateau, Southern Alps – Italy): an example of multiphase dolomitization. Sedimentology Cerca con Google

Enos, P., and L.H. Sawatsky, 1981, Pore networks in Holocene carbonate sediments: Journal of Sedimenary Petrology, v. 51, p.961-986 Cerca con Google

Etchecopar, A., Vasseur, G., Daignie`res, M., 1981. An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis. Journal of Structural Geology 3, 51–65 Cerca con Google

Fossen, H., (2010), Structural Geology. Cambridge Press. 463 pp. Cerca con Google

Franceschi, M., Massironi, M., Franceschi, P., Picotti, V., 2014. Spatial analysis of thickness variability applied to an Early Jurassic carbonate platform in the central Southern Alps (Italy): a tool to unravel syn-sedimentary faulting. Terra Nova, 26, pp. 239-246, DOI: 10.1111/ter.12092 Cerca con Google

From Schmoker, J.W. and R.B. Halley, 1982, Carbonate Porosity Versus Depth: A predictable Relation for South Florida: AAPG Bulletin, v.66, p.2561-2570. Cerca con Google

Geoff Bohling, 2007. Hydrogeophysics: Theory, Methods, and Modeling. Boise State University, Boise, Idaho Gluyas JG and Swarbrick RE (2003) Petroleum Geoscience. Oxford: Blackwell Science. Cerca con Google

Healy, D., Jones, R.R. and Holdsworth, R.E., 2006. Three-dimensional brittle shear fracturing by tensile crack interaction. Nature, 5, 64–67 Cerca con Google

Iannace, A., Frisia, S., 1994. Changes in dolomitization patterns between Norian and Rhaetian in the Southern Tethys realm: clues to dolomitization of Dolomia Principale. In: Purser, B., Tucker, M., Zenger, D. (Eds.), Dolomites, a Volume in Honour of Dolomieu. Spec. Pub., vol. 21. International Association Sedimentologists, pp. 75e89. Cerca con Google

Jacquemyn C, Huysmans M, Hunt D, Casini G, Swennen R. et al., 2015, Multi-scale three-dimensional distribution of fracture- and igneous intrusion-controlled hydrothermal dolomite from digital outcrop model, Latemar platform, Dolomites, northern Italy, AAPG BULLETIN, Vol: 99, Pages: 957-984, ISSN: 0149-1423 Cerca con Google

Krantz, R.W., 1988. Multiple fault sets and three-dimensional strain: theory and application. J. Struct. Geol., 10, 225–237. Cerca con Google

Loreau, J.-P., and B. H. Purser, 1973, Distribution and ultrastructure of Holocene ooids in Persian Gulf, in B.H. Purser, ed., The Persian Gulf, New York, SpringerVerlag, p.279-328. Cerca con Google

Loucks, R. G., and C. R. Handford, 1992, Origin and recognition of fractures, breccias, and sediment fills in paleocave-reservoir networks, in M. P. Candelaria, and C. L. Reed, eds., Paleokarst, Karst-Related Diagenesis and Reservoir Development: Examples from Ordovician-Devonian Age Strata of West Texas and the Mid-Continent, Midland, TX, Permian Basin Section- SEPM Publication 92-33, p. 31-44. Cerca con Google

Loucks, R. G., M. M. Dodge, and W. E. Galloway, 1986, Controls on porosity and permeability of hydrocarbon reservoirs in lower Tertiary sandstones along the Texas Gulf Coast: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 149, 78 p. Cerca con Google

Masetti, D., Claps, M., Giacometti, A., Lodi, P., Pignatti, P., 1998. I Calcari Grigi della Piattaforma di Trento (Lias Inferiore e Medio, Prealpi Venete). Atti Ticinensi di Scienze della Terra 40, 139e183. Pavia. Cerca con Google

Møller-Pedersen P., Koestler A. G., eds (1997) Hydrocarbon Seals: Importance for Exploration and Production (Norwegian Petroleum Society), Special Publication, 7. Cerca con Google

Moretti A., 2007. Tettonica distensiva sin-sedimentaria giurassica nella Valsugana centro occidentale Cerca con Google

Moore C. H., Carbonare Reservoirs, Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework, 2001. Cerca con Google

Oliver M. A., Webster R., A tutorial guide to geostatistic: Computing and modeling variograms and kriging Catena 113, 56-69. Cerca con Google

P.J. Gibson and C. H. Power, 2000. Introductory Remote sensing. Digital Image Processing and Applications. Cerca con Google

Paradigm, Structure and stratigraphy, 2011 Cerca con Google

Philip A. Allen and John R, 2013. Basin Analysis, third edition Cerca con Google

Reches, Z., 1978. Analysis of faulting in three-dimensional strain field. Tectonophysics, 47, 109–129. Cerca con Google

Robinson, R. B., 1967, Diagenesis and porosity development in Recent and Pleistocene oolites from southern Florida and the Bahamas: Journal of Sedimentary Petrology, v. 37, p.355-364 Cerca con Google

Romano, R., Barattolo, F., Masetti, D., 2005. Biostratigraphic evidence of middle Liassic Hiatus in the Foza section (Eastern sector of the Trento Platform, Calcari Grigi Formation, Venetian Prealps). Bollettino della Società geologica Italiana 124, 301e319. Cerca con Google

Ronchi, P., Masetti, D., Tassan, S., Camocino D., 2012. Hydrothermal dolomitization in platform and basin carbonate succesion during thrusting: A hydrocarbon reservoir analogue (Mesozoic of Venetian Southern Alps, Italy), Marine and Petroleum Geology 29, 68-89. Cerca con Google

S. A. Drury, 1993. Image Interpretation in geology Cerca con Google

S. Qing Sun, 1995. Dolomite reservoirs; porosity evolution and reservoir characteristics AAPG Bulletin, v. 79, p. 186-204 Cerca con Google

Sailer, A. H., D. A. Budd, and P. M. Harris, 1994a, Unconformities and porosity development in carbonate strata: ideas from a Hedberg Conference: American Association of Petroleum Geologists Bulletin, v. 78, p. 857-872. Cerca con Google

Sailer, A. H., J. A. D. Dickson, and S. A. Boyd, 1994b, Cycle Stratigraphy and Porosity in Pennsylvanian and Lower Permian Shelf Limestones, Eastern Central Basin Platform: American Association of PetroleumGeologists Bulletin, v. 78, p. 1820-1842. Cerca con Google

Saller A. 2013. Diagenetic evolution of porosity during burial. AAPG Search and Discovery Article #90159©2012 AAPG Foundation Distinguished Lecturer Series 2012-2013. Cerca con Google

Shinn, E. A., 1968, Practical significance of birdseye structures in carbonate rocks: Journal of Sedimentary Petrology, v. 38, p.215-223 Cerca con Google

Skua User Manuals 2009.2 Cerca con Google

Structurally Complex Reservoirs. 292. ed. 2007. P Cerca con Google

Tucker, M. E., and V. P. Wright, 1990, Carbonate Sedimentology: Oxford, Blackwell Scientific Publications, 482 p. Cerca con Google

Veneto. Mem. Sc. Geol., 31: 1-63, Padova Cerca con Google

Wang G., Li P., Hao F., Zou H. and Yu X., 2015. Dolomitization process and its implications for porosity development in dolostones: A case of study from the Lowe Triassic Feixianguan Formation, Jiannan area, Eastern Sichuan Basin, China. Journal of Petroleum Science and Engineering 131 (2015) 184-199. Cerca con Google

Weber, K.J. and M. Bakker 1981. Fracture and vuggy porosity. Proceedings of the 56th Society of Petroleum Engineers Annual Fall Technical Conference, San Antonio, Texas, 1981, SPE paper 10332, p. 1-11. Cerca con Google

Zampieri, D. (1995) Tertiary extension in the Southern Trento Platform, Southern Alps, Italy. Tectonics, 14, 645–657. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record