Università degli Studi di Padova
Dipartimento di Medicina
Corso di Laurea in Infermieristica

Tesi di laurea

Gestione infermieristica del picco system e della procedura di misurazione con tecnica di termodiluizione:
Indagine conoscitiva delle competenze infermieristiche necessarie in campo specifico

Relatore: Prof. Stefano Bernardelli
Correlatore: Massimo Miola, Francesco Gastaldo

Laureanda: Lucrezia Fasolato
Matr.1047086

Sommario

INTRODUZIONE .. 1

CAPITOLO 1: REVISIONE DELLA LETTERATURA .. 3
1.1 Cos’è il monitoraggio emodinamico? ... 3
1.2 Termodiluizione transpolmonare .. 3
1.3 Sistemi in uso per il monitoraggio emodinamico con termodiluizione transpolmonare ... 5
1.4 Inserimento e posizionamento dei presidi ... 6
1.5 Cosa misurano questi strumenti? E chi necessità di tale monitoraggio? 7
1.6 Perché condurre un’indagine solo sull’uso del Picco? 8
1.7 Inserimento e gestione del PICCO SYSTEM: il ruolo dell’infermiere 9
1.8 Catetere venoso centrale (CVC) .. 10
1.9 Catetere arterioso .. 11
1.10 Esecuzione termodiluizioni ... 12

CAPITOLO 2: MATERIALI E METODI ... 15
2.1 Quesito d’indagine .. 15
2.2 Disegno dello studio ... 15
2.3 Campionamento ... 16
2.4 Attività di raccolta dati .. 16
2.5 Strumenti di misura ... 17
2.6 Analisi dei dati .. 18

CAPITOLO 3: RISULTATI ... 19
3.1 Da quanti anni fa l’infermiere? ... 19
3.2 Da quanti anni lavora in Rianimazione? ... 19
3.3 Conosce la tecnica di misurazione PICCO? se si dove ha appreso la tecnica? 20
3.4 Quanto ritiene di conoscere sull’argomento? .. 20
3.5 Quante volte ha utilizzato la tecnica di misurazione PICCO? 21
3.6(a) Ritiene siano presenti nella U.O. degli infermieri esperti dell’argomento in questione? .. 22
3.6(b) Cosa ritiene sia di competenza di un infermiere esperto, del medico o dell’infermiere di turno? .. 23
3.7 Quali difficoltà ha incontrato nell’esecuzione delle misurazioni?.............. 24
3.8(a) Quali variabili ha riscontrato modificare il risultato delle misurazioni? 25
3.8(b) Quanto ritiene di essere in grado di riconoscere se i dati sono errati? 27
3.9 In quali di questi casi elencati nella sua unità operativa l’equipe ritiene opportuno l’utilizzo di PICCO? .. 27

CAPITOLO 4: DISCUSSIONE E CONCLUSIONI ... 29
4.1 Discussione .. 29
4.2 Limiti dello studio ... 35
4.3 Punti di forza .. 35
4.4 Conclusioni .. 36
4.5 Implicazioni per la pratica .. 38

BIBLIOGRAFIA .. 39

ALLEGATI ... 41
Allegato 1: Questionario .. 41
Background: Il mantenimento di un precarico adeguato è di primaria importanza nel paziente sottoposto a chirurgia maggiore e nel paziente critico. Lo scopo principale è rappresentato dal mantenimento della perfusione d’organo attraverso riequilibri volemici e terapia con farmaci vasoattivi per ottimizzare la gittata cardiaca e la disponibilità di ossigeno. Negli ultimi 10 anni la tecnica di termodiluizione transpolmonare con indicatore ha dimostrato essere un accurato metodo di monitoraggio emodinamico-volumetrico; questa tecnica può essere effettuata con diversi strumenti: il gold standard è sempre stato rappresentato dal catetere polmonare (PAC), ma oggi visto l’alta invasività e i rischi correlati a questo catetere, viene sempre più utilizzato il sistema PICCO, meno invasivo, di più facile gestione, e comunque un buon strumento di misurazione.

Questa tecnica, richiede conoscenza e competenza, al fine di fornire parametri emodinamici reali, deve essere eseguita con razionalità e criticità.

Obiettivi: Identificazione del grado di competenza e conoscenza richiesto agli infermieri in una procedura complessa e specifica, verificare quanto e quando è necessario un infermiere esperto, definire con criticità le variabili incidenti la corretta esecuzione della procedura in questione.

Materiali e metodi: Indagine attraverso questionario della percezione che gli infermieri possiedono nei confronti delle variabili incidenti la corretta misurazione dei parametri emodinamici con PICCO system. Definizione delle conoscenze e competenze necessarie al fine di gestire con padronanza la tecnica.

Risultati: L’indagine è stata condotta attraverso questionario su un campione totale di 28 infermieri presso la terapia Intensiva dell’ospedale Riuniti Padova sud a Schiavonia (Monselice). Dodici infermieri hanno risposto alla richiesta di compilazione del questionario. L’esperienza sul campo risulta essere una variabile determinante, esistono infermieri esperti che fanno da riferimento per gli altri, favorendo l’apprendimento peer to peer. Le variabili principali riportate dalla letteratura (temperatura e posizione del paziente) alteranti i risultati delle misurazioni con termodiluizioni sono conosciute.
Conclusioni: Gli infermieri conoscono la tecnica, sanno considerare alcune variabili, ma sono ancora poco preparati sul riconoscimento degli errori, poiché sembrerebbero possedere una ridotta padronanza e preparazione sulla dinamica fisica / fisiologica che sfrutta la tecnica. L’indagine ha portato alla luce la ridotta consapevolezza degli effetti che misurazioni non idonee hanno sulla salute del paziente. In conclusione si possono aprire nuovi scenari di sensibilizzazione sull’importanza di possedere una preparazione completa poiché si tratta di ambiti specifici e delicati per la clinica e la salute del paziente.
INTRODUZIONE

Durante il periodo di tirocinio presso l’ormai ex reparto di Terapia Intensiva di Este (ULSS 17), ho osservato e sperimentato l’uso delle termodiluizioni con PICCO system per monitorizzare la gittata cardiaca e la volemia nei pazienti critici che presentano instabilità a livello emodinamico. Questa tecnica ha scaturito in me una certa curiosità che mi ha portato a ricercare nelle banche dati informazioni riguardanti l’argomento in questione. Dopo aver effettuato la ricerca ed aver compreso in maniera più approfondita la dinamica della tecnica, (cosa misura/come/quando/perché/in quali pazienti) non ho potuto fare a meno di chiedermi se una procedura così semplice all’apparenza come tecnica, ma complessa nel suo meccanismo e dinamica, fosse eseguita tenendo o meno presente di questa sua complessità interna o se invece fosse eseguita in maniera quasi meccanica, senza considerare tutte le variabili necessarie ad eseguire la tecnica con coscienza e sicurezza dei risultati. Sulla base di queste considerazioni ho ricercato quali fossero le variabili da considerare nell’esecuzione e il grado di preparazione necessaria utile ad ottimizzare la tecnica. Dalla mia ricerca è emerso che l’argomento è poco discusso, soprattutto per quanto riguarda il ruolo e il livello di competenza dell’infermiere in questo ambito. Volendo provare a delineare una tecnica idonea all’esecuzione di questa procedura e comprendere soprattutto il grado di competenza e preparazione che un infermiere necessita in questo campo, ho intrapreso un’indagine tra gli infermieri della terapia intensiva per raccogliere le loro conoscenze e considerazioni sull’argomento al fine di dare una risposta alle domande in sospeso. Ho condotto l’indagine presso la rianimazione dell’ospedale nuovo di Schiavonia, per due motivi: in primis perché la domanda che mi sono posta è sorta in questo reparto, poi perché ho trovato interessante l’unione di due realtà che fino a meno di un anno fa si trovavano in ospedali diversi con abitudini ed esperienze differenti, per comprendere ancora meglio quanto labile e sensibile alle variabili sia l’esecuzione di questa tecnica. Infine ho intrapreso questa indagine per mettere in luce come l’operato dell’infermiere possa modificare in positivo o in negativo la condizione clinica del paziente e sensibilizzare i professionisti ad agire con razionalità, coscienza e conoscenza e non come semplice esecutore di procedure come veniva considerato fino a qualche anno fa.
La tesi è sviluppata in questo modo: il primo capitolo descrive la tecnica, gli strumenti in uso, l’utilizzo che se ne fa e le evidenze presenti sull’argomento.

Il secondo identifica la motivazione dell’indagine, gli strumenti utilizzati, il campionamento e il metodo di analisi dei risultati.

Il terzo è una rappresentazione grafica dei risultati ottenuti.

Il quarto contiene una discussione sui risultati emersi, un confronto con la letteratura e una riflessione sull’idoneità dell’approccio alla tecnica in questione e sulle competenze infermieristiche.

CAPITOLO 1: REVISIONE DELLA LETTERATURA

In questo capitolo cercherò di dare un quadro generale alla tematica della termodiluizione ed al contempo delimitare il perimetro della ricerca.

La ricerca è stata effettuata nelle banche dati: (PubMed, Cinahl) con le seguenti parole chiave: “transpulmonary thermodilution, measurements, picco system, Swang-Ganz, hemodynamic monitoring, position of patient, temperature of indicator and nursing care” dal Web e da alcuni libri di testo.

1.1 Cos’è il monitoraggio emodinamico?

Il monitoraggio emodinamico avanzato rimane una pietra miliare nella gestione del paziente critico. Questa tipologia di monitoraggio permette di tracciare una “mappa” dello stato emodinamico del paziente in terapia intensiva e in sala operatoria, ci consente d’identificare tempestivamente la variazione delle condizioni cardiopolmonari e circolatorie dei pazienti, soprattutto l’aggravarsi dello stato di salute, in particolare in quelle patologie in cui i segni e sintomi sono visibili solo quando la situazione è già compromessa; lo scopo primario è rappresentato dal mantenimento della perfusione d’organo attraverso riequilibri volemici e terapia con farmaci vasoattivi per ottimizzare la gittata cardiaca e la disponibilità di ossigeno. (Litton & Morgan, 2012)

1.2 Termodiluizione transpolmonare

Tra le tecniche utilizzate per il monitoraggio emodinamico troviamo la termodiluizione transpolmonare. Questa metodica è stata utilizzata e ideata per la prima volta alla fine del diciannovesimo secolo da Stewart che per primo usò questa tecnica per misurare il volume di sangue in cuore e polmoni. Questo modello fu poi sviluppato da Hamilton e Janssen e i loro collaboratori che enfatizzarono l’uso del tempo di circolazione media per determinare il volume di sangue nel letto vascolare, stabilendo il legame fisico tra volume, flusso e tempo medio di circolazione attraverso la formula:

\[
\text{volume} = \text{flusso} \times \text{tempo di circolazione medio}
\]
(formula di Stewart-Hemilton)

Secondo il loro modello doveva essere iniettato nel sangue un bolo di sostanza esogena (indicatore); questo indicatore doveva percorrere il circolo sanguigno partendo dalla circolazione venosa per arrestarsi in quella arteriosa seguendo l’anatomia circolatoria (vena cava, cuore destro, circolo polmonare, cuore sinistro, circolo arterioso).
Quando la sostanza esogena viene iniettata si diluisce con il circolo sanguigno; quanto velocemente o lentamente è una funzione della velocità di flusso.

Più precisamente esiste un rapporto inversamente proporzionale tra velocità di diluizione e flusso; Se il flusso tra il punto d’iniezione e il punto di rilevazione è alto la sostanza esogena sarà diluita più velocemente, al contrario se il flusso fosse ridotto il tempo di diluizione sarebbe aumentato.

Da questa deduzione si intuisce che più volume di sangue è presente nel circolo, minore sarà il tempo di diluizione completo della sostanza esogena. Questo permette la misurazione di alcune variabili sullo stato cardiopolmonare e circolatorio che poi andremo a definire. (Oren-Grinberg, 2010)

Negli ultimi 10 anni la tecnica della termodiluizione transpolmonare con indicatore ha dimostrato essere un accurato metodo di monitoraggio emodinamico-volumetrico. L’ottimizzazione del bilancio idrico e la somministrazione di farmaci vasoattivi basata sull’osservazione costante dei parametri emodinamici, rende la tecnica di termodiluizione transpolmonare un valido appoggio al decision-making in quei settori in cui la gestione della volemia riveste un ruolo di primaria importanza. (Litton & Morgan, 2012)

Figura 1

Rappresentazione del grafico spazio-tempo secondo Hemilton: rappresentato con il confronto tra la curva termodiluizione transpolmonare (PICCO) e quella ottenuta con catetere polmonare (PAC). (Oren-Grinberg, 2010)
1.3 Sistemi in uso per il monitoraggio emodinamico con termodiluizione transpolmonare

I metodi attualmente maggiormente in uso sono due il PICCO system e il catetere in arteria polmonare (PAC) il cui nome commerciale è Swang-Ganz, ne esistono molti altri con una rilevanza inferiore ai due menzionati sopra. Entrambi i sistemi utilizzano le due seguenti tecnologie: termodiluizione transpolmonare e analisi del contorno del polso; anche se in questo studio ci soffermeremo solo sul metodo della termodiluizione transpolmonare.

Il PAC è ancora in larga misura il riferimento clinico standard per la misurazione della portata cardiaca, ma la sua supremazia è sempre più messa in discussione e il suo uso sembra essere in declino. I progressi tecnologici associati al riconoscimento di rischio beneficio ha spinto la richiesta verso tecniche alternative meno invasive; per questo motivo l’utilizzo del PICCO system sembra essere una buona alternativa. (Oren-Grinberg, 2010), (Arora, Mehta, Yatin, & Dheeraj, 2014), (Litton & Morgan, 2012)

Sulla base di quanto detto ho condotto una breve ricerca nelle cartelle informatizzate del reparto di terapia intensiva dell’ospedale Riuniti Padova sud di Schiavonia per portare un esempio pratico del confronto tra l’uso di PICCO system e del catetere di Swang-Ganz. L’indagine è stata condotta retrospettivamente a partire dal momento in cui è avvenuta la fusione dei due poli ospedalieri di Este e Monselice nell’ospedale unico a Schiavonia (Monselice).

Dall’indagine condotta è emerso che su un numero totale di 282 pazienti dal momento del trasferimento nell’ospedale nuovo 28/11/2014 al termine della mia ricerca 19/08/2015 sono stati sottoposti a monitoraggio emodinamico invasivo con termodiluizioni 27 pazienti di cui 22 con catetere PICCO e 5 con catetere di Swang-Ganz. La percentuale dell’utilizzo del PICCO rispetto al PAC sembra confermare quanto preannunciato dalla letteratura corrente.

Questi due sistemi differiscono tra di loro soprattutto per l’invasività; Per effettuare le termodiluizioni con PICCO è necessaria la presenza di un catetere venoso centrale (CVC) e di un catetere arterioso specifico dotato di termistore, che viene posizionato in un’arteria prescelta (in genere arteria femorale). Il PAC invece è caratterizzato da un
unico catetere a due lumi che viene inserito in una vena centrale Fe poi spinto fino in arteria polmonare, portando così complicanze potenzialmente gravi o mortali come embolia polmonare, rottura dell’arteria polmonare e aritmie cardiache. (Ullrich, Stolecki, & Grunewald, 2009)

1.4 Inserimento e posizionamento dei presidi

Il posizionamento di entrambi i presidi richiede la presenza di un medico competente in genere Rianimatori ed Anestesisti sono gli specialisti in questo campo.

Nella scelta della linea arteriosa per PICCO le evidenze emerse dalla mia ricerca sottolineano la necessità dell’incannulazione di un’arteria di grosso calibro in particolare si consiglia l’arteria femorale, ascellare o brachiale, questo perché arterie di calibro minore come l’arteria radiale potrebbero essere soggette maggiormente ai cambi pressori periferici. La vena centrale, in entrambi i presidi e in base ad ogni singolo caso deve essere scelta tra: succulavia, giugulare o femorale; se si decide di scegliere sia vena che arteria nello stesso punto, ad esempio entrambe nella zona femorale, è buona norma prenderle controlaterali per evitare il fenomeno cross-talk cioè il passaggio diretto da vena ad arteria che comporterebbe ad una compromissione delle misurazioni. (Oren-Grinberg, 2010) (Litton & Morgan, 2012)

Il PAC come accennato precedentemente dopo l’inserimento nella vena centrale richiede la progressione fino in arteria polmonare; il catetere seguendo il flusso sanguigno viene fatto avanzare con il palloncino gonfiato attraverso l’atrio destro, ventricolo destro fino in arteria polmonare dove si ottiene un’occlusione dell’arteria stessa. Quando si raggiunge la pressione d’occlusione il palloncino viene sgonfiato poiché provoca un effetto simile a quello di un’embolia polmonare, dopodiché si deve verificare l’andamento della curva tipico dell’arteria polmonare. Il PAC è costituito da un lume prossimale per la misurazione della pressione venosa centrale (PVC) e l’esecuzione delle termodiluizioni e uno distale per la misurazione delle pressioni arteriose polmonari. Inoltre è presente un raccordo per connettere il termistore presente nella punta del catetere in questione e un raccordo per la spirale di riscaldamento nei cateteri PAC che sfruttano questa nuova tecnologia.
In entrambi i sistemi PICCO e PAC il liquido d’iniezione consigliato è soluzione fisiologica allo 0,9 % ad una temperatura intorno agli 8°C in una quantità di 15-20 ml. In entrambi gli strumenti il termistore presente nella punta del catetere viene collegato ad un trasduttore in grado di tradurre il segnale termico e riportarlo nel monitor ad esso collegato. (Litton & Morgan, 2012) (Oren-Grinberg, 2010), (Azienda Ospedaliera S. Maria della Misericordia (Udine))

1.5 Cosa misurano questi strumenti? E chi necessità di tale monitoraggio?
Il monitoraggio emodinamico con PICCO o PAC permette di misurare le seguenti variabili: il bilancio idrico, l’equilibrio acido base, contenuto e trasporto di ossigeno e lo stato circolatorio generale identificando diverse variabili ognuna delle quali fornisce delle informazioni che però non hanno un significato assoluto ma devono essere contestualizzate nel singolo caso e integrate tra di loro.

Le principali variabili che vengono misurate sono: (IFC) indice di funzione sistolica corrispondente alla gittata cardiaca, il volume telediastolico globale (GEDV) considerato come un indicatore di precarico e di riempimento delle camere cardiache in diastole attraverso questo parametro si può definire anche la contrattilità, (PPV) variabilità della pressione pulsata è un indice di precarico-indipendenza, (SVV) variabilità del volume d’eiezione, (EVLW) indice di presenza di acqua extravascolare polmonare è un marker di edema polmonare, (PVPI) presume e riflette la permeabilità della membrana capillare polmonare. (Oren-Grinberg, 2010), (Azienda Ospedaliera Universitaria S. Maria della Misericordia di Udine, 2013), (King & Price, 2008).

Il monitoraggio emodinamico viene utilizzato principalmente in queste categorie di pazienti:

\(^2\) (Ullrich, Stolecki, & Grunewald, 2009)
a-In sala operatoria per il monitoraggio intraoperatorio durante interventi cardiotoracici.

b-Nell’intraoperatorio e post operatorio dei pazienti nei quali è presente il complesso di comorbilità.

c-Nelle strategie di gestione dei fluidi in pazienti con alterazioni idroelettrolitiche: soprattutto setticemie e shock settico, ipovolemico e ustioni maggiori.

d-Nel monitoraggio del paziente critico con farmaci vasoattivi.

e-In pazienti con patologie cardiache quali scompenso cardiaco congestizioso, edema polmonare, shock cardiogeno, gravi ischemie miocardiche.

È invece sconsigliato in presenza di malattie vascolari periferiche severe, innesti arteriosi, coagulopatie e valvulopatie. (Litton & Morgan, 2012)

Il PICCO, essendo meno invasivo rispetto al PAC, ne consente l’utilizzo per periodi più prolungati quindi può essere preso in considerazione in particolare nei pazienti chirurgici complicati e in quelli con sepsi e/o shock. Nei pazienti con diagnosi di scompenso cardiaco (sinistro/destro), ipertensione polmonare, aritmie e FA si consiglia invece di prendere in considerazione il passaggio a monitoraggio emodinamico con catetere arterioso polmonare. (Azienda Ospedaliera Universitaria S. Maria della Misericordia di Udine, 2013)

Dalla mia ricerca, oltre i casi appena elencati, non sono emerse linee guida specifiche sulla scelta di quale presidio sia più idoneo nelle diverse tipologie di pazienti ma sono state evidenziate delle variabili che vanno tenute presenti nella scelta e sono: la tipologia di domande cliniche che vengono poste, le condizioni cliniche e il grado di stress fisico a cui è posto il paziente, le condizioni cardiache del soggetto, il calcolo di rischi-benefici valutando la reale necessità delle misurazione ed infine una variabile essenziale: la preparazione dell’equipe nella gestione di un presidio rispetto ad un altro. (Hamzaoui, Monnet, & Teboul, 2015)

1.6 Perché condurre un’indagine solo sull’uso del Picco??
Ho preso in considerazione solo questo strumento per due motivi:
a-Il PICCO è l’unico di rilevanza significativa nell’indagine condotta presso l’U.O. di Anestesia e Rianimazione di Schiavonia, come riportato precedentemente nella ricerca condotta.

b-Il PAC ha subito un’evoluzione negli ultimi anni ed ora non è più necessario che la termodiluizione venga effettuata da un operatore. Questo catetere ora è dotato di un filamento in rame che rimane nel ventricolo destro e viene riscaldato ad intermittenza dallo strumento stesso. Il filamento in rame essendo un buon conduttore favorisce il trasferimento del calore al sangue circolante con cui viene a contatto riproducendo così l’effetto dell’acqua fredda. Nella stessa modalità descritta precedentemente quando il sangue riscaldato viene a contatto con il termistore presente nella punta del catetere, questo invierà il segnale recepito al monitor. Questa nuova tecnologia è in uso nel reparto d’indagine, non necessitando di termodiluizioni eseguite manualmente perde di significato nell’indagine condotta. (Arora, Mehta, Yatin, & Dheeraj, 2014)

1.7 Inserimento e gestione del PICCO SYSTEM: il ruolo dell’infermiere

Il PICCO system come spiegato precedentemente necessita dell’inserimento di un catetere venoso centrale e di un catetere arterioso;

L’inserimento dei presidi compete al medico specializzato, ma l’infermiere segue il paziente prima durante e dopo l’inserimento.

L’infermiere in base a ciò che definisce il profilo professionale e in linea con le responsabilità che ne competono:

1. Prepara il paziente nel pre-operatorio, allestisce la sala operatoria o comunque il luogo dedicato e assiste il medico nell’inserimento delle linee di monitoraggio (arteriosa e venosa).

2. Rileva i parametri e la loro attendibilità attraverso la morfologia delle relative curve.

3. Gestisce le linee di monitoraggio e la prevenzione delle complicanze ad esso correlate.

Prima della procedura l’infermiere si occupa della preparazione fisica del paziente in particolare viene eseguita una preparazione del sito in cui si andrà ad inserire il presidio: la cute viene sottoposta a ispezione, pulizia e disinfezione con Clorexidina <0,5% ed eventualmente se necessaria una tricotomia. La tricotomia potrebbe essere necessaria...
anche nel sito di applicazione degli elettrodi adesivi per il monitoraggio ECG durante la procedura.
Fondamentale prima di entrambe le procedure è che l’infermiere verifichi i parametri vitali, il tracciato elettrocardiografico e lo stato psicofisico del paziente al fine di tutelarne la salute, in collaborazione con il medico garantisce la corretta informazione dell’assistito e dei familiari sulla procedura, sul motivo dell’attuazione e su tutte le eventuali complicanze. Durante la procedura l’infermiere assiste il paziente, soddisfa i suoi bisogni, lo mantiene aggiornato e informato, monitora lo stato psico-fisico e i parametri vitali, assiste professionalmente il medico e garantisce che la procedura venga eseguita in modo asettico al fine di prevenire eventuali infezioni correlate. L’operatore inserendo un CVC o catetere arterioso deve indossare cuffia, maschera, camice e guanti sterili.

Dopo l’inserimento del catetere medico e infermiere verificheranno il corretto posizionamento e funzionamento. Le complicanze che si potrebbero verificare nell’immediato post inserimento sono mal posizionamento, occlusioni, lesione dei vasi e pneumotorace. (Ullrich, Stolecki, & Grunewald, 2009), (Rispo, A. (Monaldi Napoli))

1.8 Catetere venoso centrale (CVC)
Questo catetere può essere inserito nella vena giugulare, succclavia, femorale, basilica e cefalica per poi essere spinto nella vena cava immediatamente prima dell’entrata in atrio destro. La diffusione della tecnica di guida ad ultrasuoni (posizionamento ecoguidato che riduce le possibili complicanze) può essere utilizzato sia per il cateterismo dalle vene giugulari (sito preferenziale assieme alla vena succlavia) che per il cateterismo delle arterie femorali. Il CVC è dotato di più vie d’infusione perciò, oltre che essere uno strumento per l’esecuzione delle termodiluizioni, permette l’infusione continua di farmaci, preparati nutrizionali, prelievi ematici e la misurazione della pressione venosa centrale (PVC). La PVC rappresenta un altro importante parametro per il monitoraggio emodinamico poiché misura la pressione presente tra la vena cava e l’atrio destro fornendo informazioni sul volume massa circolante e sulla funzionalità del cuore destro. La pressione venosa centrale deve essere misurata sulla via prossimale del catetere cioè la via che si trova in posizione più vicina al cuore può essere misurata con il vecchio sistema a colonna d’acqua o mediante trasduttore. Il CVC rappresenta la via
attraverso la quale si inietta il bolo di sostanza esogena necessaria per le termodiluizioni, perciò è importante che l’infermiere sia in grado di riconoscere complicanze legate al catetere venoso centrale che potrebbero interferire con le misurazioni. Le complicanze più comuni che si possono riscontrare sono: infezioni, ostruzioni, dislocazione del catetere, formazione di trombi, ematomi, lesioni della parete vascolare, ischemia periferica, embolie gassose. Il CVC deve essere protetto con medicazione trasparente semipermeabile per poter riconoscere tempestivamente segni d’infezione; Il sito d’incisione dev’essere disinfettato con Clorexidina 0,2% per ridurre il più possibile la carica batterica, infine per evitare ostruzioni del catetere si mantiene un’infusione continua di fisiologica 0,9% soprattutto nella via dedicata alla rilevazione della PVC che non viene utilizzata per infusione di farmaci. (King & Price, 2008), (Oren-Grinberg, 2010), (Healthcare Infection Control Practices Advisory Committee (HICPAC), 2011)

1.9 Catetere arterioso
Il catetere arterioso può essere inserito in diverse arterie, generalmente per il semplice monitoraggio della pressione arteriosa (PA) si sceglie l’arteria radiale ma nel nostro caso è consigliabile scegliere un’arteria di dimensioni maggiori come l’arteria femorale (via preferenziale), ascellare o brachiale. Una volta inserito il catetere verrà collegato ad un trasduttore che riporterà nel monitor il grafico e i valori di PA rilevati. Successivamente il catetere arterioso viene collegato ad una sacca di fisiologica o soluzione eparinata, la sacca in questione deve essere mantenuta ad una pressione di 300mmHg per contrastare la pressione arteriosa. Il circuito in questione in genere viene connesso al lume distale del catetere arterioso e permette non solo il monitoraggio continuo della PA ma anche l’osservazione dell’andamento dell’onda pressoria, l’esecuzione di emogasanalisi (EGA), e di altri esami ematochimici. Il catetere arterioso fornisce la possibilità di eseguire le termodiluizioni tramite la presenza di un termistore nella punta del catetere stesso, il termistore viene collegato al monitor PICCO attraverso un trasduttore per riportare il segnale termico e permettere quindi allo stesso di effettuare i calcoli e riportare i parametri ricercati. L’infermiere è tenuto a rispettare l’asepsi e a monitorare le complicanze che sono le stesse menzionate per la CVC, ponendo però maggior attenzione alla qualità del circolo sanguigno poiché la lesione dell’arteria soprattutto se di grosso calibro come in questo caso andrebbe a
compromettere la consegna di ossigeno ai tessuti periferici portando come conseguenza ipossia tissutale e necrosi. I segni e sintomi premonitori di questa condizione sono: cute fredda, pallore e gonfiore nella zona irrorata dall’arteria in questione. Secondo le linee guida CDC, 2011 il catetere arterioso dovrebbe rimanere in sede al massimo 10 giorni, il trasduttore monouso deve essere cambiato ogni volta che si sostituisce il circuito e il catetere stesso. (Healthcare Infection Control Practices Advisory Committee (HICPAC), 2011)

1.10 Esecuzione termodiluizioni
La misurazione delle variabili emodinamiche in particolare della gittata cardiaca devono essere eseguite in maniera il più possibile precisa questo perché come già menzionato precedentemente ogni misurazione concorrerà con le altre per dare una media, in base a quel valore si potranno prendere o meno determinate decisioni cliniche di una certa rilevanza, visto le condizioni critiche dei pazienti a cui si applica questo presidio; quindi alla luce di queste considerazioni è necessario che chi esegue le misurazioni sia consapevole dell’importanza di rilevare dati reali e compatibili con il paziente ed abbia acquisito le conoscenze necessarie al fine di eseguire la procedura non come mere esecutore ma con la dose di razionalità e conoscenza che necessità la materia.

Procedura: Prima di effettuare le misurazioni si informa il paziente sulla procedura che si andrà ad eseguire. Il paziente deve essere predisposto in posizione supina, occorre controllare la corretta posizione del catetere, il bolo di sostanza esogena per le misurazioni deve essere iniettato preferibilmente nella via distale del CVC, verificare quindi il funzionamento della via con un lavaggio per eliminare quindi le possibili ostruzioni.

La sostanza esogena che funge da indicatore può essere soluzione fisiologica 0,9% oppure glucosata al 5% anche se dalla letteratura recente si evidenzia che la sostanza più idonea sia soluzione fisiologica poiché il glucosio potrebbe danneggiare il funzionamento del termistore. (Litton & Morgan, 2012)

Prima di eseguire le misurazioni attraverso il monitor sarà possibile impostare la quantità di soluzione che si andrà ad iniettare e il tempo che deve intercorrere tra una
rilevazione e l’altra ed infine il numero delle rilevazioni su cui poi si calcolerà la media della portata cardiaca. Ogni iniezione deve durare meno di 7 secondi.

Chi effettua le misurazioni affinché siano precise deve tener presente e conoscere alcune variabili determinanti:

La temperatura ideale dell’indicatore è tra 0 e 8 °C (più è vicina allo zero più la misurazione risulta essere accurata) (Shulan Chen, 2014), e la quantità di soluzione tra 15 e 20 ml; questo perché prendendo in considerazione quanto detto sulla dinamica di funzionamento di questo sistema: la misurazione del tempo che impiega l’indicatore ad arrivare al termistore sarà tanto più precisa quanto fredda sarà la soluzione rispetto al sangue e quanto maggiore sarà la quantità di liquido introdotto; poiché è fondamentale che l’indicatore venga captato prima della completa diluizione con il sangue.

Se si eseguono le misurazioni con il paziente in posizione semiseduta, occorre considerare che il valore sarà più basso rispetto a quello registrato in posizione seduta.

La posizione semiseduta può essere mantenuta affinché le misurazioni siano sempre effettuate nella stessa posizione.

L’operatore che esegue le misurazioni dovrebbe essere in grado di riconoscere le misure inattendibili in base alla forma della curva riportata dal monitor ad ogni rilevazione e quindi eliminarle. La curva per essere attendibile deve avere un picco uniforme e tornare alla temperatura basale in maniera lineare senza interruzioni.

Infine è utile considerare il bilancio idroelettrolitico la PVC per definire l’attendibilità delle rilevazioni. L’esperienza dell’operatore che effettua le misurazioni è un altro parametro determinante. (King & Price, 2008)

Le termodiluzioni con PICCO system rappresentano un ottimo strumento di monitoraggio delle condizioni cardiocircolatorie e polmonari nei pazienti critici. Tale
procedura permette di conoscere parametri determinanti per le successive decisioni cliniche che il medico dovrà prendere; se consideriamo l’importanza degli interventi che vengono eseguiti sul paziente in risposta ai parametri rilevati (somministrazione di farmaci Inotropi, riempimento volemico...ecc.) ci si può rendere conto che fornire dati non corretti possa provocare di conseguenza decisioni sbagliate che potrebbero compromettere ulteriormente le condizioni del soggetto ricevente.

Appurato che da quanto emerge dalla mia ricerca non sia definito quale e che tipo di preparazione deve possedere chi effettua tale misurazione e che nella realtà locale la procedura viene effettuata anche e soprattutto dagli infermieri, le domande che mi pongo sono: “Sono in grado gli infermieri di eseguire questa procedura considerando tutte le variabili incidenti, riportando dati reali e compatibili con le condizioni cliniche del paziente?” “Qual è il grado di formazione che possiedono ad oggi?”
CAPITOLO 2: MATERIALI E METODI

Le termodiluizioni non sono una tecnica di comune esecuzione in tutti i reparti ospedalieri, forse anche per questo è rimasto un argomento un po’ ai margini e di fatto non ho riscontrato nulla attraverso la ricerca nelle banche dati sul ruolo infermieristico e sulle competenze necessarie ad effettuare correttamente le misurazioni. Inoltre essendo un argomento così specifico posso dire, per la mia esperienza universitaria, che questa tecnica non viene appresa durante il corso triennale di laurea, di conseguenza non mi aspetto che tutti gli infermieri siano esperti su questo argomento, ma mi aspetto però che lo sia l’infermiere che presso la sua unità operativa utilizza questo strumento.

2.1 Quesito d’indagine

“Qual è il grado di formazione degli infermieri della U.O. di terapia intensiva ad oggi, sul monitoraggio emodinamico con PICCO system?” “Gli infermieri possiedono le conoscenze sufficienti per eseguire termodiluizioni?” “Qualsiasi infermiere ha le competenze per farlo o è necessario che sia un esperto della materia?” “Quanto incide l’esperienza sul campo?”

Da qui nasce la necessità di procedere con l’indagine epidemiologica, per conoscere in base all’esperienza dei singoli infermieri come si sono approcciati alla tecnica in questione, quali variabili tengono presente, se sono in grado o meno di riconoscere gli errori ed inoltre dove e come hanno appreso la tecnica in questione. Tutto ciò al fine di definire con l’ausilio delle evidenze emerse una tecnica ottimale di misurazione che tenga presente la volubilità delle misurazioni, e che possa rappresentare uno strumento per gli infermieri per ottimizzare ed omogeneizzare la tecnica stessa o eventualmente spingere questi professionisti a migliorarsi.

2.2 Disegno dello studio

Indagine osservazionale effettuata mediante questionario anonimo nell’arco di un mese dal 4/08/15 al 10/09/15, inizialmente erano stati stabiliti 20 giorni circa e l’indagine doveva terminare il 20/08/15 ma poi per la mancanza di parte del personale per le ferie estive ho convenuto di allungare i tempi affinché anche chi non era presente potesse compilare il questionario.
2.3 Campionamento

L’indagine è stata estesa a tutti gli infermieri della terapia intensiva del nuovo ospedale unico a Schiavonia (ULSS17), che comprende il personale infermieristico proveniente dalle ex rianimazioni di Este e Monselice che si sono unite con la fusione dei due ospedali. Nonostante la mia prima osservazione sull’uso del PICCO sia stata presso la Rianimazione di Este, ho convenuto di estendere l’indagine a tutti i professionisti senza distinzione tra i due poli, in modo tale che le considerazioni finali che verranno rappresentino uno strumento che unifichi le diverse parti e renda la tecnica omogenea favorendo anche la cooperazione tra personale proveniente da realtà diverse. Il campionamento sulla base di quanto detto comprende 28 infermieri che lavorano in rianimazione presso l’ULSS 17.

Ho preso in considerazione solo gli infermieri della rianimazione poiché come già menzionato il PICCO system è in uso nei pazienti emodinamicamente instabili e critici o nei casi di cardiochirurgia, ma poiché il polo di Schiavonia non esegue questa tipologia di interventi e il reparto di cardiologia è limitato a condizioni mediche, lo strumento in questione non viene utilizzato. Infine ho escluso la figura del medico per due motivi: a) il focus della mia indagine era comprendere il punto di vista e le competenze spese dall’infermiere in questo ambito; b) mi aspetto che il medico, già specializzato in anestesia e rianimazione, sia competente in questo campo.

2.4 Attività di raccolta dati

I questionari sono stati consegnati al coordinatore infermieristico il 04/08/15 dopo aver ottenuto il consenso dalla direzione. Sono passata settimanalmente per vedere come procedeva la compilazione e per verificare che non ci fossero problemi o dubbi sul contenuto del questionario o sul successivo trattamento e analisi dei dati. L’indagine è stata fatta in questo modo per dare modo e tempo al personale di compilare il questionario in tranquillità e nel rispetto della privacy dei singoli. Ho allegato ai questionari una nota introduttiva nella quale ho chiarito le finalità dell’indagine e garantito l’assoluto anonimato. Al termine dell’indagine su 28 questionari consegnati ne ho raccolti 12 compilati.

Successivamente ho ricercato all’interno nelle cartelle cliniche informatizzate del reparto il numero di dispositivi PICCO e Swang-Ganz che erano stati utilizzati su un

Infine dopo la raccolta e analisi dei questionari, ho condotto una breve intervista ad un infermiere esperto del reparto d’indagine, per discutere con lui le implicazioni per la pratica che si potevano trarre dallo studio.

2.5 Strumenti di misura

Il questionario destinato al personale infermieristico, è stato costruito ad hoc non avendo reperito in letteratura strumenti utilizzabili per l’indagine in oggetto, è composto da 8 domande e alcune sottodomande contenute all’interno delle 8 principali, tutte a risposta multipla e una a domanda aperta. Alcune domande permettono di dare più risposte. Il questionario comprende diversi ambiti:

1- Generalità quali: età, sesso ed esperienza lavorativa.
2- Dove e come hanno appreso la tecnica di termodiluizione con PICCO system.
3- Il grado di conoscenza dell’argomento.
4- Quali variabili ritengono possano modificare i risultati.
5- Se esiste un infermiere esperto, quali caratteristiche in termini di conoscenza ed esperienza deve possedere. Quanto e quando è necessaria la sua presenza.

Infine, come menzionato nel primo capitolo, ho condotto, sempre previo consenso della direzione, una breve indagine sul grado di utilizzo dello strumento.

Ho ricercato lo strumento di misura nelle banche dati (PubMed e Cinahl) ma non avendolo reperito mi sono limitata a raccogliere alcune informazioni necessarie a costruirlo attraverso le seguenti parole chiave: “PICCO system, transpulmonary thermodilution, hemodynamic monitoring, nursing skills, measurement tools and variables.”
2.6 Analisi dei dati

Utilizzo della statistica descrittiva mediante programma Microsoft Excel, esposizione della prevalenza delle risposte date ai questionari attraverso rappresentazione grafica con istogramma e breve commento a riguardo.

Costruzione di due grafici cartesiani dimostrativi della relazione presente tra alcune variabili, conoscenza-esperienza lavorativa, conoscenza-esperienza rispetto la procedura. Precisamente ho messo in relazione le risposte date alla domanda 4 con quelle della domanda 2 e poi con quelle della 5, attribuendo un punteggio crescente alle risposte ad esempio:

La domanda 2 chiedeva: Da quanti anni lavora in Rianimazione?

<5 anni=1punto, 5-10anni=2punti, 10-20anni=3punti, >20=4punti

Quindi maggior esperienza maggiore il punteggio; così anche per le altre domande maggiore è il livello di conoscenze maggiore il punteggio, maggiore la frequenza d’uso dello strumento maggiore il punteggio.

Infine per incrociare i punteggi attribuiti alle risposte ho assegnato ad una variabile l’asse X e all’altra l’asse Y.

Ad esempio infermiere x ha risposto alla domanda 2 con A e alla domanda 4 con B (se A=1 e B=2) si ottengono così le coordinate:(X=1,Y=2).

In questo modo ho ottenuto i grafici cartesiani riportati nella discussione. In sostanza se esiste correlazione tra le variabili, cioè se all’aumentare dell’una aumenta anche l’altra, si otterrà dall’unione dei puntini una linea crescente.
CAPITOLO 3: RISULTATI

I grafici sottostanti riportanti i risultati ottenuti dalle risposte date alle domande del questionario sono tarati su un totale di 12 intervistati. Poiché come accennato su un totale di 28 infermieri a cui era stato somministrato il questionario, solamente 12 hanno risposto alla richiesta compilando quanto richiesto. Il totale previsto nei grafici quindi è 12, salvo le domande che prevedevano la possibilità di dare più risposte.

Ora passiamo all’analisi di ogni singola domanda posta nel questionario.

Il questionario si apriva con alcune domande di carattere anagrafico riguardanti età e sesso, che si susseguivano a due domande specifiche riguarda gli anni di servizio come infermiere e nello specifico anni di servizio in Rianimazione, domande che verranno analizzate e contextualizzate successivamente nel capitolo 4, che sono state poste perché le ho ritenute utili a definire quanto l’esperienza lavorativa sul campo incida nelle capacità di gestione del PICCO, compresa l’esecuzione delle misurazioni.

Età e sesso, i soggetti intervistati comprendono donne e uomini, con un’età media compresa tra 43 e 50 anni, per la maggioranza di sesso femminile.

3.1 Da quanti anni fa l’infermiere?

Grafico 3

3.2 Da quanti anni lavora in Rianimazione?

Grafico 4

3 Rappresentazione grafica con istogramma delle risposte date alla domanda: “Da quanti anni fa l’infermiere?”
3.3 Conosce la tecnica di misurazione PICCO? se si dove ha appreso la tecnica?

Il 100% degli intervistati hanno risposto che conoscono lo strumento, e la maggior parte sostiene che la fonte da cui ha appreso la tecnica è data dall’esperienza personale e dagli scambi tra colleghi come si può vedere nel grafico sottostante.

Il numero totale delle risposte date supera il numero degli infermieri che hanno compilato il questionario poiché questa domanda prevedeva la possibilità di dare più risposte. Non ci sono stati astenuti.

Grafico

Risulta chiaro che lo sviluppo della tecnica e delle conoscenze specifiche sull’argomento sia soprattutto peer to peer. Inoltre solo in pochi hanno appreso attraverso corsi d’aggiornamento e materiale scientifico, questo perché tali opzioni sono state scelte sempre dallo stesso numero ristretto d’intervistati poiché avevano appunto la possibilità di dare più risposte.

3.4 Quanto ritiene di conoscere sull’argomento?

Questa domanda è fondamentale per definire quanto detto precedentemente sull’argomento, cioè chi esegue le misurazioni con PICCO esegue la procedura in modo statico e ripetitivo “perché si fa così” o effettivamente ha le conoscenze scientifiche tali da saper anche riconoscere e correggere errori di misurazione? Su un totale di 12

4 Rappresentazione grafica con istogramma delle risposte date alla domanda: “Da quanti anni lavora in Rianimazione?”

5 Rappresentazione grafica con istogramma delle risposte date alla domanda: “Dove ha appreso la tecnica di termodiluizione transpolmonare?”
questionari compilati, 8 infermieri sostengono di conoscere il funzionamento del sistema e di saper eseguire la procedura di misurazione in maniera corretta, e nessuno si dichiara privo di conoscenze sull’argomento.

Grafico 6

3.5 Quante volte ha utilizzato la tecnica di misurazione PICCO?
Se consideriamo che la maggior parte degli infermieri sostiene di aver appreso la tecnica con l’esperienza, significa anche a mio parere che devono averla eseguita frequentemente ed effettivamente le risposte date hanno rispecchiato quanto mi aspettavo; Infatti 7 su 12 sostengono di eseguire la tecnica di routine, e nessuno dichiara di non averla mai eseguita.

Grafico 7

6Rappresentazione grafica con istogramma delle risposte date alla domanda: “Quanto ritiene di conoscere sull’argomento?”
7Rappresentazione grafica con istogramma delle risposte date alla domanda: “Quante volte ha utilizzato la tecnica di misurazione con PICCO?”
3.6(a) Ritiene siano presenti nella U.O. degli infermieri esperti dell’argomento in questione?

Arrivati a questo punto con l’ausilio del questionario ho provato a rispondere ad una domanda che mi ero posta precedentemente: “tutti gli infermieri sono in grado di eseguire la tecnica o esiste un infermiere esperto?” “Perché si può definire tale?” “Qual è il grado di conoscenza e preparazione che deve possedere?” Sulla base dei dati raccolti il 92% degli intervistati sostiene che sono presenti in reparto infermieri esperti. Ma cosa significa infermiere esperto?? Gli infermieri attraverso questa domanda hanno dato la loro definizione di infermiere esperto.

Definisca brevemente chi è l’infermiere esperto, perché si può definire tale?

Sette intervistati hanno risposto a questa domanda.

Di cui 3 sostengono che l’infermiere esperto sia colui che ha acquisito abilità e competenza tecnica e di problem-solving nell’esecuzione della tecnica attraverso una formazione caratterizzata dall’apprendimento attraverso l’esperienza sul campo, la formazione continua e corsi d’aggiornamento. Un’altro definisce l’infermiere esperto come colui dotato di conoscenze e abilità tecnico-relazionali.

Due che è colui che ha partecipato a corsi specifici sull’argomento e un altro ancora che tutti gli infermieri dovrebbero essere esperti di certe procedure tra cui quella in questione in un reparto come la terapia intensiva.

Quindi se esiste un infermiere esperto, quali dovrebbero essere le competenze di questo infermiere, quando e quanto si ritiene necessaria la presenza di un infermiere esperto?

Premetto che a questa domanda io richiedevo una sola risposta, infatti non avevo esplicitato la possibilità di darne più di una come avevo fatto in altri casi. Nell’analisi

8Rappresentazione grafica con istogramma delle risposte date alla domanda: “Ritiene siano presenti nella U.O. degli infermieri esperti dell’argomento in questione?”
dei dati dove erano state date più risposte ho considerato come valida quella che comprendeva la figura professionale considerata in possesso di minori conoscenze sull’argomento perché ho ritenuto che dando questa risposta gli infermieri avessero considerato sufficienti le competenze del professionista con minor grado di specificità sull’argomento. Ad esempio dove è stata data come risposta sia medico che infermiere esperto ho considerato infermiere esperto, invece qualora le risposte fossero state infermiere di turno e infermiere esperto ho considerato infermiere di turno e così via.

3.6(b) Cosa ritiene sia di competenza di un infermiere esperto, del medico o dell’infermiere di turno?

![Grafico 9](image)

Grafico 9

![Grafico 10](image)

Grafico 10

9Rappresentazione grafica con istogramma delle risposte date alla domanda: “A chi ritiene appartenga la competenza dell’inserimento del presidio PICCO?”

10Rappresentazione grafica con istogramma delle risposte date alla domanda: “A chi ritiene appartenga la competenza di gestire il presidio PICCO?”
Se consideriamo che il 92% degli intervistati ha confermato la presenza di un infermiere esperto, risultano contraddittorie le risposte date alla domanda 6b, poiché si può notare che la prevalenza rispecchia o il medico o l’infermiere di turno, quindi non risulta chiaro cosa effettivamente è di competenza dell’infermiere esperto.

3.7 Quali difficoltà ha incontrato nell’esecuzione delle misurazioni?
(Qui c’era la possibilità di dare più risposte) con questa domanda ho cercato d’indagare sui limiti e le difficoltà effettive percepite dagli infermieri durante l’esecuzione delle misurazioni con termodiluizione attraverso PICCO system, per identificare su quali aree intervenire per ottimizzare la procedura al fine di rilevare dati clinici reali e compatibili con le condizioni cliniche del paziente.

11 Rappresentazione grafica con istogramma delle risposte date alla domanda: “A chi ritiene appartenga la competenza di eseguire le misurazioni con termodiluizione?”

12 Rappresentazione grafica con istogramma delle risposte date alla domanda: “A chi ritiene appartenga la competenza di decidere quando inserire il presidio PICCO?”
Quello che si può dedurre dal grafico sopra riportato è che per gli infermieri il limite maggiore nell’esecuzione corretta della procedura è rappresentato dal contesto poiché se raggruppiamo tempo impiegato per la procedura e qualità del materiale utilizzato otteniamo ben il 45% delle risposte, a seguire possiamo riscontrare la mancanza di conoscenze suddivise in insufficiente conoscenza dello strumento e insufficiente conoscenza delle variabili incidenti la corretta misurazione, per un totale insieme del 30% infine troviamo con un 10% circa le altre risposte.

3.8(a) Quali variabili ha riscontrato modificare il risultato delle misurazioni?

Grafico 13

Grafico 14

13Rappresentazione grafica con istogramma delle risposte date alla domanda: “Quali difficoltà hai incontrato nell’esecuzione delle misurazioni?”
14Rappresentazione grafica con istogramma delle risposte date alla domanda: “Quali variabili hai riscontrato modificare il risultato delle misurazioni?”
Dalla ricerca nelle banche dati era emerso che le variabili maggiormente alteranti i risultati erano la posizione del paziente e la temperatura dell’acqua, cosa confermata pieno anche dalle risposte ai questionari. Un’altra variabile molto importante è sicuramente la capacità dell’operatore di riconoscere gli errori in base all’andamento dell’onda riportata dal monitor, riportata però come risposta da metà intervistati, poco a mio avviso, visto la rilevanza di questa variabile. Un intervistato ha riportato la presenza di un altra variabile: fattori incidenti la forma d’onda pressoria. Questa variabile però a mio parere può essere inclusa nella capacità dell’operatore di interpretare l’onda e comprenderne le alterazioni che generano l’errore.

Se si alla posizione del paziente, quale altera i risultati?

![Grafico](image)

Questa domanda prevedeva la possibilità di poter dare più risposte, la maggioranza degli infermieri, cioè il 57%, considera la posizione semiseduto 30° alterante i risultati, il 36% ha ritenuto fosse la posizione prona un fattore determinante errori di misurazione. Due intervistati compresi nelle percentuali appena elencate hanno definito entrambe le posizioni alteranti i risultati.

^15Rappresentazione grafica con istogramma delle risposte date alla domanda: “Quale posizione del paziente altera i risultati?”
3.8(b) Quanto ritiene di essere in grado di riconoscere se i dati sono errati?

Grafico16 Come visto precedentemente meno del 50% degli intervistati ha riportato come variabile di errore la capacità dell’operatore di valutare le misurazioni effettuate in base all’attendibilità dell’onda pressoria, e in effetti su 12 due hanno effettivamente ammesso di non essere in grado di rilevare l’errore, e 3 si sono astenuti dal rispondere, 5 invece come i 5 che lo hanno considerato come una variabile da considerare si sono dichiarati capaci di riconoscere l’errore, e di correggerlo.

3.9 In quali di questi casi elencati nella sua unità operativa l’equipe ritiene opportuno l’utilizzo di PICCO?

Grafico17 La patologia per cui questo strumento viene più utilizzato in questa U.O. è risultata essere lo shock settico, risultato che non mi sorprende poiché anche io dalla ricerca che avevo effettuato nelle cartelle cliniche avevo effettivamente riscontato una forte correlazione tra shock settico o setticemie gravi con PICCO system. In questa domanda c’era la possibilità di dare più risposte.

16Rappresentazione grafica con istogramma delle risposte date alla domanda: “Quanto ritiene di essere in grado di riconoscere i dati errati?”

17Rappresentazione grafica con istogramma delle risposte date alla domanda: “In quali di questi casi elencati nella sua unità operativa l’equipe ritiene opportuno l’utilizzo di PICCO?”
CAPITOLO 4: DISCUSSIONE E CONCLUSIONI

4.1 Discussione

Dallo studio condotto si è constatato che effettivamente la tecnica di misurazione con termodiluizione transpulmonare con PICCO system è utilizzata di routine, e quindi l’importanza di rilevare dati veritieri e corretti risulta essere una necessità reale. Dall’indagine è emerso che l’età di servizio come infermiere risulta essere irrilevante poiché la tecnica viene utilizzata solo in Terapia Intensiva, ma anche l’esperienza di servizio nell’unità operativa d’indagine non ha portato ad importanti variazioni sulla qualità dell’esecuzione. Attraverso questo grafico ho definito la correlazione tra gli anni di servizio presso la Terapia Intensiva e le conoscenze sull’uso del PICCO. Più precisamente ho messo in relazione attraverso un grafico cartesiano la domanda 2 e la domanda 4 del questionario, se fosse comparso dall’unione dei puntini una linea crescente allora ci sarebbe stata correlazione, ma il grafico mostra che dai dati emersi non sussiste una relazione.

Associando allo stesso modo la frequenza nell’esecuzione della procedura con le conoscenze, il grafico mostra un andamento lievemente più crescente rispetto al precedente; inoltre circa la metà degli intervistati hanno associato conoscenze complete con utilizzo quotidiano dello strumento. Perciò sulla base di questa indagine si può

\[\text{conoscenze vs anni di servizio}\]

<table>
<thead>
<tr>
<th>Anni di servizio</th>
<th>Conoscenze sull’argomento</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1,5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2,5</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

\[\text{anni di servizio presso la Rianimazione} \quad \text{Grafico}\]

\[^{18}\text{Rappresentazione con grafico cartesiano dell’associazione tra le risposte date alla domanda 4: “Quanto ritiene di conoscere sull’argomento?” e alla domanda 2: “Da quanti anni lavora in Rianimazione?”}\]
affermare che le conoscenze si sviluppano anche attraverso la sperimentazione frequente e ripetuta della tecnica stessa.

Precisamente il grafico mostra la relazione tra la domanda 4 e 5.

conoscenze vs frequenza nelle misurazioni

L’esperienza sul campo sembrerebbe essere il mezzo migliore di apprendimento per gli infermieri, questo è stato confermato anche dalle risposte date alla domanda 3 che si riferisce a dove avessero appreso la tecnica, il 40% degli intervistati riferisce esperienza personale e scambi tra colleghi la tecnica di apprendimento contro il 25% di apprendimento attraverso corsi di aggiornamento vari e il 35 % attraverso strumenti scientifici diversi. L’esperienza veniva menzionata anche dalla letteratura stessa come un parametro determinante nella gestione di questo presidio, tant’è che consigliavano di far ricadere la scelta dello strumento in base all’esperienza e alla competenza del personale stesso. Definiamo le competenze: la domanda 6 chiedeva se fosse presente un infermiere esperto dell’argomento presso l’UO d’indagine, il 92% degli infermieri ha risposto che si effettivamente sono presenti infermieri esperti e che questi infermieri sono diventati tali attraverso l’esperienza sul campo, lo studio personale e corsi d’aggiornamento sul tema in questione. Una delle domande che mi ero posta e a cui avevo cercato di rispondere era comprendere quali fossero le competenze e le conoscenze necessarie ad effettuare la procedura in questione. Dalla mia ricerca però (Cinahl, Pub-med) non sono emersi appunto quali fossero i criteri necessari e nemmeno

19Rappresentazione con grafico cartesiano dell’associazione tra le risposte date alla domanda 4: “Quanto ritiene di conoscere sull’argomento?” e alla domanda 5: “quante volte ha usato la tecnica di misurazione con PICCO?”
quali fossero le figure sanitarie professionali ritenute idonee. Invece dalle risposte date alla domanda 6b del questionario è chiaro che nel reparto d’indagine la procedura viene eseguita degli infermieri; perciò se è vero che sono necessarie delle competenze e conoscenze specifiche, esiste un infermiere esperto? quali sono le attività che necessitano di questa preparazione e quali invece richiedono la presenza del medico? Ritengo che le risposte date a questa domanda, undici sì e un no, siano contraddittorie rispetto a quanto affermato nella domanda precedente poiché se riprendiamo i grafici rispettivi alla 6b possiamo notare che le procedure vengono assegnate per la maggioranza o al medico o all’infermiere di turno; Quindi non è chiaro ancora effettivamente quando e quanto sia necessario un infermiere esperto. Le risposte date alla domanda 6b risultano essere molto omogenee infatti l’84% sostiene che la decisione di procedere e l’inserimento stesso del PICCO spettino al medico, la gestione dei presidi e l’esecuzione delle termodiluizioni all’infermiere di turno con una percentuale del 100% e del 75%. Nella domanda 6 la maggioranza degli’intervistati aveva definito l’infermiere esperto come colui dotato d’esperienza, di capacità di problem-solving e di conoscenze specifiche ottenute attraverso formazione continua e corsi d’aggiornamento; Risulta quindi chiaro che gli infermieri siano consapevoli che questa pratica richieda una preparazione specifica ma allo stesso tempo, forse per l’organizzazione del lavoro nel reparto, la procedura viene eseguita da chi è disponibile in quel momento, non potendo essere sempre presente un infermiere esperto. Il rischio che ne consegue è che vengano effettuate delle misurazioni non errate ma sicuramente poco precise con risultati spesso inattendibili.

Passiamo invece alle difficoltà incontrate nell’effettuare le misurazioni dove ritroviamo con un totale del 45% il contesto caratterizzato da inadeguatezza del materiale in uso, e insufficiente tempo dedicato all’esecuzione delle misurazioni. Entrambi limiti comprensibili, spesso presenti in molti reparti ospedalieri, ma che a mio parere non possono rappresentare una motivazione per giustificare l’errore. Se il contesto è una variabile spesso difficile da poter controllare come singoli professionisti, il livello di conoscenza e quindi di competenza verso una determinata procedura è invece qualcosa che possiamo sicuramente controllare.
Il 30% degli intervistati a questo proposito ammette come limite la scarsa conoscenza, suddivisa a sua volta in un 50% che dichiara di essere poco informato sul funzionamento del PICCO e la restante metà invece non sa riconoscere e gestire le variabili incidenti la corretta misurazione. Portando quindi in rilievo che effettivamente sussiste un bisogno informativo, e di apprendimento. La carenza di conoscenze specifiche viene portata alla luce anche dalla domanda 8b dove si chiedeva di esplicitare le proprie capacità di riconoscere valori errati di CO (gittata cardiaca) durante le misurazioni con termodiluizione, di essere in grado di riconoscere le cause ed eventualmente di apportare le correzioni al fine di considerare solo i dati attendibili.

La domanda in questione ha portato alla luce che il 42% degli intervistati è in grado di riconoscere e risolvere l’errore quindi di fatto meno della metà, il 33% invece ha ammesso le proprie difficoltà, e il restante ha scelto l’astensione. Alla luce di quanto detto, chi ha dichiarato di eseguire la procedura di routine o con una frequenza superiore alle 20 volte nell’arco della propria carriera è anche in grado di riconoscere gli errori, di eliminare quindi i dati errati e considerare solo quelli corretti al fine di ottenere un valore medio compatibile con le condizioni cliniche reali del paziente??

La risposta alla domanda precedente è no, infatti da quello che emerge dal grafico l’esperienza sul campo in termini di frequenza nell’esecuzione della procedura non garantisce anche lo sviluppo della capacità di saper riconoscere e correggere gli errori nelle misurazioni, producendo di conseguenza dati non del tutto attendibili. In un totale di 9 infermieri che avevano affermato di eseguire la procedura con grande frequenza,

Grafico

La risposta alla domanda precedente è no, infatti da quello che emerge dal grafico l’esperienza sul campo in termini di frequenza nell’esecuzione della procedura non garantisce anche lo sviluppo della capacità di saper riconoscere e correggere gli errori nelle misurazioni, producendo di conseguenza dati non del tutto attendibili. In un totale di 9 infermieri che avevano affermato di eseguire la procedura con grande frequenza,

20 Rappresentazione con grafico a istogramma delle risposte date alla domanda 8b: “Quanto ritiene di essere in grado di riconoscere i valori errati?”, solo degli intervistati che alla domanda 5: “Quante volte ha utilizzato la tecnica di misurazione con PICCO”, avevano risposto “ben oltre le venti volte, o di routine da quando sono in Rianimazione”.
due ritengono di avere delle difficoltà nel riconoscimento e gestione dell’errore, 5 invece affermano di esserne in grado e due hanno scelto l’astensione.

Allo stesso modo successivamente ho indagato se quanto affermato sulle conoscenze riguardanti il PICCO alla domanda 4, comprendesse o meno anche la capacità di riconoscere gli errori o se nonostante la buona preparazione sull’argomento, questa variabile risaltasse essere ancora un limite per gli infermieri. I risultati di questa indagine sono espressi nel grafico sottostante, per costruirlo ho preso in esame gli infermieri che avevano risposto alla domanda 4 sostenendo di avere delle conoscenze complete sull’argomento e ho messo in relazione quella risposta con quanto invece affermato alla domanda 8b ed risultato quanto segue:

conoscenze vs capacità di riconoscere valori errati

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non ne sono in grado/ sono parzialmente in grado</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sono in grado di riconoscere l’errore e risolverlo</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>astenuti</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Grafico

Tra gli 8 infermieri che avevano precedentemente dichiarato le loro complete conoscenze sull’argomento termodiluizione con PICCO system, 3 di loro, nonostante la loro buona preparazione, si sentono ancora in difficoltà di fronte a questa variabile.

Quello che possiamo trarre da queste due indagini è che il riconoscimento dell’errore è sottovalutato rispetto all’importanza che invece possiede, è stato riconosciuto come variabile incidente la corretta misurazione dal 42% degli infermieri, tra questi il 50% è rappresentato da chi aveva ammesso le sue difficoltà nel riconoscimento dell’errore, ciò significa che l’ammissione di una carenza è relativa anche all’importanza che si da a quella variabile. Sulla base di quanto detto è possibile affermare che questa variabile ha portato alla luce la necessità d’integrare esperienza e conoscenza e che la criticità di

21 Rappresentazione con grafico a istogramma delle risposte date alla domanda 8b: “Quanto ritiene di essere in grado di riconoscere i valori errati?”, solo degli intervistati che alla domanda 4: “Quanto ritiene di conoscere sull’argomento?”, avevano risposto “so cos’è, a cosa serve, ne conosco il funzionamento e l’esecuzione della procedura di misurazione corretta.”
mettersi alla prova e riconoscere i propri limiti può essere un ottimo strumento attraverso il quale migliorarsi come professionisti. Quest’ultima affermazione può essere dimostrata anche attraverso il numero di astenuti alla domanda 8b, di gran lunga superiore alle altre domande, e che di fatto tutti gli astenuti non hanno considerato la variabile “capacità dell’operatore” come necessaria.

La domanda 8a chiedeva di portare alla luce le variabili incidenti la corretta misurazione, la letteratura in questione ne riportava alcune confermate anche dagli infermieri; le variabili in questione sono: posizione del paziente con una percentuale del 92%, temperatura dell’iniettato con il 75%, capacità di riconoscere il mal funzionamento del termistore con il 50% e infine l’abilità dell’operatore d’interpretare l’onda pressoria riportata dal monitor. Quindi si può affermare che gli infermieri hanno confermato con maggior frequenza le variabili riportate anche dalla letteratura corrente.

Le altre risposte riportate nella domanda erano state pensate con l’aiuto del correlatore, infermiere professionale presso il reparto di Terapia Intensiva, con un ottimo bagaglio di conoscenze ed esperienza sull’argomento. Abbiamo deciso di aggiungere delle variabili non presenti in letteratura poiché volevamo verificare se attraverso l’esperienza erano state valutate e considerate come necessarie anche altre variabili.

Per quanto riguarda la variabile “posizione del paziente” si chiedeva di barrare quali posizioni alterassero o meno le misurazioni, ciò che è emerso è che esiste una buona consapevolezza della necessità di predisporre il paziente in posizione supina durante le misurazioni e di considerare invece la posizione semiseduta 30° (ho scelto questa perché la più diffusa in rianimazione) come un fattore alterante i risultati; per quanto riguarda la posizione prona invece dalla mia ricerca non sono emerse prove che dimostrino che questa posizione alteri i risultati; (Brücken, Grensemann, Wappler, & Sakka, 2011) a questo proposito invece il 45% degli infermieri ha considerato la risposta valida, quindi sembrerebbe esserci meno consapevolezza riguardo agli effetti che la pronazione ha sui risultati delle misurazioni, ciò potrebbe essere dovuto al fatto che gli infermieri possiedono poca esperienza a riguardo poiché la pronazione del paziente risulta essere ancora rara nel reparto d’indagine. In realtà secondo le evidenze nessuna posizione altera i risultati purché le misurazioni siano eseguite sempre nella
medesima; quindi la scelta della posizione supina è la più convenzionale per evitare errori.

Infine dall’ultima domanda è emerso che l’equipe utilizza il monitoraggio emodinamico con PICCO soprattutto nei pazienti con setticemie/shock settico, e in quelli post chirurgici, una scelta ottimale considerando quanto detto nel capitolo 1 (Azienda Ospedaliera Universitaria S. Maria della Misericordia di Udine, 2013). Appare meno appropriato invece il suo uso nello shock cardiogeno dove si ritiene maggiormente valido l’utilizzo di PAC sempre per quanto discusso nel documento appena citato.

4.2 Limiti dello studio
Le difficoltà legate allo studio sono rappresentate dalla scarsa adesione del personale intervistato (meno della metà), ciò non mi ha permesso di effettuare un’analisi delle competenze rispetto l’argomento e d’indagare in maniera appurata i punti di forza e le difficoltà presenti al fine di definire delle proposte utili a migliorare la qualità della pratica in questo ambito e nemmeno di riuscire a riconoscere i differenti approcci tra realtà diverse da poco riunite in una unica.

Il tempo di analisi ristretto nel periodo estivo è risultato essere un altro limite poiché se avessi potuto ampliare il periodo di indagine, forse un maggior numero di intervistati avrebbe avuto tempo e modo di compilare il questionario, visto l’assenza di molti per le ferie. Inoltre ciò può essere dovuto al fatto che nel periodo in cui ho somministrato i questionari, altri 4 laureandi come me stavano conducendo la loro indagine, quindi anche la quantità di strumenti da compilare ha contribuito alla scarsa compliance da parte del personale.

Il questionario in sé rappresenta un altro grande limite, non avendo trovato uno strumento d’indagine in letteratura, l’ho costruito io stessa, con i potenziali limiti del caso. Inoltre il questionario potrebbe essere stato percepito dagli infermieri come valutativo del loro operato e potenzialmente un mezzo attraverso il quale mettere in discussione le loro competenze.

4.3 Punti di forza
I punti di forza dello studio si sono dimostrati essere l’ampio utilizzo del PICCO system e della tecnica di termodiluizione transpolmonare, poiché ciò ha permesso di raccogliere
dati più oggettivi rispetto la realtà e quindi anche di poter giustificare l’indagine effettuata.

L’unione di realtà diverse rappresenta un punto di forza perché ha permesso di mettere in discussione l’esperienza maturata attraverso l’abitudine e la routine; questo ha permesso di evidenziare l’importanza di integrare conoscenze ed esperienze diverse.

4.4 Conclusioni
Le difficoltà emerse dall’indagine sono reali: esistono delle carenze nelle conoscenze e nella preparazione, probabilmente perché l’apprendimento avviene per lo più peer to peer, attraverso l’esperienza personale, non vengono utilizzate linee guida aziendali ed i corsi d’aggiornamento sembrano essere considerati da pochi. Nonostante ciò i professionisti hanno conseguito un buon livello di controllo delle variabili maggiormente incidenti i risultati (temperatura e posizionamento del paziente), ma manifestano ancora delle difficoltà nella lettura del grafico riportante l’andamento dell’onda di termodiluizione, variabile fondamentale per garantire la produzione di valori emodinamici attendibili. Questo comporta ad un approccio alla pratica limitato alla manualità, spesso senza la componente razionale che ci sta alla base. Sorge spontanea perciò questa domanda: “l’infermiere ha effettivamente le competenze necessarie per la rilevazione di parametri emodinamici, necessari a determinare interventi clinici che potrebbero cambiare drasticamente le condizioni cliniche di pazienti critici?”

Ho provato a rispondere a questa domanda con quanto dice il codice deontologico dell’infermiere;

Articolo 2: L’assistenza infermieristica è servizio alla persona, alla famiglia e alla collettività. Si realizza attraverso interventi specifici, autonomi e complementari di natura intellettuale, tecnico-scientifica, gestionale, relazionale ed educativa.

Articolo 12: L’infermiere riconosce il valore della ricerca, della sperimentazione clinica e assistenziale per l’evoluzione delle conoscenze e per i benefici sull’assistito.

Articolo 13: L’infermiere assume responsabilità in base al proprio livello di competenza e ricorre, se necessario, all’intervento o alla consulenza di infermieri esperti o specialisti.

Articolo 14: Presta consulenza ponendo le proprie conoscenze ed abilità a disposizione della comunità professionale. (Codice Deontologico dell’infermiere, 2009)
L’infermiere con l’abolizione del mansionario non è più limitato ad eseguire attività delimitate da ciò che può fare o non può fare, non esiste più la lista delle procedure, ora l’infermiere divenuto professionista con connoznazioni tecniche-scientifiche può svolgere attività fin tanto che rientrino nel suo campo di conoscenza, competenza e responsabilità professionale. L’infermiere, in base a quanto definiscono gli articoli, si fa garante della salute del paziente, dei suoi diritti e nel rispetto delle sue volontà è tenuto ad informare l’assistito, a rispettarne le decisioni e ad adoperarsi al meglio per preservarne la salute; non è più un semplice esecutore di procedure pratiche, è un professionista dotato di conoscenze scientifiche, competenza e responsabilità, quindi gli viene richiesto di sviluppare capacità di ragionamento critico e di prendere decisioni. Tenendo conto di quanto detto e calandolo nel contesto del monitoraggio emodinamico mediante catetere PICCO, i parametri rilevati sono indice della risposta terapeutica del paziente alle cure e necessitano di misure accurate e precise per indirizzare la clinica; l’infermiere perciò ha un ruolo chiave nella loro rilevazione e interpretazione al fine di produrre dati clinici corrispondenti alla reale condizione dell’assistito. Dobbiamo tener conto però che il tutto deve andare pari passo con le conoscenze scientifiche e tecniche che questo professionista possiede e che se qualora non fosse qualificato per l’esecuzione di tale procedura sarà tenuto a richiedere l’aiuto di una figura professionale più esperta ed eventualmente impegnarsi nell’apprendimento al fine di fornire un’assistenza sempre più avanzata e mirata ai bisogni del paziente.

Infine concludo con questo pensiero: “Tutto ciò che un infermiere fa, agisce come un attrattore strano, gli attrattori strani sono piccole variabili che agiscono su un sistema, prese singolarmente non modificano l’andamento del sistema, ma se sommate l’una sull’altra possono cambiare il risultato finale; Così l’infermiere agendo sul paziente può portare tante piccole variazioni che sommate possono modificare profondamente le condizioni di salute.” (Dalla teoria del caos (Zanotti, 2010))

In questo preciso caso l’infermiere rilevando dei parametri clinici così importanti conduce a delle decisioni terapeutiche che potrebbero cambiare drasticamente le condizioni cliniche del paziente.
4.5 Implicazioni per la pratica
Terminata l’analisi dei dati emersi dai questionari ho condotto una breve intervista ad un infermiere esperto; da questo incontro è emersa la necessità, già espressa nella discussione precedente, di sensibilizzare i professionisti e di spingerli ad una maggior consapevolezza del bisogno formativo che l’uso di tecnologie emergenti necessita, specie in reparti come la Terapia Intensiva che ne fa grande uso. Gli strumenti messi a disposizione dalla struttura per l’aggiornamento e l’apprendimento sono buoni ma limitati, è perciò necessario che il singolo professionista si presti ad informarsi, ad apprendere e conoscere in modo autonomo attraverso i mezzi che più ritiene idonei, (banche dati, letteratura terziaria, personale esperto ecc..).

L’infermiere, dovrebbe farlo di routine in base alle necessità che il paziente richiede, non dovrebbe essere facoltativo; è tenuto all’aggiornamento e all’informazione in base anche a due importanti principi contenuti all’interno del codice deontologico:

Articolo 9: L’infermiere, nell'agire professionale, si impegna ad operare con prudenza al fine di non nuocere.

Articolo 12: L’infermiere riconosce il valore della ricerca, della sperimentazione clinica e assistenziale per l’evoluzione delle conoscenze e per i benefici sull’assistito. (Codice Deontologico dell'infermiere, 2009)
BIBLIOGRAFIA

Azienda Ospedaliera S. Maria della Misericordia (Udine). (s.d.). *Il monitoraggio emodinamico in arteria polmonare*. Tratto il giorno luglio 28, 2015 da Area-C54 blog d'informazione infermieristica: http://www.area-c54.it/

ALLEGATI

Allegato 1: Questionario

Questionario: Gestione infermieristica PICCO System

Sono Lucrezia Fasolato, laureanda in infermieristica presso l’Università degli studi di Padova nella sede di Monselice.

Con questo questionario, che le chiedo di compilare vorrei evidenziare le variabili incidenti la corretta misurazione con il sistema PICCO e le competenze necessarie in questo campo. I dati raccolti verranno utilizzati al solo scopo di evidenziare come si possano effettuare le misurazioni al fine di ottenere dei dati il più possibile compatibili con la reale situazione del paziente, al fine di ottimizzare la pratica integrando i dati raccolti con quelli emersi dalla letteratura corrente. Infine garantisco l’assoluto anonimato delle risposte date nei questionari.

Ricordo che la scadenza per la compilazione dei questionari è il 20/08/15, chiedo cortesemente agli infermieri di rispettare la scadenza al fine di ottimizzare i tempi di analisi dei dati emergenti.

Grazie per la collaborazione.

Lucrezia.

ARGOMENTO: Ruolo del infermiere nel monitoraggio emodinamico dei pazienti adulti critici in terapia intensiva. Dalla letteratura emerge che il monitoraggio emodinamico con PAC o PICCO si dimostra non essere rilevante nell’incidenza di mortalità dei pazienti in terapia intensiva, ma può essere potenzialmente uno strumento di grande aiuto nel monitoraggio, nella previsione delle condizioni cliniche del paziente e nell’attuazione di determinati interventi solo se esiste tra medici e infermieri un buon livello di conoscenze e preparazione nell’uso di questi strumenti e nell’interpretazione dei dati emergenti.

QUESTIONARIO

Scopo del questionario: Identificazione delle variabili incidenti la corretta misurazione dei valori emodinamici in primis la CO (gittata cardiaca) con la tecnica del
monitoraggio emodinamico attraverso il metodo delle termodiluizioni, confronto tra le variabili emergenti dalla letteratura con le variabili percepite dagli infermieri della T.I. Delimitare le competenze infermieristiche in campo specifico.

Grazie per la collaborazione.
Studentessa: Lucrezia Fasolato
Relatore: Stefano Bernardelli
Correlatore: Massimo Miola

Risponda con una sola risposta per domanda salvo eccezioni segnalate in parte alla domanda

Generalità

età :

seesso:

Quanto conta l’esperienza lavorativa??

1. Da quanti anni fa l’infermiere
 - □ <5
 - □ 5-10
 - □ 10-20
 - □ >20

2. Da quanti anni lavora in rianimazione?
 - □ <5
 - □ 5-10
 - □ 10-20
 - □ >20

3. Conosce la tecnica di misurazione PICCO?
 - □ SI
 - □ NO

…..Se si dove ha appreso la tecnica di misurazione PICCO? (può dare più risposte)

 - □ Linee guida
 - □ Testi infermieristici
 - □ Evidenze scientifiche riportate in letteratura
 - □ Istruzioni riportate nel prodotto
 - □ Esperienza personale

42
Scambi tra colleghi
Corsi di aggiornamenti all’interno dell’azienda ospedaliera.
Corsi di aggiornamenti all’esterno dell’azienda ospedaliera.
Corsi di aggiornamenti all’interno dell’unità operativa.

4. Quanto ritiene di conoscere sull’argomento
☐ Niente, non so cos’è e nemmeno a cosa serve.
☐ So cos’è e a cosa serve ma non ne conosco il funzionamento.
☐ So cos’è a cosa serve e ne conosco il funzionamento.
☐ So cos’è, a cosa serve, ne conosco in funzionamento e l’esecuzione della procedura di misurazione corretta.

5. Quante volte ha utilizzato la tecnica di misurazione PICCO?
☐ Mai
☐ Più di 5 volte
☐ più di 10 volte
☐ ben oltre le 20 volte
☐ Di routine da quando sono in rianimazione

…Se conosce l’argomento e se ha effettuato le misurazioni risponda a queste domande:

6.(a) Ritiene siano presenti nella UUOO degli infermieri esperti dell’argomento in questione:
☐ Si
☐ No
 Se si, definisca brevemente chi è l’infermiere esperto, perché si può definire tale

6.(b) Cosa ritiene sia di competenza di un infermiere esperto di un medico o dell’infermiere di turno?
☐ Inserimento del presidio PICCO
 ☐ Infermiere esperto
 ☐ Infermiere di turno
 ☐ Medico
☐ Gestione del presidio PICCO al fine di prevenire complicanze quali dislocamento, infezioni, occlusioni, stravaso, trombosi, flebiti

43
□ Infermiere esperto
□ Infermiere di turno
□ Medico

□ Esecuzione delle misurazioni
□ Infermiere esperto
□ Infermiere di turno
□ Medico

□ Decisione del inserimento del presidio
□ Infermiere esperto
□ Infermiere di turno
□ Medico

7. Quali difficoltà ha incontrato nella misurazione? (può dare più risposte)
□ Insufficiente esperienza personale
□ Insufficiente conoscenza del funzionamento dello strumento
□ Insufficiente conoscenza delle variabili incidenti la corretta misurazione
□ Complessità pratica della Procedura
□ Qualità e idoneità del materiale utilizzato per eseguire le misurazioni
□ Tempo messo a disposizione per l’esecuzione delle misurazioni

8(a) Quali variabili ha riscontrato modificare il risultato delle misurazioni? (può dare più risposte)
□ Temperatura dell’acqua
□ Pressione d’iniezione
□ Velocità d’iniezione
□ Resistenze periferiche
□ Ostruzione o dislocamento del CVC
□ Ostruzione e dislocamento del catetere arterioso
□ Capacità di riconoscere il mal funzionamento del termistore
□ Capacità dell’operatore di riconoscere l’errore tramite l’andamento dell’onda riportata dal monitor
□ Posizione del paziente se si quale posizione altera i risultati? (può dare più risposte)
□ Semiseduto a 30°
□ Supino
□ Prano
□ Altro, se sì, indicare quali altre variabili evidenziate:
8(b) Quanto ritiene di essere in grado di riconoscere dei dati errati?

- [] Non ne sono in grado
- [] Sono in grado di riconoscere l’errore ma non di capire la causa e come risolverlo
- [] Sono in grado di conoscere l’errore la causa ma non come risolverlo
- [] Sono in grado di conoscere l’errore la causa e come risolverlo

9. Dalla letteratura emerge che le misurazioni con PICCO vengono utilizzate in questi casi elencati, in quali di questi casi nella sua Unità operativa l’equipe ne ritiene opportuno l’utilizzo? (può dare più risposte)

- [] Shock settico
- [] Shock cardiogeno
- [] Infarto cardiaco
- [] Ictus emorragico
- [] Scompenso cardiaco sinistro
- [] Scompenso cardiaco destro
- [] Ustioni maggiori
- [] Interventi chirurgici complicati