Metodi per l’integrazione dell’informazione EEG nell’analisi fMRI in resting state

Candidato:
Raffaele Giordano
Matricola 1069789

Relatore:
Ch.m.a Prof.ssa Alessandra Bertoldo

Correlatori:
Prof. Antonino Vallesi
Ing. Ilaria Mazzonetto

Anno Accademico 2015–2016
Alla mia famiglia
Indice

Introduzione

<table>
<thead>
<tr>
<th>Integrazione EEG/fMRI</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Elettroencefalogramma (EEG)</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1 Resting state</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Risonanza Magnetica Funzionale (fMRI). Cenni fisiologici</td>
<td>8</td>
</tr>
<tr>
<td>1.2.1 Resting state</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Integrazione EEG-fMRI</td>
<td>13</td>
</tr>
</tbody>
</table>

Preprocessing

<table>
<thead>
<tr>
<th>Preprocessing EEG</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Artefatti da campo magnetico</td>
<td>18</td>
</tr>
<tr>
<td>2.1.2 Rimozione dell’artefatto da gradiente dai dati. Algoritmo FASTR</td>
<td>20</td>
</tr>
<tr>
<td>2.1.3 Rimozione dei picchi residui. Cleanline</td>
<td>27</td>
</tr>
<tr>
<td>2.1.4 Rimozione dell’artefatto cardioballistografico</td>
<td>28</td>
</tr>
<tr>
<td>2.1.5 Preprocessing Pipeline (PREP)</td>
<td>29</td>
</tr>
<tr>
<td>2.1.6 ICA temporale</td>
<td>31</td>
</tr>
<tr>
<td>Preprocessing fMRI</td>
<td>32</td>
</tr>
<tr>
<td>2.2.1 Correzione del movimento</td>
<td>33</td>
</tr>
<tr>
<td>2.2.2 Coregistrazione</td>
<td>34</td>
</tr>
<tr>
<td>2.2.3 Normalizzazione</td>
<td>36</td>
</tr>
<tr>
<td>2.2.4 ICA spaziale</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>Metodi per l’integrazione EEG-fMRI</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>3.1</td>
<td>Approccio asimmetrico</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Integrazione dell’informazione fMRI nell’analisi EEG</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Integrazione dell’informazione EEG nell’analisi fMRI</td>
</tr>
<tr>
<td>3.2</td>
<td>Approccio simmetrico. Cenni</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Integrazione tramite modello neurogenerativo</td>
</tr>
<tr>
<td>4</td>
<td>Materiali</td>
</tr>
<tr>
<td>4.1</td>
<td>Acquisizioni</td>
</tr>
<tr>
<td>4.2</td>
<td>Data-set</td>
</tr>
<tr>
<td>5</td>
<td>Metodi</td>
</tr>
<tr>
<td>5.1</td>
<td>Correzione del segnale EEG</td>
</tr>
<tr>
<td>5.2</td>
<td>Elaborazione delle immagini fMRI</td>
</tr>
<tr>
<td>5.3</td>
<td>General Linear Model</td>
</tr>
<tr>
<td>6</td>
<td>Risultati e discussione</td>
</tr>
<tr>
<td>6.1</td>
<td>Risultati preprocessing EEG</td>
</tr>
<tr>
<td>6.2</td>
<td>Risultati preprocessing fMRI</td>
</tr>
<tr>
<td>6.3</td>
<td>Risultati analisi di gruppo</td>
</tr>
<tr>
<td>6.4</td>
<td>Discussione e scelta del modello</td>
</tr>
<tr>
<td>6.5</td>
<td>Risultati studio di correlazione</td>
</tr>
</tbody>
</table>

Conclusioni 87

Bibliografia 90
Introduzione

L’elettroencefalogramma e il segnale fMRI sono tra le tecniche più diffuse per lo studio non invasivo del cervello umano. L’idea di utilizzare un approccio multimodale per caratterizzare la dinamica e la struttura cerebrale ha origine dalla forte complementarità, in termini di risoluzioni spaziale e temporale, che sussiste fra le due metodologie di acquisizione ed analisi.

Sebbene quest’approccio abbia avuto come primo interesse la localizzazione delle sorgenti epilettiche, si è presto esteso anche in ambiti meno clinici, quali gli studi a livello cognitivo. Uno di questi riguarda proprio la caratterizzazione del resting state, ovvero quella condizione per cui un soggetto non è sottoposto ad alcuno stimolo esterno e non pensa a nulla in particolare.

L’esigenza di studiare una situazione in cui un soggetto non svolge alcun compito specifico nasce dal forte collegamento che sussiste tra l’attività cerebrale spontanea e l’integrità della connettività funzionale.

Il lavoro svolto in questa tesi riunisce tutti questi aspetti: effettuando un’analisi combinata di elettroencefalogramma e risonanza magnetica funzionale si vuole studiare la correlazione fra il segnale fMRI e l’attività oscillatoria in banda alfa estratta dal segnale EEG per soggetti in resting state.

Nel primo capitolo si spiegano i meccanismi fisiologici che portano alla generazione di entrambi i segnali, fornendo anche delle indicazioni sulle modalità con le quali vengono acquisiti e su come essi si caratterizzano in condizioni di resting state. Si discutono inoltre i vantaggi e gli svantaggi legati alla loro acquisizione simultanea.

Nel secondo capitolo si spiega nel dettaglio la procedura di preproces-
sing effettuata su entrambi i segnali, con particolare riguardo alle problematieche che bisogna affrontare quando l'elettroencefalogramma è acquisito all'interno di un ambiente di risonanza magnetica.

Nel terzo capitolo si affrontano, da un punto di vista prettamente teorico, i metodi classici per l'integrazione dei segnali EEG ed fMRI, discutendo pro e contro di ciascuno, e spiegando quando è conveniente utilizzare un approccio invece di un altro.

Nel quarto capitolo si forniscono i dettagli della strumentazione utilizzata e del dataset fornito dal Dipartimento di Neuroscienze dell'Università degli Studi di Padova.

Nel quinto capitolo si mostrano nel dettaglio le tecniche utilizzate nel corso di tutto il lavoro di tesi effettuato. Si forniscono inoltre spiegazioni riguardanti le scelte algoritmiche effettuate, oltre ai parametri stabiliti nelle diverse fasi di analisi.

Nel sesto capitolo si espongono e si discutono i risultati trovati applicando le operazioni spiegate nel capitolo precedente. Si motiva inoltre la scelta del modello finale utilizzato per lo studio di correlazione.
Capitolo 1

Integrazione EEG/fMRI

1.1 Elettroencefalogramma (EEG).

Cenni fisiologici

La scoperta dell’esistenza di un’attività elettrica cerebrale si deve ad un esperimento che risale al 1875, ad opera di Richard Caton. Egli, grazie all’utilizzo di un galvanometro, si accorse della presenza di correnti elettriche misurabili sulla superficie dello scalp di conigli e scimmie [7]. Da allora l’interesse nel campo ha subito notevole incremento. Nel 1920, Hans Berger, dimostrando che la registrazione di questi segnali elettrici poteva essere effettuata anche sull’uomo, diede il via alla diffusione di questa nuova tecnica come metodo di analisi delle funzioni cerebrali in soggetti sani e malati.

I meccanismi di generazione del segnale elettrico cerebrale sono rimasti a lungo tempo oggetto di discussione, vista soprattutto la complessità della fisiologia che ne sta alla base. Infatti, il segnale elettrico misurato non è specchio dell’attività delle sorgenti interne, ma è il risultato di tutti i contributi elettrici provenienti dalla moltitudine di neuroni presenti all’interno del cervello, più un certo contribuito da parte delle cellule gliali. I neuroni infatti, attivandosi, danno origine a delle correnti elettriche tempo-varianti a livello di membrana cellulare che si propagano poi attraverso l’assone fino alle sinapsi, ovvero i punti di giunzione fra le diverse cellule neuronali [72].
Le sinapsi sono collegate ai dendriti di altri neuroni, per cui grazie ad esse l’informazione si propaga. In figura 1.1 si può vedere un’immagine relativa alla struttura del neurone.

![Diagram of a neuron](image)

Figura 1.1: Struttura del neurone [74]

A livello sinaptico queste correnti sono assimilabili a dei dipoli con ampiezza, orientamento e posizione variabili. I potenziali che si misurano a livello dello scalpo sono il risultato della somma pesata dei momenti di dipolo dei generatori di corrente sinaptici, in cui i pesi dipendono dal grado di conduttività anisotropa del cranio [67].

L’attivazione neuronale può avvenire tramite depolarizzazione rapida delle membrane neuronal o mediante cambiamenti più lenti dei potenziali di membrana dovuti all’attivazione delle sinapsi [47], [59], [48]. Nel primo caso, il potenziale di membrana passa da un valore negativo (generalmente -70/-90 mV) ad un valore positivo (di circa 35 mV) provocando la generazione di un impulso, detto potenziale d’azione, che si propaga attraverso la struttura del neurone. Per quanto riguarda invece i cambiamenti lenti, si possono distinguere due tipi di potenziale post-sinaptico: quello eccitatorio e quello inibitorio, entrambi dipendenti dai neurotrasmettitori e dai recettori associati, oltre che dalla loro interazione con i canali ionici specifici [55].
I neuroni maggiormente coinvolti nella creazione del segnale EEG sono quelli piramidali della corteccia [49]. Questi, quando si attivano con un certo grado di sincronia, generano dei campi elettrici e magnetici che si estendono fino alla superficie della testa, dando origine ad una specifica distribuzione topografica [52] misurabile, grazie anche al comportamento dipolare dei neuroni, tramite degli elettrodi posizionati sullo scalpo. Esistono diverse configurazioni di elettrodi, tra le più comuni si ricordano il sistema 10/10 e quello 10/20 riportato in figura 1.2.

![Sistema 10/20](image)

Figura 1.2: Sistema 10/20 [87]

Generalmente il segnale EEG viene acquisito con una frequenza di campionamento nell’ordine dei kHz. Vista la buona risoluzione temporale, con questa tecnica si può descrivere in maniera molto dettagliata la dinamica del segnale. La risoluzione spaziale non è invece altrettanto buona ed è limitata al numero di elettrodi posizionati sullo scalpo. Nonostante questo sia in continuo aumento grazie alla produzione di maschere sempre più avanzate, la risoluzione spaziale dei dati acquisiti resta comunque piuttosto bassa. Per tale motivo si cerca di compensare questa mancanza integrando le informazioni provenienti da tecniche che godono invece di un buon campionamento spaziale.

Oltre che nel dominio del tempo, il segnale EEG può essere studiato anche in frequenza. In particolare, il suo spettro viene generalmente suddiviso in
bande di interesse, ciascuna caratterizzata da un range specifico di frequenza e da un’ampiezza media:

- Delta: 0.5-4 Hz, ampiezza 20-100 µV
- Theta: 4-8 Hz, ampiezza 40-50 µV
- Alpha: 8-12 Hz, ampiezza 50-60 µV
- Beta 1: 12-22 Hz, ampiezza 2-20 µV
- Beta 2: 22-30 Hz, ampiezza 2-20 µV
- Gamma: 30-40 Hz, ampiezza 30-40 µV

L’importanza di questa suddivisione deriva dal fatto che ad ogni banda può essere associato un particolare stato del soggetto, e un’alterazione di una di esse può essere indice della presenza di una patologia.

1.1.1 Resting state

Si definisce resting state la condizione per cui un soggetto non svolge alcun task specifico e non pensa a qualcosa in particolare. In questo stato, nel caso ideale, la sola attività elettrica cerebrale è quella spontanea, che può essere caratterizzata in modo efficace attraverso la misura dell’elettroencefalogramma a livello dello scalp.

L’EEG spontaneo viene ampiamente utilizzato per poter valutare la condizione generale del cervello, in particolare attraverso lo studio del ritmo alfa, che è un indice del livello di rilassamento del soggetto [62].

Lo studio dell’attività elettrica spontanea può rivelarsi fondamentale per la valutazione dei disordini cerebrali, notevole importanza ha, ad esempio, per la diagnosi e classificazione dei disturbi epilettici [67]. Un tracciato acquisito durante un attacco epilettico assume un andamento ben riconoscibile, come si può vedere in figura 1.3. Per confronto, in figura 1.4 si può osservare invece l’andamento tipico del segnale EEG di un soggetto sano.
Figura 1.3: EEG spontaneo, soggetto epilettico [82]

Figura 1.4: EEG spontaneo, soggetto sano [77]
Una particolare proprietà che caratterizza l’EEG spontaneo è la distribuzione $1/f$ nel dominio spettrale, per cui si nota un aumento delle potenze verso le frequenze minori [15].

1.2 Risonanza Magnetica Funzionale (fMRI).

Cenni fisiologici

La risonanza magnetica funzionale, in concomitanza con altre tecniche di indagine cerebrale non invasive, ha portato un contributo significativo nello studio a livello funzionale del cervello umano. Le tecniche di imaging basate sulla risonanza magnetica furono inventate negli anni ’70 [38], ma solo un decennio dopo iniziarono a farsi strada in ambito clinico. Con l’avvento dell’imaging basato sul livello di ossigenazione del sangue (Blood Oxygenation Level Dependent, BOLD), il loro utilizzo all’interno delle neuroscienze aumentò notevolmente [68].

Alla base del contrasto BOLD vi è l’incremento del flusso sanguigno e del suo livello di ossigenazione nelle regioni cerebrali che si attivano durante un particolare task. Questi cambiamenti furono osservati per la prima volta da Belliveau (1990) e da Seji Ogawa (Laboratori Bell, 1990), ma fu quest’ultimo ad intuire la possibilità di usare la deossiemoglobina (dHB) come agente di contrasto endogeno. Egli fu in grado di dimostrare, attraverso le variazioni dei livelli di ossigeno e di anidride carbonica, come un eccesso di sangue deossigenato fosse responsabile della perdita di segnale in prossimità dei vasi, così come un incremento del flusso sanguigno ossigenato portasse ad un suo aumento.

La conseguenza più importante che derivò da questa relazione fu la scoperta che le variazioni delle funzioni cerebrali di un soggetto portavano a cambiamenti nel flusso sanguigno, misurabili grazie alle tecniche di imaging di risonanza magnetica (MRI) [3], [33], [61].

Nacque quindi il concetto di fMRI (functional Magnetic Resonance Imaging) per indicare quella branca di tecniche di imaging di risonanza magnetica
in grado di rappresentare i cambiamenti di un segnale legato allo stato neuronale e originato dalle variazioni del flusso sanguigno. Grazie al lavoro di Seji Ogawa è stato infatti provato come, per campi magnetici maggiori o uguali a 1.5 T ed immagini gradient-echo (GE) pesate T2*, sia possibile misurare un segnale dipendente dalla concentrazione di emoglobina deossigenata (o deossiemoglobina, dHb) presente nella regione cerebrale. Questo grazie al fatto che il sangue completamente deossigenato possiede una suscettibilità magnetica maggiore del 20% di quello ossigenato. Essendo un mezzo di contrasto paramagnetico la deossiemoglobina modifica, con la sua presenza, il segnale magnetico dei tessuti in cui si localizza. Tali variazioni accelerano il processo di rilassamento dello spin magnetico portando ad una riduzione del segnale e quindi all’acquisizione delle immagini T2 pesate [31]. In figura 1.5 si riporta un esempio di immagine di risonanza magnetica funzionale nella quale le zone colorate rappresentano regioni di attivazione/deattivazione cerebrale.

![Immagine di risonanza magnetica funzionale](image.png)

Figura 1.5: Attivazioni/deattivazioni cerebrali [95]

Trattandosi di un segnale emodinamico, il segnale BOLD è solamente un indice dell’attività cerebrale, e la possibilità di interpretare al meglio l’attività
neuronale dipende da come si è in grado di collegare queste informazioni.

Nel modello standard dell’effetto BOLD, un aumento nell’attività neuronale ha come conseguenza un aumento a livello regionale del flusso cerebrale sanguigno (Cerebral Blood Flow, CBF) e quindi un maggior apporto di ossigeno e glucosio ai tessuti [60]. Poiché l’aumento ematico risulta decisamente superiore a quello necessario per compensare il tasso metabolico cerebrale di ossigeno (CMRO$_2$), la concentrazione locale di emoglobina ossigenata aumenta, e quindi la quantità di dHb diminuisce. Questa differenza di concentrazioni si riflette sul segnale BOLD la cui intensità aumenta [33].

La variazione del segnale misurato dalle bobine, dovuto all’attività neuronale, prende il nome di risposta emodinamica (HDR). Tale funzione è caratterizzata da una durata di 10 secondi in media e la sua forma cambia in base al tipo di stimolo dato. Sono stati realizzati molti modelli per poter descrivere in modo fedele la risposta emodinamica [1], [5], [17], [24], [65], [63]. In genere si considera un picco di attività, la risposta primaria, preceduto da un undershoot iniziale la cui causa fisiologica è ancora oggetto di discussione. In certi modelli, come quello mostrato in figura 1.6, si tiene conto anche della presenza di un undershoot finale (negative overshoot) [56], le cui cause vengono di seguito descritte.

![Modello di risposta emodinamica](image)

Figura 1.6: Modello di risposta emodinamica [73]

Sono tre i principali fattori che concorrono alla definizione del segnale BOLD:
1.2 Risonanza Magnetica Funzionale (fMRI). Cenni fisiologici

- Il **flusso ematico cerebrale** (CBF): rappresenta l’apporto di sangue fornito al cervello a seguito dell’attivazione neuronale;

- Il **volume ematico cerebrale** (CBV): indica lo spazio occupato dal sangue. È logico aspettarsi che esso aumenti in corrispondenza di un aumento del CBF e che cali quando questo diminuisce. È stato provato però che il volume ematico cerebrale cala più lentamente del flusso sanguigno che lo occupa e questo si può vedere anche nell’andamento della risposta emodinamica, in particolare nell’undershoot che segue lo stimolo, come si può vedere in figura 1.6;

- Il **tasso metabolico di ossigeno** (CMRO₂): rappresenta quanto ossigeno viene consumato per espletare la funzione richiesta.

Un aumento del campo magnetico porta ad un aumento dell’effetto della combinazione di questi tre fattori.

La risonanza magnetica funzionale è caratterizzata da una scarsa risoluzione temporale (che varia tra 0.5 secondi e 4 secondi) ed una buona risoluzione spaziale (nell’ordine dei millimetri). Inoltre presenta diversi vantaggi che rendono il suo uso decisamente vantaggioso, primo fra tutti l’utilizzo di un mezzo di contrasto endogeno naturale (la deossiemoglobina) che permette la replicabilità degli esperimenti senza controindicazioni, a differenza di altre tecniche come la PET che coinvolgono traccianti radioattivi.

Il rapporto segnale/disturbo (SNR) non è molto alto, e per aumentarlo sarebbe necessario incrementare la dimensione dei voxel. Quest’operazione è piuttosto delicata perché aumenta la presenza di effetti di *partial volume*, per cui un voxel può contenere materia grigia, bianca, fluido cerebrospinale. Anche la risoluzione temporale non può essere diminuita senza conseguenze: diminuirla comporterebbe avere un *flip angle* (l’angolo da cui lo spin inizia il rilassamento) minore di 90°, e una conseguente degradazione della qualità del segnale. È per questo motivo che si è fatta strada l’idea di accoppiare questa tecnica con una che possieda una risoluzione temporale adeguata, come l’elettroencefalogramma.
1.2.1 Resting state

Il cervello è un organo molto attivo anche durante la fase di resting state, cioè quando si verifica la totale assenza di input o di output. In questa particolare condizione il segnale registrato tramite risonanza magnetica funzionale rappresenta l’attività neuronale intrinseca del cervello [14]. Le regioni cerebrali presentano un elevato grado di connettività funzionale e le loro attività hanno andamenti temporali fortemente correlati tra loro, pur essendo magari regioni non connesse anatomicamente in maniera diretta [69].

La necessità di studiare una situazione in cui un soggetto non effettua alcun compito specifico deriva dal forte collegamento che sussiste tra l’attività cerebrale spontanea e la solidità della connettività funzionale. L’utilizzo delle tecniche di risonanza magnetica funzionale in resting state infatti ha fornito la possibilità di esaminare gli effetti delle discontinuità funzionali presenti in molti disturbi neurologici e psichiatrici, quali l’Alzheimer [20], la depressione [21], la demenza e la schizofrenia [40], oltre a malattie degenerative come la sclerosi multipla [50].

Le reti che si attivano durante la fase di resting state includono i network motorio e visivo, due network laterali (la regione parietale superiore e quella frontale superiore), il default mode network (formato da precuneo, mediale frontale e dalle regioni parietale inferiore e temporale inferiore) e un network che comprende l’insula e la corteccia cingolata anteriore [69]. In particolare, tra queste aree è di grande interesse il default mode network (Figura 1.7), dato il suo forte livello di attivazione durante la fase di rest se confrontato con quello riscontrato durante gli esperimenti con task. Questo suggerisce proprio l’esistenza di uno stato di default del cervello [69].

Esistono due classi principali di metodi per l’analisi del resting state: quelli dipendenti da un modello e quelli indipendenti. Nel primo caso si definisce un seed, ovvero un voxel di riferimento la cui serie temporale viene in seguito confrontata con quelle di tutte le altre regioni cerebrali. Nel secondo caso invece non è necessaria la definizione di alcun riferimento e si utilizzano tecniche quali la PCA (Principal Component Analysis) o l’ICA (Independent
1.3 Integrazione EEG-fMRI

Finora si è visto come l’elettroencefalografia e l’imaging di risonanza magnetica funzionale siano importanti strumenti per lo studio non invasivo nell’ambito della neuroscienza, sia clinica che cognitiva [57]. La complessa natura dell’attività cerebrale tuttavia rende il suo studio, tramite un’unica modalità di acquisizione, piuttosto limitato. L’elevato grado di complementarietà fra le due tecniche ha portato all’idea di utilizzare un approccio multimodale al fine di sfruttare una tecnica per compensare alle mancanze dell’altra e viceversa, così da arrivare ad una maggiore comprensione delle dinamiche e della struttura dell’attività cerebrale. In figura 1.8 è presente uno schema che evidenzia l’importanza dell’integrazione. Nell’immagine in alto viene sottolineato come, utilizzando una sola tecnica, parte dell’informazione cerebrale venga persa. Viceversa, nell’immagine in basso si arriva ad una comprensione estesa della funzionalità e della struttura cerebrale.

Inizialmente l’idea di una combinazione fra queste due modalità fu motivata dalla volontà di localizzare le sorgenti elettriche causa dei disordini epilettici [37]. In seguito l’approccio multimodale ha superato la relegazione all’ambito dell’epilessia e si è diffuso anche in altri campi delle neuroscienze, come lo studio delle funzioni cerebrali di soggetti sani.
L’idea dell’integrazione in questo ambito è quella di associare le oscillazioni spontanee del segnale EEG con il segnale fMRI acquisito in simultanea. Uno dei punti di forza della registrazione combinata di EEG ed fMRI, come anticipato, risiede nella complementarietà delle due tecniche. Poiché l’acquisizione viene effettuata utilizzando, nella maggior parte dei casi, un numero limitato di elettrodi posizionati sullo scalpo, questo segnale è caratterizzato da una risoluzione spaziale e da un rapporto segnale/disturbo (SNR) piuttosto bassi. Questo rende impossibile determinare in maniera univoca, a meno di non avere informazioni a priori aggiuntive, la locazione esatta dell’attività elettrica sottostante [66]. Si è quindi di fronte ad un problema inverso di tipo mal-posto. Viceversa, il segnale BOLD acquisito tramite risonanza magnetica funzionale possiede buoni SNR e risoluzione spaziale, ma una risoluzione temporale decisamente limitata, tra 0.5 e 4 secondi in generale. Inoltre, il contrasto BOLD non riflette in maniera diretta l’attività neuronale, ma una complessa e poco comprensibile combinazione di effetti emodinamici e metabolici, caratterizzati da una dinamica lenta. In altre parole, fornisce una mappa che mostra le attivazioni regionali ma non dà informazioni sul quando e sull’ordine [44].

La prima coregistrazione EEG-fMRI è avvenuta nel 1992, all’interno di
uno scanner Siemens 1.5 T del Beth Israel Hospital di Boston. Il grande potenziale di questa tecnica nel campo dell’epilessia portò allo studio di metodi per il miglioramento della parte hardware (sia a livello di prestazioni che di sicurezza del paziente) e software, in quest’ultima soprattutto per quanto riguarda la creazione di algoritmi per la riduzione degli artefatti dovuti all’accoppiamento delle due tecniche [37].

All’interno dello scanner MR viene registrato in maniera continua il segnale EEG, che deve essere compatibile con tutto l’equipment in modo tale che non ci siano interferenze indesiderate fra i due sistemi. In figura 1.9 si possono vedere la tipica strumentazione di risonanza magnetica ed il classico caschetto per l’acquisizione dell’elettroencefalogramma.

![Risonanza magnetica e caschetto EEG](image)

Figura 1.9: Risonanza magnetica e caschetto EEG [88]

Il problema principale di questa tecnica è rappresentato dalla presenza di artefatti nei segnali, che comunque si è decisamente ridotta con il crescente sviluppo della parte hardware e il diffondersi di software per la correzione.

Nonostante le acquisizioni separate di EEG ed fMRI portino qualche vantaggio (per esempio l’assenza dei suddetti artefatti), la registrazione simultanea delle due tecniche porta importanti benefici come la riduzione del fenomeno di abituazione, oltre al fatto che in sessioni separate risulta particolarmente difficile effettuare esperimenti identici di resting state [66]. In ogni caso il rapporto segnale rumore (SNR) risulta significativamente minore rispetto al caso unimodale, oltre al fatto che resta ancora da definire l’esatta relazione che intercorre fra l’EEG superficiale e i cambiamenti del segnale BOLD [37].
Capitolo 2

Preprocessing

2.1 Preprocessing EEG

Il primo passaggio fondamentale da effettuare per l’analisi dei dati ricavati da un’elettroencefalografia è quello di eseguirne il preprocessing, ovvero una sequenza di operazioni che hanno lo scopo di ripulire il segnale acquisito da una serie di disturbi indesiderati che lo contaminano.

A causa dell’ambiente in cui si effettua l’acquisizione del segnale, che nel seguente studio è quello della risonanza magnetica, si ritrovano degli artefatti legati proprio alla presenza di un forte campo magnetico, in grado di perturbare i dati fino a renderli inutilizzabili per estrapolare le informazioni necessarie dall’elettroencefalogramma, sia nello spazio che in frequenza.

Oltre a questi tipi di artefatto ci sono quelli più comuni, indipendenti dal campo magnetico circostante, dovuti al rumore di linea e ai movimenti del soggetto. Questi ultimi possono riguardare blink, saccadi e artefatti legati alla contrazione muscolare. Non vanno dimenticate, inoltre, le contaminazioni causate dall’attività cardiovascolare e dalla respirazione.

In questa procedura rientra anche la correzione dei canali che, per errori nel settaggio dell’esperimento o per un contatto che può perdere di aderenza con lo scalpo durante l’acquisizione, possono risultare corrotti e fornire dati non validi.
2.1.1 Artefatti da campo magnetico

I dati EEG acquisiti in un esperimento di risonanza magnetica sono corrotti da due tipi di disturbo: l’arteфatto da gradiente e l’arteфatto cardioballistografico (o pulse artifact). Il primo di questi è un arteфatto provocato dallo spostamento dei gradienti durante la risonanza magnetica, quindi in una sequenza EPI (Echo-planar Imaging) ogni volta che viene acquisita una nuova slice. La sua ampiezza può superare di qualche ordine di grandezza quella del segnale EEG, oscurandone completamente l’andamento nel dominio del tempo (come si può notare dalla figura 2.1), e il suo contenuto in frequenza si sovrappone a quello del segnale originale, quindi non è sufficiente un semplice filtro per rimuoverlo. Inoltre per ogni canale forma e ampiezza dell’arteфatto possono variare, rendendone la correzione ancora più impegnativa [58].

![Figura 2.1: Arteфatto da gradiente nel dominio del tempo [78]](image)

L’arteфatto cardioballistografico invece consiste in una distorsione dell’elettroencefalogramma causata dal fatto che il sangue, mezzo conduttivo assimilabile ad un circuito, spostandosi all’interno di un campo magnetico statico induce una forza elettromotrice (legge di Faraday) [67].

L’ampiezza del pulse artifact può raggiungere anche i 200 µV a 1.5 T [58] oscurando il segnale EEG che tipicamente ha un range di attività di 5-100 µV
2.1 Preprocessing EEG

[32], e, insieme alla forma, può variare considerevolmente da un canale all’altro. Queste variazioni, diversamente dall’artefatto da gradiente, si verificano sia nel tempo che nello spazio. In figura 2.2 si può vedere come, a seguito di una pulsazione cardiaca, ogni elettrodo modifichi il proprio andamento seguendo proprio quello del canale che registra l’elettrocardiogramma.

![Artefatto cardioballistografico nel dominio del tempo.](image)

Figura 2.2: Artefatto cardioballistografico nel dominio del tempo.

Finora si è visto come questi artefatti si presentano nel dominio del tempo. Da una mera osservazione dell’andamento del segnale, si è potuto constatare che le informazioni che si possono ricavare da esso risulterebbero evidentemente inaffidabili. Passando nel dominio della frequenza, si può vedere che anche lo spettro del segnale mostra i segni di una contaminazione non fisiologica. In riferimento all’artefatto da gradiente, oltre ad avere anch’esso ampiezze decisamente più elevate rispetto ad un normale tracciato EEG, si possono notare dei picchi che si ripetono a frequenze equispaziate, che come si preciserà in seguito dipendono dalla frequenza fondamentale dell’acquisizione. Non è altrettanto facile invece individuare l’artefatto cardioballistografico in frequenza, poiché non presenta un comportamento che lo distingue in maniera evidente da quello di un segnale pulito, se non un’alterazione nel range di frequenze 0-20 Hz [32].
2.1.2 Rimozione dell’artefatto da gradiente dai dati.
Algoritmo FASTR

Sono stati proposti svariati metodi per la correzione degli artefatti di risonanza magnetica, e in realtà il problema è ancora oggetto di studi ed ulteriori implementazioni. In questa sezione si considera il metodo proposto da Niazy et al. [58] per la rimozione dell’artefatto da gradiente, e in seguito si affronterà quella dell’artefatto cardioballistografico, che poggia su basi simili.

L’algoritmo sviluppato si basa sull’idea che le variazioni temporali di tale disturbo possano essere catturate effettuando una PCA (Principal Component Analysis) temporale, grazie alla quale si arriva all’identificazione di un insieme di funzioni base che in seguito vengono fittate e sottratte ai dati EEG.

Il metodo a cui si fa riferimento prende il nome di *fMRI artifact slice template removal* (FASTR). In questo algoritmo viene realizzato un unico template per ogni segmento di artefatto (ovvero un certo intervallo temporale prestabilito) relativo alla slice corrente per ciascun canale EEG. Ciascuno di questi template è costruito come la somma di una media mobile locale più una combinazione lineare di funzioni base che hanno lo scopo di descrivere la variazione dei residui. Tali funzioni base si trovano effettuando la PCA temporale sui residui dell’artefatto e selezionando le componenti dominanti che andranno quindi a costituire l’*Optimal Basis Set* (OBS).

L’algoritmo si compone principalmente di quattro fasi:

1. Il segnale EEG viene interpolato (up-sampled) e si effettua un allineamento dei trigger, che sono degli impulsi generati dalla macchina di risonanza magnetica all’acquisizione di ogni slice o volume. D’ora in poi si farà riferimento al caso in cui si produce un trigger ad ogni slice;

2. Si costruisce un template a media mobile dell’artefatto per ciascuna slice e lo si sottrae al segnale di partenza;
2.1 Preprocessing EEG

3. I residui dell’artefatto sono stimati usando le funzioni base trovate tramite PCA temporale su tutti i segmenti di artefatto per il relativo canale;

4. Si applica il filtro ANC (Adaptative Noise Cancellation) che rimuove ogni componente nei dati che sia correlata ad un qualche riferimento.

Nella figura 2.3 si può vedere lo schema a blocchi che riassume il funzionamento globale dell’algoritmo in esame.

![Figura 2.3: Schema a blocchi dell’algoritmo FASTR [58]](image)
Interpolazione ed allineamento dei trigger

Durante l’acquisizione contemporanea di dati EEG/fMRI vengono inviati dei trigger dalla macchina MRI all’inizio di ogni acquisizione. Questi impulsi hanno lo scopo di identificare l’esatta locazione dell’inizio dell’artefatto da gradiente, dato che ad ogni acquisizione di una slice corrisponde lo switching dei gradienti e la generazione del relativo artefatto.

Poiché i clock che guidano la macchina MRI ed il sistema EEG sono fisicamente separati, può essere presente un certo livello di disallineamento tra l’esatta locazione di un trigger da una slice all’altra. Per questo motivo uno dei canali EEG (generalmente si tratta del primo) viene interpolato al fine di aumentarne la frequenza di campionamento ad almeno 20 kHz e successivamente diviso in segmenti in corrispondenza dei trigger.

In figura 2.4 sono mostrati i blocchi dello schema generale relativi a questa prima correzione.

Figura 2.4: Slice Timing Trigger Alignment. Schema a blocchi [58]

Una volta effettuato il ricampionamento, il primo segmento di artefatto viene preso come riferimento, e per i restanti segmenti la posizione dei trigger viene corretta in modo da rendere massima la correlazione con esso.

Questa procedura fa riferimento ad un solo canale, ma automaticamente vengono corretti anche quelli rimanenti. È evidente che applicare questa correzione ad ogni elettrodo separatamente risulterebbe computazionalmente inefficiente.
Stima e sottrazione del template locale dell’artefatto

Terminata la procedura di interpolazione ed allineamento, per ogni canale ricavato \(Y_a \) si effettua un filtraggio passa alto a 1 Hz, ottenendo un nuovo canale indicato con \(Y_h \). Questo passaggio ha lo scopo di rimuovere eventuali drift in bassa frequenza, garantendo ai diversi segmenti di artefatto che saranno calcolati in seguito di avere la stessa baseline.

Ogni canale \(Y_h \) viene in seguito suddiviso, facendo riferimento ai trigger corretti, in N segmenti uguali: la quantità di segmenti generata sarà pari al prodotto del numero di slice per il numero di volumi acquisiti. Ciascuno di essi è un vettore di dimensioni \(1 \times q \), con q numero di punti presente in ogni intervallo dell’artefatto.

Si ottiene quindi il modello locale a media mobile dell’artefatto da gradiente, che ha la seguente espressione:

\[
A_j = \frac{1}{|I(j)|} \sum_{l \in I(j)} Y_{hl}
\]

Nell’equazione scritta \(j \) rappresenta l’indice del segmento corrente di artefatto \((j = 1, \ldots, N) \), \(A_j \) è un vettore di dimensioni \(1 \times q \) che contiene la media mobile costruita, \(l \) è l’indice dei diversi segmenti di artefatto che devono essere mediati, mentre \(I(j) \) è una funzione che determina un set di segmenti che devono essere considerati all’interno della media.

I segmenti appartenenti all’insieme definito dalla funzione \(I(j) \) sono centrati attorno al segmento corrente \(j \) e vengono scelti in modo tale che tra di loro ci sia un determinato gap (almeno 350 ms) per evitare la presenza di autocorrelazioni.

Il template così costruito \(A_j \) viene in seguito moltiplicato per una costante \(\alpha \) in modo tale da minimizzare lo scarto quadratico medio con i dati. Il modello di artefatto scalato viene quindi sottratto da \(Y_h \) ottenendo così il segnale \(Y_r \).

In figura 2.5 è riportato lo schema a blocchi della procedura spiegata:
Figura 2.5: Local Slice Artifact Template Subtraction. Schema a blocchi [58]

Rimozione degli artefatti da gradiente residui

Il vettore Y_r ottenuto è ancora contaminato dalla presenza di artefatti residui dovuti principalmente alle variazioni nella forma dell’artefatto da una slice all’altra. Queste differenze sono funzioni sia della frequenza di campionamento che del grado di sincronizzazione tra i due sistemi di acquisizione. Per rimuovere tali componenti residue si procede nel seguente modo:

- Si crea una matrice S di dimensioni $p \times q$, con p numero di segmenti di artefatto inclusi (non vengono considerati tutti). Il gap tra i segmenti non è mantenuto costante ma varia tra s ed $s+1$ in maniera casuale, con s gap minimo. Questo accorgimento serve per assicurare che vengano campionate tutte le variazioni possibili dei residui. Dopo questo, sia alle righe che alle colonne di S viene sottratta la propria media.

- Si esegue la PCA sulla matrice S e si selezionano le prime C componenti in base a quanta varianza spiegano. Queste componenti costituiscono un Optimal Basis Set (OBS), e vanno a formare una matrice B di dimensioni $q \times C$ che descrive le variazioni dei residui dell’artefatto.
2.1 Preprocessing EEG

Ogni segmento di Y_r può essere quindi scritto in funzione di B:

$$Y'_r = B \beta_j + \epsilon'_j$$

(2.2)

con β_j vettore dei pesi di dimensione $C \times 1$, stimati con i minimi quadrati, moltiplicati per la matrice B ed infine sommati al rumore da artefatto trovato precedentemente. In questo modo si sono ottenuti la stima finale degli artefatti da gradiente Z ed il segnale EEG privo di artefatti Y^n.

Sia Z che Y^n vanno prima portati alla frequenza di campionamento di partenza, quindi vengono sottocampionati, e poi ad essi si applica un filtro passa basso con frequenza di cut-off 70 Hz, dato che non si è interessati a studiare frequenze maggiori.

In sintesi, grazie alla parte a media mobile del template ricavata nello step 2 dell’algoritmo si riesce a rimuovere la porzione più consistente dell’artefatto, mentre tramite la stima dei residui ricavata utilizzando le OBS si è in grado di eliminarne i dettagli rimanenti.

In figura 2.6 si può vedere lo schema a blocchi che descrive la procedura eseguita:

Figura 2.6: Gradient Residual Artifacts Removal. Schema a blocchi [58]
Filtraggio adattativo ANC

Come ultimo passaggio per rimuovere le rimanenti componenti dell’artefatto da gradiente si utilizza un filtro adattativo ANC (Adaptive Noise Cancellation), ovvero un filtro in cui la risposta in frequenza esibisce un certo comportamento in dipendenza del segnale d’ingresso.

L’input del filtro è il risultato del filtraggio passa alto del segnale Y_d, ottenuto nello step precedente, avente frequenza di cut-off pari alla frequenza fondamentale dell’artefatto da gradiente $f_c = N/2TR$ Hz, con N numero complessivo di slice e TR tempo di acquisizione di ciascuna. La sorgente di rumore Z_d si assume nota e viene considerata come segnale di riferimento. Si assume non nota invece la correlazione tra il rumore presente in questa fase ed il segnale di riferimento nell’algoritmo.

![Diagramma di filtraggio adattativo ANC](image)

Figura 2.7: Adaptative Noise Cancellation. Schema a blocchi [58]

Elemento fondamentale del filtro ANC è un vettore di pesi che, ad ogni istante temporale, viene utilizzato per calcolare l’output del filtro, cioè il segnale EEG pulito $Y_d - Z_d$. I pesi del filtro vengono aggiornati ad ogni passo utilizzando i minimi quadrati medi (Least Mean Squares, LMS). All’interno dell’algoritmo sono presenti anche due parametri μ e L: il primo rappresenta la dimensione dello step, il secondo invece la lunghezza del vettore dei pesi. Grazie ad essi è possibile controllare le performance del filtro, in particolare la sua stabilità e convergenza.
2.1 Preprocessing EEG

2.1.3 Rimozione dei picchi residui. Cleanline

È possibile che, anche dopo l’applicazione dell’algoritmo FASTR, ci sia ancora qualche traccia dell’artefatto da gradiente, visibile osservando la presenza di picchi residui, sebbene con ampiezza decisamente ridotta rispetto al segnale di partenza, nello spettro del segnale. Questo avviene soprattutto se si decide di non utilizzare il filtro ANC, che può essere molto pesante da un punto di vista computazionale. Per rimuovere quest’ultima componente di artefatto si ricorre ad un algoritmo che permette di effettuare una pulizia del rumore di linea. Questa scelta è motivata dal fatto che anche questo tipo di disturbo presenta dei picchi concentrati a delle particolari frequenze (vedi Figure 2.8 e 2.9), che quindi possono essere affrontati in maniera analoga.

Figura 2.8: Rumore di linea. Esempio [4]

Figura 2.9: Picchi residui
Generalmente si utilizza un filtro notch per rimuovere le suddette componenti, ma essendo l’ampiezza di tali filtri troppo grande si può incorrere in una distorsione del segnale. Questo metodo invece attraversa i dati utilizzando un intervallo scorrevole di 4 secondi che ad ogni passo si sposta di 1 secondo e trasforma ciascuna finestra nel dominio della frequenza utilizzando un insieme di funzioni denominate *tapers*. Queste, caratterizzate da un’ampiezza di banda prefissata, sono ideali per isolare l’energia all’interno dello spettro. Con questa suddivisione si stimano ampiezza e fase di una sinusoida deterministica, alla data frequenza. Su tale funzione si effettua poi un F-test per stabilire se l’ampiezza trovata è significativa: in caso affermativo si ricostruisce la sinusoida nel dominio del tempo e in seguito la si sottrae dai dati. Il vantaggio di questo metodo è che rimuove solo le componenti deterministiche, lasciando inalterata l’energia spettrale di background. [4]

2.1.4 Rimozione dell’artefatto cardioballistografico

A questo punto si è in possesso di un dataset privo di artefatto da gradiente, quindi si procede con la rimozione dell’artefatto cardioballistografico. Questo procedimento è più problematico ed è stato soggetto di molti studi in quanto non è facile individuare il disturbo e rimuoverlo correttamente, vista la sua forte variabilità spazio-temporale.

Analogamente alla rimozione dell’artefatto da gradiente, mediante l’uso degli Optimal Basis Set (OBS) stimati tramite PCA temporale, si riesce a definire un template rappresentativo dell’artefatto. Questo modello viene in seguito fittato e sottratto ogni volta che si presenta il disturbo da correggere. In questo caso però, per trovare le occorrenze degli artefatti, non si guardano più i trigger delle slice, dato che il problema è legato non allo spostamento dei gradienti ma al ciclo cardiaco. È quindi necessario l’utilizzo di un algoritmo che sia in grado di localizzare i ritmi QRS con precisione (Heart Beat Detection). Quest’approccio di correzione ha il gran vantaggio di non assumere alcuna relazione temporale tra le diverse occorrenze dell’artefatto cardioballistografico in un dato canale EEG. Invece, fondamentale è l’assunzione per
cui su un periodo sufficiente di registrazioni EEG per un dato canale, le
occorrenze degli artefatti BCG siano campionate da un insieme costante di
possibili forme, ampiezze e scale [58]. Le componenti principali di queste
occorrenze possono descrivere la maggior parte delle variazioni dell’artefatto
nel canale considerato. In questo modo si riescono a rimuovere quasi del
tutto i disturbi legati all’acquisizione in ambiente di risonanza magnetica, e,
sebbene restino delle componenti residue di rumore, queste sono decisamente
trascurabili ai fini dell’analisi del segnale.

2.1.5 Preprocessing Pipeline (PREP)

Dopo aver corretto il segnale dagli artefatti da gradiente e cardioballisto-
grafico si passa alla rimozione dei disturbi che sono tipicamente presenti nel
segnale EEG, e che sono indipendenti dall’ambiente di risonanza magnetica.
Prima di questo però si ricostruisce l’elettrodo che durante l’acquisizione è
stato preso come riferimento. Trattandosi di misure di potenziali di dipolo,
il dato che si ottiene per ogni canale è la differenza fra il potenziale misurato
sull’elettrodo corrente e quello di riferimento. In questo modo però, avendo n
elettrodi, solo n-1 preservano la loro informazione, mentre il segnale registra-
to dal riferimento si perde. Per riottenerlo si interpolano i canali preesistenti
e si mette in coda ad essi il risultato ottenuto. Come nuovo riferimento si
prende poi la media di tutti i canali [76].

A questo punto si può utilizzare un protocollo di pulizia del segnale che
prevede di seguire una determinata sequenza di passaggi adibiti allo scopo
(PREP pipeline). L’utilizzo di una procedura standard è di utilità conferma-
ta perché permette di effettuare il confronto fra dataset differenti, in quanto
trattati allo stesso modo. È inoltre il metodo più efficace per rendere auto-
matica e meno soggettiva la correzione del segnale, caratteristiche di fonda-
mentale importanza quando si ha a che fare con una gran mole di dati. La
pipeline prevede, dopo un filtraggio passa-alto per la rimozione di eventuali
drift in bassa frequenza, la correzione del rumore di linea tipicamente presen-
te alle frequenze di 50 Hz e 100 Hz, attraverso l’algoritmo cleanline spiegato
precedentemente. Seguono l’identificazione e l’interpolazione di canali corrotti e la definizione di un riferimento senza la presenza dei suddetti canali. Poiché per la definizione del riferimento è necessario che non ci siano canali corrotti, gli ultimi due passaggi si alternano in maniera iterativa finché non si hanno tutti canali corretti e un riferimento finale [4].

L’identificazione dei canali corrotti avviene mediante l’utilizzo di quattro misure differenti [4]:

- **Criterio di deviazione**: questo metodo prende in considerazione le differenze di ampiezza all’interno dei dati. A tal scopo viene calcolato un indice sulla deviazione standard di ogni canale, chiamato z score. I canali per i quali tale valore risulta maggiore di 5 vengono etichettati come corrotti.

- **Criterio di correlazione**: è basato sull’ipotesi che canali diversi presentino, alle basse frequenze, delle porzioni non indipendenti tra di loro. Su queste, che vengono estratte tramite un filtraggio passa-basso, si effettua uno studio di correlazione al fine di etichettare come corrotti quei canali che risultano scorrelati rispetto agli altri. Generalmente vengono identificati come tali se il valore della massima correlazione è inferiore di 0.4.

- **Criterio di prevedibilità**: è molto simile al precedente, ma si studiano quelle situazioni in cui i canali sono corrotti allo stesso modo, quindi che non verrebbero identificati con il criterio di correlazione perché tra di loro non risultano scorrelati.

- **Criterio di rumorosità**: innanzitutto si stima il rapporto fra le potenze alle alte e basse frequenze, separate tramite un filtraggio passa-basso. Si definisce quindi la rumorosità come il rapporto tra la deviazione assoluta media alle alte e alle basse frequenze, e si calcola anche in questo caso uno z score relativo a tale misura. Se quest’indice è maggiore di 5 allora si etichetta il canale come rumoroso e si corregge.
2.1.6 ICA temporale

L’ICA (Independent Component Analysis) temporale è una tecnica di analisi che, attraverso un cambiamento lineare di base dei dati registrati, consente la separazione di componenti indipendenti nel tempo. Alla base di questo metodo vi è l’ipotesi che i dati rappresentino una combinazione lineare di variabili non note, assunte indipendenti e non gaussiane, e che il sistema stesso che realizza il mix di tali incoginte non sia noto [90]. Il risultato non è più un insieme di singoli canali relativi alle registrazioni ricavate mediante i rispettivi elettrodi, ma una collezione di output di filtri spaziali applicati all’intero dataset, considerando tutti i canali contemporaneamente.

Figura 2.10: ICA temporale. Schema [81]

È un’operazione che si effettua dopo la rimozione degli artefatti di risonanza magnetica in quanto questi, oscurando sia nel tempo che in frequenza il segnale utile e gli altri artefatti minori, altererebbero l’effettivo contenuto di ciascuna componente. Lo scopo principale dell’utilizzo di questa tecnica è quello di riuscire ad isolare e rimuovere selettivamente componenti che presentano un comportamento che si allontana dal segnale utile e che è più assimilabile ad un disturbo. Le sorgenti trovate infatti possono mostrare un’attività che agisce in maniera sincrona o parzialmente sincrona alle regioni corticali, ma anche attività legate a zone non corticali, e che possono essere indice di potenziali generati per esempio dall’attività muscolare provocata dai movimenti oculari [80].
2.2 Preprocessing fMRI

Quando si ha a che fare con immagini di risonanza magnetica funzionale è bene seguire una procedura di preprocessing affinché le analisi successive siano consistenti. Generalmente si effettuano operazioni di correzione del movimento e coregistrazione per poter ridurre gli effetti degli spostamenti di un soggetto durante l’acquisizione e per ottenere un riferimento anatomico delle parti in esame. La segmentazione invece permette di separare zone distinte quali materia grigia, bianca e fluido cerebrospinale, mentre con la normalizzazione ci si porta in uno spazio comune che consente il confronto fra soggetti diversi. Infine c’è lo smoothing spaziale, che aumenta il rapporto segnale/disturbo ma riduce la risoluzione spaziale peggiorando effetti di volume parziale eventualmente presenti.

In figura 2.11 si può vedere lo schema generale seguito per ottenere le immagini finali da utilizzare per i successivi studi.

![Preprocessing overview](image)

Figura 2.11: Preprocessing. Schema generale [83]
2.2 Preprocessing fMRI

2.2.1 Correzione del movimento

In un esperimento di risonanza magnetica funzionale il soggetto in esame è costretto in un lettino per una durata che può anche superare l’ora. Mantenersi immobili per tutto questo tempo, in un ambiente stretto e rumoroso, può risultare molto difficile, e spesso il paziente compie dei piccoli movimenti con la testa e altre parti del corpo, oltre a quelli inevitabili causati per esempio dalla respirazione. Per questo motivo, come primo passaggio di elaborazione di un’immagine proveniente da risonanza magnetica, è bene effettuare una procedura di correzione del movimento. Quest’operazione è possibile unicamente se il soggetto ha compiuto degli spostamenti davvero piccoli, ovvero confrontabili con la dimensione dei voxel. Se quest’ipotesi risulta verificata, allora è possibile effettuare la correzione coregistrando i volumi acquisiti nei diversi istanti temporali su un volume dello stesso soggetto adottato come riferimento. Dato che il soggetto è lo stesso, è sufficiente utilizzare delle trasformazioni rigide nello spazio, ovvero le traslazioni lungo i tre assi e le rotazioni attorno ad essi, per poter sovrapporre i volumi.

Nelle figure 2.12 e 2.13 si riporta un esempio di movimenti effettuati da un soggetto durante un’acquisizione.

![Traslazioni lungo i tre assi](image)

Figura 2.12: Traslazioni lungo i tre assi

![Rotazioni lungo i tre assi](image)

Figura 2.13: Rotazioni lungo i tre assi
Alla base della correzione del movimento vi è la minimizzazione, mediante minimi quadrati, di una funzione costo che rappresenta il grado di somiglianza fra il volume che dev’essere corretto e il riferimento adottato. Quindi come prima cosa si stimano i parametri che consentono di allineare i due volumi e in seguito si effettua un ricampionamento delle immagini di partenza.

Spesso a quest’operazione ne segue una di smoothing spaziale che serve ad aumentare il rapporto segnale/rumore, e si effettua mediante l’utilizzo di un filtro gaussiano di cui si specifica il parametro FWHM (Full Width Half Maximum).

2.2.2 Coregistrazione

Le immagini solo corrette da movimento presentano un’accurata descrizione funzionale della dinamica cerebrale, ma sebbene la loro risoluzione spaziale sia relativamente buona, non possiedono l’elevato grado di dettaglio delle immagini anatomiche. Per poter usufruire di questa informazione è necessario effettuare un’operazione di coregistrazione, grazie alla quale le immagini funzionali vengono posizionate sull’immagine pesata T1. Con questa tecnica si fa riferimento al processo di stima della trasformazione spaziale ottima che consente di ottenere la sovrapposizione desiderata. Se il soggetto è lo stesso, con tempi e modalità di acquisizione anche differenti, allora sono sufficienti delle trasformazioni rigide, cioè traslazioni e rotazioni nello spazio.

Per effettuare quest’operazione è necessario aver chiaro che tipo di trasformazione geometrica si vuole effettuare, e come si vuole misurare il grado di similarità fra l’immagine da coregistrare e il riferimento. Generalmente gli algoritmi atti allo scopo si basano sulla massimizzazione della mutua informazione fra le immagini, intesa come la quantità di informazione che la prima immagine contiene rispetto alla seconda, o in altri termini quanto bene un’immagine è in grado di predire l’altra. Definiti questi parametri ed applicata la coregistrazione, si effettua l’interpolazione dei voxel, che può avvenire con metodi a basso peso computazionale (quali nearest neighbour e trilinear) o con tecniche più avanzate (che fanno uso delle B-spline).
Finora si è parlato della coregistrazione lineare. Ci sono certi casi in cui affidarsi completamente alle trasformazioni rigide può essere riduttivo e portare a risultati imprecisi. Si ricorre allora a trasformazioni affini, che oltre alle traslazioni e alle rotazioni comprendono anche la deformazione (o shear) e lo zoom (o scaling), o a trasformazioni non lineari con molti più gradi di libertà. Queste sono particolarmente utili quando si incorre in problemi di distorsione delle immagini dovuti per esempio al confronto fra soggetti diversi.
2.2.3 Normalizzazione

Grazie alle operazioni effettuate finora è possibile confrontare immagini cerebrali di uno stesso soggetto acquisite in tempi diversi ed in modalità differenti. Questo è utile non solo per correggere i movimenti e dare un riferimento anatomico alle immagini funzionali, ma anche, in generale, per controllare variazioni che possono avvenire, in tempi non troppo prolungati, nelle regioni cerebrali di un soggetto. Il passaggio successivo del preprocessing di immagini di risonanza magnetica funzionale prevede l’impiego della normalizzazione. Quest’operazione consiste nella coregistrazione del cervello in esame su un template comune, detto anche spazio stereotassico, consentendo quindi di effettuare in seguito confronti inter-paziente. Poiché la morfologia cerebrale è molto variabile, non sono sufficienti delle semplici trasformazioni rigide nello spazio, ma è necessario impiegare delle funzioni che riescano a spiegare delle deformazioni di tipo non lineare.

Il vantaggio di questa tecnica, oltre al fatto che consente di eseguire il confronto fra soggetti e fra studi diversi, è quello di rendere possibile la descrizione delle aree cerebrali attraverso l’utilizzo di semplici coordinate, una volta presa come origine la commissura anteriore. Lo svantaggio principale invece è rappresentato dall’elevato consumo in termini computazionali, dovuto al fatto che non si utilizzano più semplici trasformazioni lineari ma operazioni più complesse.
2.2 Preprocessing fMRI

2.2.4 ICA spaziale

Una delle operazioni che si possono effettuare a seguito del preprocessing di immagini cerebrali è la stima delle sorgenti che hanno contribuito alla creazione del segnale misurato. Un metodo efficace per ottenere questo risultato è quello dell'Independent Component Analysis (ICA) spaziale, tramite il quale i dati vengono scomposti in un insieme di mappe spazialmente indipendenti e in un insieme di serie temporali, ciascuna associata ad una delle mappe create, come si può vedere in figura 2.17.

![ICA spaziale. Schema](79)

Così facendo, non solo si è in grado di determinare le varie regioni cerebrali le cui attività hanno preso parte alla creazione del segnale, ma anche di isolare e rimuovere selettivamente le componenti associate al rumore.

L'algoritmo parte dal presupposto che esistano M segnali a media nulla $s_1 \cdots s_M$ (le sorgenti) ma che siano osservabili solamente $N \geq M$ combinazioni lineari di essi (i segnali registrati). In particolare, il j-esimo segnale osservabile si può scrivere come:

$$x_j = a_{j1}s_1 + a_{j2}s_2 + \ldots + a_{jM}s_M$$ \hspace{0.5cm} (2.3)

e in forma matriciale si può definire l’insieme dei segnali acquisiti come:

$$X = AS$$ \hspace{0.5cm} (2.4)

L’obiettivo è quello di stimare una particolare matrice, detta matrice di unmixing, legata ai coefficienti a_{ij}, tale da minimizzare la dipendenza tra le sorgenti, ed usarla in seguito per calcolare i segnali desiderati. Per poter
2. Preprocessing

stimare questa matrice sono necessarie una funzione costo ed una tecnica di ottimizzazione. Poiché uno dei presupposti principali è quello della non-gaussianità delle sorgenti, le funzioni costo che si andranno a definire saranno più che altro indici di gaussianità da mimizzare o massimizzare [29]. Di questi, tra i più comuni si ricordano:

- **Negentropy**: \(J(y) = H(y_{gauss}) - H(y) \), con \(H \) ad indicare la funzione entropia. Si vuole massimizzare quest’indice in modo tale che l’entropia del segnale \(y \) sia il più possibile diversa da quella di \(y_{gauss} \), dato che ci si vuole discostare dal caso gaussiano.

- **Mutual Information**: \(I(y_1, \ldots, y_M) = \sum_i H(y_i) - H(y) \). Essendo quest’indice nullo per variabili indipendenti e non negativo, va minimizzato.

Sebbene questa sia una tecnica molto efficace per lo studio delle sorgenti, le problematiche ad essa associate non sono trascurabili. In primo luogo, è proprio la scelta del numero di sorgenti il primo punto critico da affrontare. Scegliere un numero troppo elevato può portare alla divisione forzata di componenti che dovrebbero restare unite, selezionarne poche invece può avere come effetto collaterale la compressione indesiderata di sorgenti. Per affrontare questo problema si possono usare strategie di selezione quali la PCA [16] oppure effettuare un clustering post-ICA [71]. Altro punto critico è rappresentato dalla selezione delle componenti di interesse, per la quale esistono diversi metodi automatici, nessuno dei quali però eccelle particolarmente. L’unica soluzione per questo problema è la supervisione di neurologo esperto.
Capitolo 3

Metodi per l’integrazione EEG-fMRI

L’integrazione EEG-fMRI, non più confinata allo studio dei disturbi epillettici, ha iniziato a ricoprire un’importanza sempre maggiore nel campo delle neuroscienze, in particolare quelle cognitive. Lo sviluppo crescente di quest’ambito di ricerca ha avuto come principale conseguenza la necessità di implementare metodi sempre più efficaci per poter unire al meglio le informazioni derivanti dall’accoppiamento delle due tecniche.

La scelta dei metodi utilizzati per l’integrazione EEG-fMRI ricopre un ruolo di fondamentale importanza, e mostra una chiara dipendenza dall’ambito di ricerca. Ogni tecnica si caratterizza per delle determinate assunzioni a priori di carattere biofisico e matematico [28]. Inizialmente le analisi venivano fatte separatamente, ma così si sfruttava solamente il vantaggio derivante dal fatto di utilizzare due modalità invece di una [27], [54]. Per poter ottenere il massimo beneficio dall’integrazione delle due tecniche, si è passati a studiare metodi che combinano le due modalità in maniera più diretta.

Le principali modalità attraverso le quali si ottiene l’integrazione dei dati EEG-fMRI comprendono i metodi di tipo asimmetrico e simmetrico. Di questi ultimi si studieranno in particolare quelli basati sulla creazione di un modello.
3.1 Approccio asimmetrico

Gli approcci di tipo asimmetrico si basano sull’impiego delle informazioni estratte da una delle due modalità per poter guidare l’analisi effettuata nell’altra [31]. Grazie alla complementarietà delle due tecniche, si riesce ad ottenere una buona risoluzione spazio-temporale che consente di effettuare un’analisi molto più approfondita. Trattandosi di un approccio che si basa su delle forti assunzioni di tipo fisiologico, la scelta del metodo esatto va effettuata con attenzione, valutando accuratamente qual è lo scopo dell’esperimento. L’utilizzo di un metodo non adatto allo studio che si sta effettuando può portare ad una valutazione errata dei risultati. Tra i diversi metodi di integrazione, quelli che sfruttano un approccio asimmetrico sono molto utilizzati in quanto caratterizzati da un’elevata affidabilità e robustezza [66].

3.1.1 Integrazione dell’informazione fMRI nell’analisi EEG

L’obiettivo di questo metodo è quello di risolvere il problema di malposizione nella ricerca delle sorgenti elettriche cerebrali a partire dal solo segnale EEG. Utilizzando come prior l’informazione spaziale proveniente dalla risonanza magnetica funzionale si riesce a compensare questa mancanza [25].

Alla base di quest’analisi vi è la creazione di un modello, completo di informazioni biofisiche sulle caratteristiche cerebrali, come la conduttività dei tessuti, e di informazioni sulla geometria della testa, che serve per stimare i percorsi delle correnti che si misurano a livello dello scalpo [22]. A tal proposito sono stati proposti diversi modelli che differiscono tra di loro principalmente per la precisione dei dettagli neuroanatomici [26], [28].

Una volta costruito il modello, e avendo a disposizione sia i dati EEG che quelli fMRI, si utilizzano degli algoritmi di ricerca delle sorgenti in modo da trovare la configurazione ottima dei generatori neuronali, ovvero quella in grado di spiegare al meglio le correnti che si misurano a livello dello scalpo.
3.1 Approccio asimmetrico

[28]. In figura 3.1 viene riassunto in maniera schematica il procedimento, mostrando input e output del metodo.

![Diagram](image)

Figura 3.1: Integrazione dell’informazione fMRI nell’analisi EEG [28]

All’interno del metodo è necessario effettuare anche delle assunzioni riguardo a quante sorgenti si intendono trovare. Un buon modo per stabilire questo numero è quello di affidarsi sempre alla misura fMRI e identificare i generatori sulla base delle attivazioni cerebrali stimate, eventualmente raggruppate con un’operazione di *clustering*. Posizionando dei *seed* all’interno di queste regioni, in corrispondenza del massimo locale del segnale fMRI [28], diventa possibile stimare le sorgenti elettriche del segnale, grazie all’elevata risoluzione temporale caratteristica dell’elettroencefalogramma [70]. A volte invece si preferisce stabilire il numero di generatori in maniera aleatoria, dopo aver realizzato un griglia 3D di possibili sorgenti di corrente [23], ciascuna con una probabilità associata. In questo caso, oltre alle informazioni fisiologiche già fornite nel modello, si inseriscono anche assunzioni a priori sui parametri della funzione costo da ottimizzare. Infine, di questi dipoli è possibile fornire come informazione non solo la posizione ma anche l’orientamento [70].

L’utilizzo di questo metodo si limita agli studi finalizzati alla mera ricerca delle sorgenti, per le quali esso rappresenta l’approccio più adeguato [28]. In caso ci si concentri su altri scopi, è necessario cambiare metodo di integrazione.
3.1.2 Integrazione dell’informazione EEG nell’analisi fMRI

Quando si effettuano delle analisi su un dataset acquisito in un esperimento di risonanza magnetica funzionale, si trattano i dati come se fossero una combinazione lineare di funzioni più il rumore, e si va a costruire un modello in grado di descriverli (General Linear Model, GLM):

![General Linear Model](image)

Figura 3.2: General Linear Model [89]

L’approccio asimmetrico che si basa sull’analisi fMRI a cui si aggiunge l’informazione del segnale EEG sfrutta la stessa procedura, andando però a modificare la matrice che descrive il modello. Sebbene sia la risposta neuronale che quella emodinamica siano caratterizzate da un comportamento prettamente non lineare [41], a dar ragione a quest’approccio c’è il fatto che la relazione tra le potenze del segnale EEG e le ampiezze BOLD è molto vicina alla linearità [31]. A differenza del GLM originale, al posto del set up sperimentale la risposta emodinamica viene convoluta con una serie temporale costruita utilizzando una caratteristica propria del segnale EEG [42], [57]. Andando ad effettuare poi l’analisi statistica non si otterranno più le zone di attivazione, come nel caso unimodale, ma i voxel in cui le fluttuazioni del segnale BOLD risultano correlate in maniera significativa con la condizione scelta [57]. In questo metodo di integrazione il segnale EEG rappresenta la variabile indipendente, mentre i dati fMRI corrispondono alla variabile dipendente del modello [37].

In figura 3.3 si può osservare uno schema riassuntivo della procedura:
3.2 Approccio simmetrico. Cenni

La scelta delle caratteristiche da estrarre dal segnale EEG è fortemente dipendente dall’ambito di ricerca e a tal fine sono stati proposti diversi approcci, ciascuno basato su determinate assunzioni ed ipotesi [31]. In un’analisi in resting state ad esempio si è interessati alle correlazioni, sia positive che negative, fra il segnale BOLD e le variazioni del ritmo alfa nella zona occipitale. Diversi studi ritengono tuttavia che l’utilizzo esclusivo della banda alfa sia limitante e che non tenga conto delle interazioni delle altre frequenze. Il cervello infatti non è caratterizzato da attività separate provenienti ciascuna da una banda differente, per cui il contributo delle altre bande non può essere ignorato [10], [57].

3.2 Approccio simmetrico. Cenni

Gli approcci di tipo simmetrico ipotizzano una mutua dipendenza tra i segnali EEG ed fMRI e consentono una convalida incrociata delle due risposte [66]. A differenza di quelli asimmetrici, che assumono la coincidenza fra gli strati neuronali investigati dalle due modalità, con questo approccio si riconosce la loro distinzione, ipotizzando che essi si sovrappongano solo parzialmente. Inoltre non si pesa l’analisi su una sola delle due modalità, ma si uniscono le informazioni ricavate da entrambe.
3.2.1 Integrazione tramite modello neurogenerativo

Alla base di questa modalità di integrazione vi è la creazione di un modello generativo (o neurogenerativo), il cui fine è quello di descrivere la relazione che intercorre tra i dati misurati e la fisiologia che ne sta alla base [66]. Quindi, all’interno di questo modello, è necessario incorporare delle informazioni a priori riguardanti i processi fisiologici che hanno portato alla generazione dei segnali EEG ed fMRI [28]. In particolare, è necessario descrivere il collegamento tra le attività elettrofisiologica ed emodinamica, ma anche la sequenza di eventi che, dai cambiamenti del flusso sanguigno cerebrale, porta al segnale fMRI [43]. Molti dei modelli che sono stati sviluppati ritengono indispensabile includere nel modello generativo anche una descrizione della risposta neuronale agli stimoli esterni, la dinamica della popolazione di neuroni e come le correnti elettriche a livello delle sinapsi si propagano fino allo scalpo, considerando quindi anche la conduttività dei tessuti interessati [31]. A livello di segnale BOLD invece, interessa spiegare le relazioni che intercorrono fra i parametri CBF, CBV e CMRO$_2$ [6] oltre all’importante ruolo svolto dalla deossiemoglobina.

All’interno del modello sono presenti dei parametri incogniti la cui stima, ottenuta con un’operazione che prende il nome di inversione del modello, rappresenta l’obiettivo finale dell’integrazione.

Come si è visto, il modello include diversi livelli di descrizione della fisiologia che porta alla generazione e alla propagazione dei segnali cerebrali studiati tramite le due modalità: da un livello macroscopico, che prende in considerazione le interazioni tra le regione cerebrali attive, fino ad uno microscopico, che porta la descrizione su scala cellulare. A causa dell’elevata complessità del modello, l’operazione di inversione presenta un costo computazionale molto elevato [31], che spesso porta ad orientarsi verso i metodi di tipo asimmetrico. Inoltre, sebbene con quest’approccio si effettui un’integrazione più bilanciata delle due tecniche, la descrizione della fisiologia cerebrale e di tutti i processi coinvolti presenta delle difficoltà, e in diversi casi risulta incompleta [28].
Capitolo 4

Materiali

Il dataset analizzato in questa tesi è acquisito all'interno del progetto Life Experience Modulation of Executive Function Asymmetries (LEX-MEA) condotto dal Professor Antonino Vallesi (Dipartimento di Neuroscienze: DNS, Università degli Studi di Padova).

Durante l'acquisizione, all'interno della camera di Risonanza Magnetica, i soggetti erano in posizione supina, con le braccia distese lungo i fianchi e la testa bloccata da dei cuscini di gomma piuma. Per attutire i suoni della risonanza, ai volontari sono stati forniti dei tappi per le orecchie ed una cuffia antirumore. È stato inoltre chiesto loro di di fissare una croce, di non pensare a nulla e di non addormentarsi. La croce è stata proiettata in uno schermo, che potevano vedere grazie ad uno specchio posizionato sulla bobina ricevente.

4.1 Acquisizioni

EEG

L’acquisizione dei dati relativi all’elettroencefalogramma è avvenuta mediante un sistema EEG compatibile con l’ambiente di risonanza magnetica. Il caschetto EEG, della Brain-Products (Germania), è composto da 64 eletrodi posizionati secondo il sistema internazionale 10-20. Di questi, il canale
FCz rappresenta il riferimento, mentre AFz è stato utilizzato come terra. L’elettrodo per la registrazione dell’elettrocardiogramma (ECG) è stato posizionato sulla schiena del paziente. I dati sono stati campionati ad una frequenza di 5 kHz e su di essi è stato effettuato un filtraggio passa-banda con intervallo di frequenze 0.0016-250 Hz. L’impedenza è stata mantenuta al di sotto di 5 kΩ.

fMRI

Le acquisizioni sono state effettuate nell’Unità di Neuroradiologia dell’Azienda Ospedaliera di Padova. La macchina utilizzata è uno scanner 3T Ingenia Philips whole-body a 32 canali head coil. I volumi funzionali sono stati acquisiti usando una sequenza EPI pesata T_2^*. Di seguito si riportano i parametri della sequenza:

- numero di volumi acquisiti: 200
- tempo di ripetizione (TR): 2 secondi
- tempo di eco (TE): 35 ms
- slice per volume: 30 o 25 a seconda del soggetto
- flip angle: 90°
- dimensioni dei voxel: $2.4 \times 2.4 \times 4$ mm (4.8 mm se le slice per volume sono 25)
- field of view (FOV): 230×230 mm
- dimensioni matrice di acquisizione: 84×80
- SENSE factor: 2 in direzione anteriore-posteriore
- 2 dummy scans acquisite all’inizio ma non utilizzate nelle successive analisi
Per quanto riguarda le immagini anatomiche pesate T\textsubscript{1} si hanno le seguenti caratteristiche:

- TR/TE: 8.1/3.7
- slice acquistate: 180 in direzione sagittale
- flip angle: 8°
- dimensioni dei voxel: 0.49 × 0.49 × 1 mm
- field of view (FOV): 220 × 220 mm
- dimensioni matrice di acquisizione: 220 × 220

4.2 Data-set

I dati sono stati acquisiti per 17 soggetti sani, 7 maschi e 10 femmine, di età compresa tra 20 e 28 anni (età media 23.5 ± 5.0 anni).
Capitolo 5

Metodi

5.1 Correzione del segnale EEG

Per la pulizia del segnale EEG è stato utilizzato un codice implementato in linguaggio MATLAB versione R2014a (MathWorks, Inc) che implementa diverse funzioni del toolbox EEGLAB versione 13.5.4b [11], sviluppato appositamente per l’analisi di questi segnali [78].

Tale toolbox permette innanzitutto di creare un dataset costruendo una struttura in cui sono inserite tutte le informazioni necessarie di un segnale EEG, quindi, oltre ai dati e ai tempi di acquisizione, anche la frequenza di acquisizione e altre informazioni propriamente utili per il plot, per esempio i nomi degli elettrodi e le relative posizioni.

Artefatto da gradiente

Come primo step per la pulizia del segnale si corregge l’artefatto da gradiente attraverso la funzione pop_fmrib_fastr del plugin FMRIB di EEGLAB, che implementa il metodo di Niazy et al. [58] di sottrazione del template illustrato nella sezione 2.1.2 del Capitolo 2. Poiché di default i dati sono in formato single, per poter utilizzare questo metodo è necessario convertirli in formato double. Questo si può fare semplicemente accedendo ai dati
della struttura ed utilizzando la funzione `double` di MATLAB. Dopo questo accorgimento si possono inserire i parametri necessari:

- **Frequenza di cutoff**: poiché il metodo contiene al suo interno anche un filtraggio passa-basso, è necessario fornire il valore a cui si tagliano le frequenze. In questo caso si è deciso di mantenere il termine di default di 70 Hz, dato che le frequenze di interesse per l’analisi sono al di sotto di questa soglia.

- **Fattore di ricampionamento**: affinché gli artefatti vengano rimossi in maniera efficace l’algoritmo prevede di sovracampionare i dati. Nelle specifiche del plugin è consigliato di arrivare ad una frequenza di almeno 20 kHz [78], per cui, poiché i dati sono stati acquisiti con un campionamento di 5 kHz, il valore scelto, che altro non è che una costante moltiplicativa, è 4.

- **Numero di artefatti**: si fornisce al programma il numero di artefatti da cercare all’interno di ogni finestra analizzata. Poiché si utilizzano volumi e non slice, in questo caso il valore scelto, cioè 15, è minore di quello di default (30).

- **Evento dell’artefatto**: serve per far corrispondere gli eventi del dataset EEG con il timing fMRI. È necessario indicare che si stanno considerando dei volumi e non delle sezioni, fornendo in più il nome degli eventi (in questo caso ‘R128’). La scelta di ‘Volume’ è giustificata dal fatto che, guardando il plot di una serie temporale di un elettrodo, il marker compare ogni 2 secondi (cioè il tempo di acquisizione di un volume, TR).

- **Adaptative Noise Cancellation**: è necessario selezionare quest’opzione per poter utilizzare questo metodo nella correzione. Tale metodo è facoltativo soprattutto perché il suo utilizzo aumenta notevolmente il tempo computazionale, ma includerlo nel preprocessing ha portato ad un miglioramento della qualità del segnale notevole. Per dettagli
5.1 Correzione del segnale EEG

sul funzionamento del filtro si veda *Filtraggio adattativo ANC* nella sezione 2.1.2.

- **Locazione dei trigger**: qui si inserisce l’errore relativo tra inizio del- l’artefatto e invio del trigger. Per ricavare questo valore è stato necessario guardare la forma del primo artefatto all’interno del segnale, in modo tale da riconoscere il suo andamento iniziale. In seguito, all’interno dello stesso segmento, si è calcolata la distanza tra l’inizio dell’artefatto e la posizione del trigger corrispondente. Il valore di default di 0.03 è stato sostituito con 0.005.

In figura 5.1 si riporta come appare la finestra pop up di inserimento dei parametri descritti precedentemente, ivi mostrata con le impostazioni di default:

![Figura 5.1: Parametri di default FASTR [80]](image-url)
Per valutare la bontà dei risultati si è effettuata anche un'analisi in frequenza, che permette di capire se l’artefatto è stato corretto in maniera efficace. Il dominio della frequenza è una valida alternativa al dominio del tempo, permettendo di identificare caratteristiche del segnale che non sono visibili affidandosi unicamente alle sue proprietà temporali. Infatti, l’artefatto da gradiente porta ad avere, nello spettro, dei picchi alla frequenza N/TR (con N numero di slices acquisite per ogni volume e TR tempo di acquisizione di un volume) e multipli, pertanto la sua presenza è immediatamente riconoscibile. Per portarsi nel dominio della frequenza si è implementato il metodo diretto del periodogramma:

\[
P_{\text{per}} = \frac{1}{N} \cdot |\sum_{n=0}^{N-1} x(n) \exp\left(-j \frac{2\pi}{N} nk\right)|^2
\]

(5.1)

che permette la stima dello spettro medio di un segnale tramite il calcolo della trasformata di Fourier discreta del segnale x divisa per il numero di campioni N. Per poter effettuare quest’operazione è necessario che il processo in esame soddisfi l’ipotesi di stazionarietà. Trattandosi di un segnale EEG, e poiché il calcolo dello spettro è stato fatto per finestre di 2 secondi (ogni ’R128’), l’ipotesi si assume essere soddisfatta.

In figura 5.2 si riporta come si presenta l’artefatto in frequenza.

![Figura 5.2: Artefatto da gradiente nel dominio della frequenza](image)
5.1 Correzione del segnale EEG

Come accennato in precedenza, utilizzare il filtro ANC porta dei grandi vantaggi che rendono trascurabile l’aumento della complessità dell’algoritmo. Di seguito si riporta il risultato di due correzioni dell’artefatto da gradiente, una effettuata senza il filtro ANC e l’altra con il filtro. Si può vedere in figura 5.3 come l’aggiunta di questo metodo rimuova componenti di artefatto residue che altrimenti continuerebbero a contaminare il segnale.

![Figura 5.3: Filtro ANC. Vantaggi](image)

Cleanline

Se non si utilizza il filtro ANC, una valida alternativa per rimuovere i picchi residui in frequenza è quella di utilizzare il toolbox CleanLine [4], ideato inizialmente per il problema analogo di rimozione del rumore di linea (vedi sezione 2.1.3).

Le impostazioni di default del toolbox si prestano abbastanza bene al problema in esame. Alcuni di questi campi sono stati però modificati per adattare l’algoritmo al soggetto in esame, in base soprattutto all’eventuale presenza di picchi, alle frequenze a cui compaiono e alla loro ampiezza. Nel campo *Line noise frequencies to remove* sono state inserite le frequenze dei picchi. Nei soggetti per cui i volumi acquisiti ogni TR = 2 secondi erano 30, si sono inserite come frequenze 15 Hz (la fondamentale) e 45 Hz. Non si è rivelato particolarmente utile inserire frequenze superiori perché di poco interesse per lo studio del segnale EEG.
In certi casi è stato aumentato il valore del \textit{p-value} da 0.01 a 0.05 in modo da risultare meno conservativi e correggere in maniera più decisa i picchi. Questa modifica è fortemente dipendente da come si presentano gli artefatti e dal soggetto in esame, per cui è necessaria qualche prova per trovare il \textit{p-value} più adatto. Anche i valori di \textit{bandwidth} e \textit{sliding window length} sono piuttosto variabili, sebbene generalmente per il primo si inserisca un valore di 2 Hz e per il secondo un valore di 2 o 4 secondi. Vista la variabilità di questo metodo e la sua dipendenza da soggetto a soggetto, è preferibile utilizzare il filtraggio ANC.

In figura 5.4 si può vedere la finestra pop up in cui vengono inseriti i valori necessari all’algoritmo.

\textit{Artefatto cardioballistografico}

Per applicare l’algoritmo di rimozione dell’artefatto cardioballistografico è necessario eseguire innanzitutto un’operazione di sottocampionamento a 500 Hz. A tal fine è sufficiente sfruttare la funzione \textit{pop_resample} di EEGLAB.

In seguito si utilizza la funzione \textit{pop_fmrib_grsdetect} che permette di identificare i ritmi \textit{qrs} all’interno del segnale, sfruttando l’elettrodo ECG presente nel protocollo sperimentale. Il metodo che effettua questa ricerca è quello implementato da Christov [8]. A quest’operazione segue l’utilizzo della funzione
5.1 Correzione del segnale EEG

pop_fmrib_pas che serve per la rimozione dell’artefatto cardio-ballistografico, metodo che sfrutta sempre la sottrazione del template descritta da Niazy et al. [58]. Per questo algoritmo basta inserire, oltre al nome degli eventi (‘qrs’), il numero di componenti principali (OBS) che servono a descrivere l’artefatto. Nella maggior parte dei casi impostare 3 OBS si è rivelata la scelta migliore, ma a volte è stato necessario utilizzarne 2.

![Figura 5.5: 2 OBS vs 3 OBS](image)

Come si vede dalla figura 5.5, scegliere il numero sbagliato di OBS può portare alla comparsa di ulteriori picchi che possono compromettere una successiva analisi.

Correzione del riferimento

Come si è già accennato nel capitolo relativo al preprocessing del segnale EEG, durante la fase di acquisizione un elettrodo viene utilizzato come riferimento e quindi l’attività elettrica che esso registra viene persa. Per poter riottenere quest’informazione si interpolano gli altri canali ottenendone uno nuovo che viene posto in coda ad essi. Come nuovo riferimento si prende poi la media delle attività di tutti gli elettrodi. Queste operazioni vengono implementate dalla funzione *pop_reref*.

Nella successiva fase di preprocessing viene ripetuta questa procedura in maniera iterativa. Infatti, effettuando la media di tutti i canali, compresi quelli corrotti, si ottiene un riferimento errato. Per ogni elettrodo che viene
corretto bisogna quindi stimare nuovamente il riferimento mediando tutti i canali [91].

PREP Pipeline

Per quanto riguarda la PREP pipeline, si utilizza un plugin che può essere inserito nel toolbox EEGLAB. In questo caso è necessario impostare diversi parametri prima di avviare l’esecuzione della procedura [91]:

- **Ignore boundary events**: la correzione effettuata dall’algoritmo richiede che i dati siano continui, cosa che non sempre è verificata all’interno del dataset. Attraverso quest’operazione si possono marcare le eventuali discontinuità presenti ed ignorarle.

- **Detrend cutoff**: generalmente, nella correzione di un segnale EEG, si effettua un filtraggio passa-alto per correggere gli eventuali drift in bassa frequenza. Di default il valore della soglia è 1 Hz, nel caso in esame si è deciso di impostarlo a 0.5 Hz.

- **Line frequencies removed**: questo passaggio serve per rimuovere le interferenze provocate dal rumore di linea. Di default l’algoritmo si concentra sulla frequenza 60 Hz (rumore elettrico negli Stati Uniti), qui si è impostata una frequenza di 50 Hz (rumore elettrico in Europa).

- **Reference and evaluation channels**: sono i canali corrispondenti al segnale EEG, per cui l’unica modifica da fare è quella di escludere il canale ECG dalle operazioni.

ICA temporale

Quest’operazione si esegue perché si vogliono andare a trovare quelle componenti temporalmente indipendenti dalle altre che rappresentano gli artefatti di blink oculare, per poi rimuoverle selettivamente.

Esistono diversi metodi che vengono implementati da EEGLAB e che consentono la separazione delle componenti [96]:

```
5.1 Correzione del segnale EEG

- **runica**: questo metodo si basa sull’algoritmo di Bell e Sejnowski [2] che permette di separare segnali statisticamente indipendenti da un numero di canali composti da una mistura di sorgenti di egual numero. Non viene fatta alcuna assunzione sulla distribuzione dell’input. Il criterio utilizzato per la separazione è la massimizzazione dell’informazione;

- **fastica**: si basa sull’algoritmo di Hyvärinen e Oja [29] secondo cui i dati a disposizione vengono considerati come una combinazione lineare delle sorgenti. Come misura di non-gaussianità delle sorgenti viene utilizzata la curtosi. Il punto forte di questo algoritmo è la sua elevata velocità computazionale;

- **binica**: è la versione binaria dell’algoritmo *runica*, rispetto al quale consuma meno tempo e memoria [96].

In questo caso si è deciso di utilizzare l’algoritmo *runica*. Calcolate quindi le componenti si può eseguire il toponplot del valore dei potenziali su ogni elettrodo per ciascuna di esse utilizzando una scala a colori (figura 5.6):

**Figura 5.6**: Esempi di componenti ICA proiettate sullo scalpo [80]
5. Metodi

Per esempio, la componente 3 della figura 5.6 è un chiaro caso di artefatto oculare. In riferimento alla figura 5.7, questo è giustificato dai seguenti motivi:

- Lo spettro che ha un andamento decrescente lento (pannello inferiore) è tipico degli artefatti oculari;
- La zona frontale, quindi dove si trovano i muscoli oculari, presenta valori di potenziali elevati (quindi sui 150 µV). In riferimento alla scala a colori, è la zona rossa;
- Nel pannello in alto a destra, che rappresenta in scala di colori l’ampiezza del segnale EEG nel tempo, è possibile notare la presenza di sparsi picchi isolati riconducibili a movimenti oculari.

Figura 5.7: Componente di artefatto oculare [80]

5.2 Elaborazione delle immagini fMRI

Per il preprocessing dei dati fMRI è stata utilizzata la libreria di elaborazione di immagini cerebralì presente in FSL 5.0 [97] e in particolare
5.2 Elaborazione delle immagini fMRI

il pacchetto di funzioni MELODIC (Multivariate Exploratory Linear Optimized Decomposition and Independent Components) che consente anche di effettuare l’ICA spaziale [79]. Inizialmente queste operazioni sono state eseguite con SPM [98] di MATLAB, che permette di svolgere le diverse fasi del preprocessing [94]. Tuttavia, poiché attraverso l’utilizzo di questo software non risulta possibile eseguire la coregistrazione non lineare, che si è rivelata più adatta per le successive analisi, si è abbandonata questa alternativa.

L’unica operazione eseguita con SPM è stata l’eliminazione dello scalpo dall’immagine anatomica, infatti in questo caso l’utilizzo di FSL risultava subottimo perché rimuoveva parte del cervello. Come conferma di quanto detto si può far riferimento alla figura 5.8.

Figura 5.8: In giallo si può vedere quello che resta utilizzando la funzione bet di FSL per la rimozione dello scalpo. In rosso il risultato che si ottiene utilizzando SPM. Come si nota subito, la regione rossa segue meglio il bordo/teca cranica.

L’eliminazione dello scalpo è un passaggio fondamentale perché non si vuole che esso venga considerato nelle successive analisi, questo infatti potrebbe creare incongruenze in fase di coregistrazione e normalizzazione.

In figura 5.9 si riporta la finestra pop up di MELODIC dove si inseriscono i parametri del preprocessing.

Nella sezione Data è sufficiente caricare i volumi funzionali e la cartella di output e automaticamente si imposta il tempo di ripetizione TR con il quale è avvenuta l’acquisizione. High pass filter cutoff è stato lasciato al
Figura 5.9: Finestra pop up di MELODIC

valore di default di 100 secondi, infatti trattandosi di dati in resting state si è interessati alle frequenze all’interno dell’intervallo 0.01 - 0.1 Hz. Ai dati sono stati inizialmente rimossi i primi cinque volumi per avere un segnale fMRI acquisito con magnetizzazione all’equilibrio. Su Pre-Stats sono state selezionate invece le seguenti opzioni [79]:

- **Correzione del movimento:** si imposta l’algoritmo MCFLIRT che implementa il metodo di correzione sviluppato da Jenkinson et al. (2002) [30];

- **Correzione temporale delle slice:** serve per correggere le serie temporali di ogni voxel dato che il processing che segue assume che ogni slice sia stata acquisita esattamente a metà TR, quando invece i tempi relativi ad ogni slice cambiano. Non si è selezionata quest’operazione perché non aveva grande impatto nei risultati e introduceva un’interpolazione aggiuntiva dei dati;

- **Smoothing spaziale:** si imposta il parametro FWHM a 5 mm, come di default;
5.3 General Linear Model

- **Filtraggio temporale**: si è deciso di far eseguire all’algoritmo un filtraggio passa alto per rimuovere eventuali trend nei dati.

In **Registration**, nella sezione *main structural image*, si inserisce l’immagine pesata T₁ e si specifica il tipo di coregistrazione che si vuole effettuare. In questo caso si adopera una trasformazione rigida utilizzando l’algoritmo BBR. Questa scelta è motivata dal fatto che l’opzione è raccomandata dal manuale di FSL per le coregistrazioni tra sequenze EPI e immagini strutturali [99]. Nella sezione *standard space* si seleziona l’algoritmo *Normal search* a 12 gradi di libertà per eseguire la normalizzazione. In questo caso si è deciso di ricorrere alla normalizzazione non lineare, per cui si è spuntata la casella apposita.

### 5.3 General Linear Model

Poiché si è interessati a studiare la correlazione fra il segnale BOLD e la banda alfa in resting state, si è utilizzato il metodo di integrazione asimmetrico che effettua la stima del General Linear Model (GLM), modello che al suo interno non solo ha le informazioni derivanti dal segnale fMRI ma anche quelle provenienti dall’elettroencefalogramma.

Il GLM assume la seguente espressione matematica:

\[ y = X\beta + \epsilon \]  (5.2)

dove y è una matrice tridimensionale che contiene i dati di risonanza magnetica funzionale sui quali è stato effettuato il preprocessing, X è la matrice che descrive il modello e \( \beta \) sono le ampiezze incognite che andranno stimate con i minimi quadrati lineari. Infine, \( \epsilon \) rappresenta il ruore associato al modello. Si assume additivo, indipendente, gaussiano con varianza costante e scorrelato.
Matrice X - Informazione EEG

In un classico studio di risonanza magnetica funzionale la design matrix X si ottiene ponendo nelle prime colonne i regressori, ovvero la convoluzione fra la risposta emodinamica e delle sequenze di funzioni rect che descrivono il set up sperimentale (condizioni). Le ultime colonne contengono invece i parametri della correzione del movimento relativi al soggetto.

Con questo metodo di integrazione si va a modificare la matrice X. Per prima cosa, dal segnale EEG corretto, si estraggono gli elettrodi di interesse. Trattandosi di un’analisi di resting state dove si vuole andare a caratterizzare il ritmo alfa, si sono considerati gli elettrodi occipitali O1 e O2 [51], [34], [35]. A questo punto si crea una serie temporale formata da N punti, tanti quanti sono i volumi, estraendo ad ogni TR una caratteristica rappresentativa dell’informazione che si vuole studiare, che può essere il massimo o la media della potenza in banda alfa [51]. Questa scelta è motivata dall’interesse per lo studio dell’attività in resting state. A questo punto si esegue la convoluzione con un modello di risposta emodinamica. A tal scopo si è scelto di utilizzare il modello di Friston [17], che ha la seguente espressione:

\[
h(t) = \left(\frac{t}{5.4}\right)^6 \cdot \exp\left(\frac{-(t - 5.4)}{0.9}\right) - 0.35 \cdot \left(\frac{t}{10.8}\right)^{12} \cdot \exp\left(\frac{-(t - 10.8)}{0.9}\right) \quad (5.3)
\]

La serie temporale che si ottiene prende il nome di power band time series. Poiché diversi studi affermano che l’utilizzo della sola banda alfa all’interno del modello lo renda incompleto [10] [57], si è deciso di studiare anche il caso in cui la matrice X viene creata estraendo la caratteristica scelta da tutte le bande (theta, alfa, beta 1, beta 2 e gamma).

Matrice X - Parametri del movimento

Per completare la costruzione della matrice X si inseriscono i parametri relativi al movimento come regressori di non interesse. Poiché si è visto che
l’utilizzo o il non utilizzo dei parametri relativi alla rotazione non influiva sui risultati, questi sono stati omessi.

Modelli

In base a come si definisce la matrice X, esistono quattro modelli diversi che si possono studiare, che differiscono tra loro in base a quante power band time series si costruiscono e a come si ottengono:

- **Modello 1**: si costruisce la *power band time series* estraendo il massimo per ogni spettro solo dalla banda alfa.

- **Modello 2**: si costruisce la *power band time series* estraendo la media per ogni spettro solo dalla banda alfa.

- **Modello 3**: si costruiscono cinque *power band time series* estraendo il massimo per ogni spettro da tutte le bande (theta, alfa, beta 1, beta 2, gamma).

- **Modello 4**: si costruiscono cinque *power band time series* estraendo la media per ogni spettro da tutte le bande (theta, alfa, beta 1, beta 2, gamma).

In figura 5.10 si può vedere come appaiono graficamente le due matrici X che si ottengono se si considerano le medie. Il caso con i massimi porta ad una rappresentazione analoga.

**Stime delle ampiezze $\beta$**

La stima delle ampiezze $\beta$ è stata effettuata, su ciascuno dei quattro modelli, utilizzando un codice MATLAB che implementa delle funzioni del toolbox SPM [94]. All’interno del programma è necessario specificare:

- Il numero di slice. Dato che si stanno considerando delle immagini normalizzate, questo numero sarà uguale per tutti i soggetti, in quanto
Figura 5.10: Da sinistra verso destra: matrice X ottenuta usando solo la banda alfa, matrice X ottenuta usando tutte le bande. Le colonne blu non sono valori nulli ma solo molto prossimi allo zero, come ci si aspetta dai parametri del movimento.

lo spazio stereotassico su cui ci si porta è comune. In questo caso si è impostato il valore 91.

• Il percorso completo della cartella dove vengono salvati i risultati;

• Se gli eventi devono essere considerati in termini di scan o in secondi. In questo caso l’opzione corretta è la prima, intendendo con essa i volumi;

• Il tempo di ripetizione TR;

• I parametri microtime resolution (cioè il numero di intervalli temporali in cui viene diviso ogni TR per il calcolo dei regressori) e microtime onset (cioè il valore che viene considerato come zero del regressore). Trattandosi di un’acquisizione 3DEPI il manuale di SPM12 consiglia di impostarli, rispettivamente, al numero di slice e alla sua metà [98];

• Quali sono i regressori. In questo caso bisogna inserire la matrice X ricavata in precedenza;

• Le condizioni. Poiché è già stata fatta la convoluzione tra le serie temporali e la risposta emodinamica canonica, non ci sono condizioni da inserire ma si hanno solo regressori;

• I percorsi relativi alle immagini funzionali.

Per tutti gli altri parametri non specificati sono state utilizzate le opzioni di default.
Indice di Akaike

Arrivati a questo punto nasce l’esigenza di trovare un criterio di selezione che permetta di scegliere uno dei precedenti modelli o che almeno ne riduca il numero. Una tecnica efficace può essere quella di studiare i residui di ciascun modello, forniti in output da SPM insieme alla stima delle ampiezze $\beta$, e cercare di trovare per quale modello si hanno dei risultati migliori in termini di bianchezza e scorrelazione. Al fine di tener conto non solo dei residui ma anche delle precisioni delle stime, si rivela utile utilizzare un indice di parsimonia. Per poter studiare la bontà del modello si è quindi ricorsi all’indice di Akaike [39], che ha la seguente espressione:

\[
AIC = \frac{(WRSS)^2}{N - M}
\]  \hspace{1cm} (5.4)

con WRSS somma dei residui al quadrato pesati, N numero di volumi e M numero di colonne della matrice X.

I valori dell’indice di Akaike relativi ai quattro modelli sono molto variabili da soggetto a soggetto. Per alcuni soggetti si è ottenuto un valore più basso utilizzando tutte le frequenze, per altri invece il modello migliore risultava essere quello con la sola banda alfa. A parità di bande considerate però, i modelli che scelgono la media e il massimo presentano dei valori molto simili. Questi risultati hanno portato alla conclusione che tramite quest’indice non è possibile discriminare uno dei quattro metodi. Tuttavia si può notare che i modelli 3 e 4 sono più complessi e non portano a dei miglioramenti decisivi in termini di stima, per cui ci si è orientati verso quelli più semplici, cioè i modelli 1 e 2.

Definizione del contrasto

Il contrasto è un vettore contenente numeri interi che possono essere positivi, negativi o nulli, con il quale è possibile identificare i coefficienti $\beta$ asso-
ciati ai regressori che definiscono la design matrix $X$. Impostando il seguente contrasto:

$$c = [1 \ 0 \ 0 \ 0]$$ (5.5)

si vanno a studiare i voxel la cui dinamica mostra una correlazione positiva con il ritmo alfa. Selezionando invece il contrasto

$$c = [-1 \ 0 \ 0 \ 0]$$ (5.6)

si studiano le correlazioni negative.

**Test di student**

Il t-test è un test statistico che permette di stabilire se due campioni appartengono alla stessa popolazione oppure se provengono da popolazioni diverse. Come ipotesi di base si assume che i dati costituiscano due campioni indipendenti, aventi dimensioni $N_1$ e $N_2$, presi da popolazioni con distribuzione gaussiana con medie ($m_1$ e $m_2$) e varianze ($s_1^2$ e $s_2^2$) note.

Per confermare l’appartenenza alla stessa popolazione è necessario verificare l’ipotesi nulla $H_0$, secondo la quale le medie delle due popolazioni coincidono ($m_1 = m_2$).

Si può quindi definire la variabile aleatoria $t$:

$$t = \frac{m_1 - m_2}{s_p \cdot \sqrt{\frac{1}{N_1} + \frac{1}{N_2}}}$$ (5.7)

dove $s_p$ rappresenta la media ponderata delle due deviazioni standard $s_1$ e $s_2$.

Se è vera l’ipotesi $H_0$, la variabile aleatoria definita ha una distribuzione nota, detta distribuzione di Student (figura 5.11), che dipende unicamente dai gradi di libertà $N_1+N_2-2$.

A questo punto si prende dai dati una realizzazione $t_{obs}$ calcolata con l’equazione 5.7 e si definisce una soglia di significatività, a cui corrispondono
i valori ± t della distribuzione. Si accetta quindi l’ipotesi H₀ se la probabilità che t_{obs} sia minore di |t| è più piccola di un valore prefissato, il p-value.

In questo caso grazie al test di student è possibile trovare le zone di attivazione significative relative al regressore selezionato dal contrasto. Utilizzando il software SPM è sufficiente caricare i risultati ottenuti con la stima del modello ed utilizzare il contrasto definito nell’equazione (5.5). Si è deciso di non applicare la correzione di Bonferroni (o FWE, family wise error) ma effettuare dei tentativi diretti sul valore del p-value. A seconda del soggetto in esame si è utilizzato un valore di 0.001 o 0.005.

In figura 5.12 si riporta un output di t-test effettuato su un soggetto.

Analisi di gruppo

Attraverso il metodo di integrazione utilizzato si trovano le aree in cui il segnale BOLD risulta correlato con il ritmo alfa. Le regioni trovate sono spesso diverse tra soggetto e soggetto, per cui una possibilità è quella di andare a studiare la relazione che sussiste tra i due segnali a livello del singolo data-set.

Grazie all’analisi di gruppo si possono invece ottenere le mappe di attivazione caratteristiche della popolazione di cui il campione può esser considerato rappresentativo. In questo modo diventa possibile ricavare le componenti di attivazione (o deattivazione) comuni a tutti i soggetti.
Anche quest’operazione è stata effettuata mediante l’utilizzo del software SPM. Per farlo, è sufficiente selezionare l’opzione Specify 2nd level ed impostare le seguenti specifiche:

- La cartella di output dove il programma salverà i risultati;

- Il tipo di test statistico che si vuole fare per studiare la significatività dei dati. In questo caso si è selezionata l’opzione One-sample t-test, che permette di effettuare il test di student;

- Un file, relativo ad ogni soggetto, che contiene, per ogni voxel, la somma dei beta pesata in base al contrasto definito. In questo caso quindi conterrà il parametro $\beta_1$.

Per tutti gli altri parametri non specificati sono state utilizzate le impostazioni di default.
Studio di correlazione

Come ultimo passaggio si è eseguito uno studio di correlazione finalizzato ad identificare quali network partecipanti alla creazione del segnale fMRI sono legati alle regioni trovate con l’analisi di gruppo. Il motivo di questo studio è giustificato dall’esigenza di trovare una corrispondenza con un network di resting state. Per ogni soggetto e per ogni metodo quindi sono state applicate, ai volumi fMRI normalizzati, delle maschere, ciascuna relativa ad una regione identificata con l’analisi di gruppo. Si è poi calcolato il segnale medio all’interno di ogni regione selezionata.

A partire dai volumi normalizzati è stata effettuata un’ICA spaziale di gruppo e una back-reconstruction, mediante l’utilizzo del toolbox di MATLAB GIFT [92], che ha permesso di trovare le componenti spazialmente indipendenti per ogni soggetto e quelle spazialmente indipendenti di gruppo, con relative serie temporali. In figura 5.13 si può vedere la finestra pop up che permette di eseguire le operazioni spiegate.

![Finestra pop up del toolbox GIFT](image)

Figura 5.13: Finestra pop up del toolbox GIFT [92]

All’interno dell’algoritmo sono state selezionate 30 componenti per la separazione. Questa scelta è stata effettuata come compromesso tra un numero troppo elevato che avrebbe provocato la separazione in più componen-
ti di singoli network e un valore troppo basso che ne avrebbe causato la compressione.

Si è quindi calcolata, tramite il coefficiente di Pearson, la correlazione tra i segnali medi nelle regioni trovate con l’analisi di gruppo e le serie temporali relative all’ICA individuale. Quest’operazione è stata eseguita per ogni soggetto e per ciascuno dei due modelli.

Il coefficiente, o indice di correlazione, di Pearson può essere calcolato attraverso la funzione `corr` di MATLAB, ed ha la seguente espressione matematica [93]:

$$r_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$ (5.8)

La funzione `corr` restituisce in output anche i $p$ value per studiare la significatività della correlazione stimata.
Capitolo 6

Risultati e discussione

6.1 Risultati preprocessing EEG

L’EEG fornito per l’analisi è contaminato dai tipici artefatti del segnale (blink, saccadi e rumore di linea, per citarne alcuni) e da quelli provocati dall’acquisizione in un ambiente caratterizzato dalla presenza di un campo magnetico, variabile e non. In figura 6.1 si può vedere come si presenta inizialmente l’elettroencefalogramma, in riferimento ad un singolo soggetto.

![EEG signal in figure 6.1]
L’obiettivo iniziale è quello di rimuovere il più possibile i suddetti artefatti e di ottenere un segnale da cui si possano estrarre delle caratteristiche di interesse senza che queste siano influenzate da disturbi non desiderati. In figura 6.2 si può vedere come questo artefatto provochi una grande alterazione anche a livello dello spettro del segnale. Un modo molto semplice per verificare se la correzione adottata ha eliminato l’artefatto da gradiente è quello di vedere se i picchi che caratterizzano l’artefatto, che si ricorda essere presenti alla frequenza N/TR e multipli, scompaiono.

![Figura 6.2: Spettro elettrodi occipitali, EEG non corretto](image)

Utilizzando l’algoritmo FASTR e includendo il filtraggio ANC al suo interno, si ottengono i risultati presentati in figura 6.3:

![Figura 6.3: Segnale EEG corretto dagli artefatti da gradiente](image)
6.1 Risultati preprocessing EEG

In figura 6.4 si può vedere l’effetto della correzione nel dominio della frequenza: sono scomparsi i picchi dell’artefatto da gradiente.

**Figura 6.4:** Spettro elettrodi occipitali, EEG corretto dagli artefatti da gradiente

L’artefatto cardioballistografico non mostra una sua chiara influenza in frequenza, ma è ben riconoscibile osservando l’andamento temporale del segnale. In figura 6.5, nella zona evidenziata, si nota come il segnale EEG subisca una distorsione, in ogni canale, che segue il battito cardiaco identificato dal canale ECG relativo all’elettrocardiogramma.

**Figura 6.5:** Artefatto cardioballistografico

In figura 6.6 si può vedere, relativamente allo stesso soggetto e alla stessa finestra temporale, l’andamento del segnale dopo la correzione dell’artefatto.
Cardioballistografico.

Figura 6.6: Correzione dell’artefatto cardioballistografico

A questo punto, con PREP pipeline, si sono andati ad identificare e correggere i bad channels. In figura 6.7 si può vedere che, relativamente ad un soggetto, i canali temporali (T7 e T8) sono evidentemente corrotti:

Figura 6.7: Canali corrotti

Ecco i risultati dopo la correzione (figura 6.8):
6.1 Risultati preprocessing EEG

In figura 6.9 si può fare un confronto fra lo spettro prima e dopo la correzione dei due canali presi in esame, notando come si sia passati da un andamento innaturale a quello classico con decadimento $\frac{1}{f}$ del segnale EEG.

Tramite la PREP pipeline si corregge anche il rumore di linea. Questo è identificabile dalla presenza di un picco intorno alla frequenza di 50 Hz. In figura 6.10 è riportato lo spettro del segnale corretto. Si può notare come le altre frequenze, che non riguardano il rumore di linea, restino quasi del tutto immutate:

Infine, applicata anche l’ICA temporale per la rimozione degli ultimi artefatti legati a blink e saccadi, si ottiene il segnale pulito che verrà utilizzato
6.2 Risultati preprocessing fMRI

Di seguito si riportano i risultati ottenuti con il preprocessing fMRI effettuato mediante la libreria di elaborazione di immagini cerebrali FSL, in particolare utilizzando il pacchetto di funzioni MELODIC.
6.2 Risultati preprocessing fMRI

In figura 6.12 si possono vedere i risultati, relativi ad un singolo soggetto, della coregistrazione delle immagini funzionali sul volume anatomico T\(_1\). Per eseguire la normalizzazione, e quindi portarsi su uno spazio stereotassico comune, si esegue poi la coregistrazione del volume T\(_1\) sull’immagine dell’atlante MNI, ottenendo quanto riportato in figura 6.13. Dalla concatenazione delle due trasformazioni si ottiene la trasformazione che permette di normalizzare l’immagine funzionale al template scelto (figura 6.14).

Figura 6.12: Coregistrazione immagini funzionali su T\(_1\)
Figura 6.13: Normalizzazione della $T_1$

Figura 6.14: Normalizzazione immagini funzionali
6.3 Risultati analisi di gruppo

Modello 1

Nel modello 1 la costruzione della *power band time series* avviene estraendo il massimo per ogni spettro dalla banda alfa. Utilizzando questo modello nell’analisi di gruppo è stato possibile trovare 3 regioni in cui il segnale BOLD correla positivamente con il segnale EEG in banda alfa. Tali regioni sono state ottenute tramite un t-test con p-value = 0.001, impostando la dimensione minima dei cluster da visualizzare a 10. In figura 6.15 si può vedere una rappresentazione bidimensionale delle zone trovate, mentre in figura 6.16 si vedono due di queste regioni su un cervello 3D. La regione che non compare, perché non in superficie come le altre, è il diencefalo ventrale destro.

Nelle figure 6.17 e 6.18 sono riportate le regioni ottenute studiando le correlazioni negative. La significatività statistica è stata valutata a livello di cluster *p* < 0.05, corretta per confronti multipli con FDR (voxel-level *p* < 0.05). In questo caso, utilizzando una soglia voxel-level *p* < 0.001, non sarebbe sopravvissuta nessuna area.

![Figura 6.15: Modello 1, correlazioni positive 2D](image)
Figura 6.16: Modello 1, correlazioni positive 3D

Figura 6.17: Modello 1, correlazioni negative 2D
6.3 Risultati analisi di gruppo

Figura 6.18: Modello 1, correlazioni negative 3D

Modello 2

Nel modello 2 la costruzione della power band time series avviene estraendo la media per ogni spettro dalla banda alfa. Utilizzando questo modello nell’analisi di gruppo è stato possibile trovare 3 regioni in cui il segnale BOLD correla positivamente con il segnale EEG in banda alfa. Tali regioni sono state ottenute con un t-test con p-value = 0.001, impostando la dimensione minima dei cluster da visualizzare a 5. In figura 6.19 si può vedere una rappresentazione bidimensionale delle zone trovate, mentre in figura 6.20 si vedono due di queste regioni su un cervello 3D. La regione che non compare, perché non in superficie come le altre, è il giro cingolato medio sinistro.

Nelle figure 6.21 e 6.22 sono riportate le regioni ottenute studiando le correlazioni negative. La significatività statistica è stata valutata a livello di cluster p < 0.05, corretta per confronti multipli con FDR (voxel-level p < 0.05). In questo caso, utilizzando una soglia voxel-level p < 0.001, non sarebbe sopravvissuta nessuna area.
6. Risultati e discussione

**Figura 6.19:** Modello 2, correlazioni positive 2D

**Figura 6.20:** Modello 2, correlazioni positive 3D
6.3 Risultati analisi di gruppo

Figura 6.21: Modello 2, correlazioni negative 2D

Figura 6.22: Modello 2, correlazioni negative 3D
6.4 Discussione e scelta del modello

Per entrambi i modelli l’utilizzo del contrasto definito nell’equazione 5.6 ha evidenziato la presenza di correlazioni negative nella regione occipitale. Questo dato trova conferma in numerosi studi ed è indice di una deattivazione della suddetta zona all’aumentare delle oscillazioni in ritmo alfa espresse dal soggetto [9], [13], [18], [19], [34], [53].

In entrambi i modelli si trovano correlazioni positive nella regione giro frontale medio sinistro. Questo sta ad indicare che, quando il cervello esprime oscillazioni del ritmo alfa, questa regione è attiva [34].

Nonostante questo risultato comune, la scelta del modello da utilizzare ricade sul secondo, cioè quello che estrae la media come caratteristica di interesse dal segnale EEG, perché le regioni trovate mostrano un maggior supporto nella letteratura. Infatti, oltre alla regione condivisa con il modello 1, il modello 2 ha in comune con altri studi di correlazioni positive anche la regione giro frontale superiore sinistro – segmento mediale (Laufs et al, 2003 [34]).

Diversi studi hanno trovato correlazioni positive con il talamo [45] [57] [53], sottolineando come questo abbia un ruolo fondamentale nella generazione del ritmo alfa. L’analisi effettuata non è in grado di replicare tale risultato, ma anche questo aspetto si trova in accordo con il lavoro di Laufs et al, 2003 [34].
6.5 Risultati studio di correlazione

Attraverso lo studio di correlazione si cerca di capire se le regioni che sono state individuate contribuiscano, e in che modo, alla generazione di una serie temporale associata ad un resting state network.

Una volta calcolate, per ogni soggetto, le correlazioni tra le serie temporali delle regioni individuate con l’analisi di gruppo e delle componenti ICA individuali, è stato valutato se alcune correlazioni risultino significative (p<0.05) per la maggior parte dei soggetti. Nella tabella 6.1 si riportano i valori delle correlazioni e dei rispettivi p-value, per ogni soggetto, relativi alla corrispondenza trovata. Il segnale estratto dalla regione giro frontale medio sinistro correla con la serie temporale del network fronto-parietale sinistro, come si può vedere in figura 6.2.

![Tabella 6.1: Correlazioni tra giro frontale medio sinistro e componente 20](image)

<table>
<thead>
<tr>
<th>SOGETTO</th>
<th>CORRELAZIONE DI PEARSON</th>
<th>P VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.745</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.755</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.706</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.691</td>
<td>0.29</td>
</tr>
<tr>
<td>5</td>
<td>0.472</td>
<td>0.69</td>
</tr>
<tr>
<td>6</td>
<td>0.643</td>
<td>0.38</td>
</tr>
<tr>
<td>7</td>
<td>0.603</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0.586</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.625</td>
<td>0.50</td>
</tr>
<tr>
<td>10</td>
<td>0.594</td>
<td>0.13</td>
</tr>
<tr>
<td>11</td>
<td>0.631</td>
<td>0.17</td>
</tr>
<tr>
<td>12</td>
<td>0.577</td>
<td>0.09</td>
</tr>
<tr>
<td>13</td>
<td>0.535</td>
<td>0.02</td>
</tr>
<tr>
<td>14</td>
<td>0.463</td>
<td>0.06</td>
</tr>
<tr>
<td>15</td>
<td>0.680</td>
<td>0.01</td>
</tr>
<tr>
<td>16</td>
<td>0.519</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0.670</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabella 6.1: Correlazioni tra giro frontale medio sinistro e componente 20
Conclusioni

L’obiettivo di questa tesi era quello di studiare la correlazione fra l’attività oscillatoria neuronale in banda alfa e il segnale BOLD in resting state utilizzando un approccio di integrazione di tipo asimmetrico.


L’applicazione di un approccio di tipo asimmetrico per lo studio della correlazione comporta la stima del General Linear Model (GLM), al cui interno vengono inserite informazioni caratteristiche del segnale EEG. Queste vanno a costituire, una volta convolute con la risposta emodinamica, alcuni dei regressori della design matrix del modello. In questa tesi ci si è concentrati sulla banda alfa, considerando massimo e media all’interno del range di frequenze 8-12 Hz. Per la costruzione del regressore sono stati analizzati solamente gli elettrodi occipitali O1 e O2. Questa scelta prende spunto da uno studio effettuato da Laufs et al. (2003) [34] secondo il quale, variando la
combinazione degli elettrodi considerati per l’analisi, i risultati non cambiano. A validare quest’ipotesi c’è un altro studio, sempre condotto da Laufs et al. (2003) [35], che circoscrive l’analisi ai soli elettrodi O1 e O2, sottolineando come il loro utilizzo aumenti la potenza statistica dei risultati.

Inizialmente sono state prese in considerazione anche le altre frequenze e quindi inserite all’interno del GLM come rumore, ma si è deciso di scartare quest’ipotesi perché i risultati non mostravano variazioni rispetto al caso ad una frequenza, scelta supportata anche dall’utilizzo dell’indice di Akaike che non ha discriminato alcun modello. Si è optato quindi per il caso meno complesso, ovvero per il modello con il minor numero di parametri.

Con un’analisi di gruppo è stato poi possibile trovare, all’interno della popolazione di cui il campione in esame si può considerare rappresentativo, quelle regioni in cui la power band time series costruita a partire dal segnale EEG risulta correlata con il segnale BOLD, sia positivamente che negativamente. Nel caso negativo si sono trovati dei risultati già ampiamente confermati in numerosi studi [9] [13] [18] [19] [34] [53], ovvero una correlazione negativa con la regione occipitale. Ci si è quindi orientati verso lo studio delle correlazioni positive, quindi nella ricerca di quelle regioni che si attivano quando aumenta l’attività del ritmo alfa.

Le regioni ricavate con quest’analisi trovano conferma nello studio effettuato da Laufs et al. (2003) [34], in particolare per quanto riguarda le regioni del giro frontale medio sinistro e del giro frontale superiore sinistro - segmento mediale. Sempre in accordo con questo lavoro, non si sono trovate correlazioni positive con il talamo, risultato presente anche in altri studi [45] [53] [57]. Data la concordanza dei risultati con quanto emerso dallo studio di Laufs [34], si è scelto come modello quello che estrae come caratteristica di interesse dal segnale EEG la media in banda alfa.

Da uno studio di correlazione emerge che il segnale estratto dal giro frontale medio sinistro correla significativamente (p<0.05), per la maggior parte dei soggetti analizzati, con la serie temporale associata al network fronto-parietale sinistro, rafforzando ulteriormente lo studio di correlazione
effettuato tra i due segnali in resting state.
Bibliografia


[52] Michel Christoph M., Brandeis Daniel.: *The sources and temporal dynamics of scalp electric fields*.


[73] https://github.com

[74] http://www.neuroworld.it/

[75] http://www.neurology.org/

[76] https://blricrex.hypotheses.org/eeg/pre-processing-for-erps/re-referencing-eeg-data

[77] http://www.qeeg.co.uk/

[78] http://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin

[79] http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC


[83] Ged Ridgway, FMRIB/FIL: *Spatial Preprocessing*

[84] https://miac.unibas.ch/miac/


[88] http://ani.aalto.fi


[94] http://www.fil.ion.ucl.ac.uk/spm/software/spm12/


[97] www.fmrib.ox.ac.uk/fsl

[98] www.fil.ion.ucl.ac.uk/spm/software/spm12

[99] http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT_BBR