Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Boscaro, Federica (2016) "Effetto di un nuovo accelerante (Me-S-H) sulla microstruttura e sulle cinetiche di idratazione del silicato tricalcico del cemento Portland: studio numerico e sperimentale". [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF (Tesi)
4Mb

Abstract

Nowadays, the details of the kinetics of cement hydration and microstructural development, as well as the influence of various additives on such processes, are still under investigation. In this thesis, the effects of the newly developed copper/calcium silicate hydrate accelerating admixture Mapefast Ultra (hereafter Me-S-H, standing for metal-silicate hydrate) on the permeability and mechanical properties of concrete are investigated. In this study, different tricalcium silicate and mortar specimens, with and without Me-S-H, are analysed at different times of hydration by means of numerical and experimental techniques. X-ray powder diffraction (XRPD) and HydratiCA, a new computer model of reaction-diffusion processes on cementitious systems, have provided a qualitative and quantitative analysis and monitoring of kinetics of C3S hydration; X-ray computed micro-tomography (X-μCT) and scanning electron microscopy (SEM) have allowed the monitoring of the microstructure development of cement pastes during hydration and the detailed examination of the interfacial transition zones, respectively. The data show that the new accelerating admixture promotes a faster hydration and nucleation and growth of C-S-H in the pore solution, inducing a decrease of the capillary porosity and permeability due to the increase of the geometrical tortuosity and fraction of disconnected pores.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:Silicato tricalcico, Cemento Portland, Accelerante, Idratazione
Subjects:Area 04 - Scienze della terra > GEO/09 Georisorse minerarie e applicazioni mineralogico- petrografiche per l'ambiente ed i beni culturali
Codice ID:51615
Relatore:Dalconi, Maria Chiara
Correlatore:Valentini, Luca
Data della tesi:11 March 2016
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Adler P.M. & Thovert J.F. (1999) Fractures and Fractures Networks. Kluwer Academic Publishers. Cerca con Google

Allen A.J., Oberthur R.C., Pearson D., Schofield P. & Wilding C.R. (1987) Development of the fine porosity and gel structure of hydrating cement. Philosophical Magazine, B (56), 263-288. Cerca con Google

Andrä H., Combaret N., Dvorkin J., Glatt E., Han J., Kabel M., Keehm Y., Krzikalla F., Lee M., Madonna C., Marsh M., Mukerji T., Saenger E.H., Sain R., Saxena N., Ricker S., Wiegmann A., & Zhan X. (2013) Digital rock physics benchmarks - Part I: Imaging and segmentation. Comput Geosci, 50, 25–32. Cerca con Google

Antoine C., Nyg rd Per Gregersen Ø., Holmstad R., Weitkamp T. & Rau C. (2002) 3D images of paper obtained by phase-contrast X-ray microtomography: image quality and binarisation. Nuclear Instruments and Methods in Physics Research A, 490, 392. Cerca con Google

Aris R. (1978) Mathematical Modeling Techniques. Pitman, London. Cerca con Google

Artioli G. (2007a) Diffrazione da materiali cristallini II: geometrie e componenti strumentali. In: Guagliardi A. & Masciocchi N., Analisi di Materiali Policristallini Mediante Tecniche di Diffrazione. Insubria: Insubria University Press, 2007, 27-38. Cerca con Google

Artioli G. (2007b) Tecniche di affinamento Rietveld. In: Guagliardi A. & Masciocchi N., Analisi di Materiali Policristallini Mediante Tecniche di Diffrazione. Insubria: Insubria University Press, 2007, 120-130. Cerca con Google

Artioli G., Cerulli T., Cruciani G., Dalconi M.C., Ferrari G., Parisatto M., Rack A. & Tucoulou R. (2010) X-ray diffraction microtomography (XRD-CT), a novel tool for non-invasive mapping of phase development in cement materials. Anal Bioanal Chem, 397, 2131-2136. Cerca con Google

Artioli G., Valentini L., Dalconi M.C., Parisatto M., Voltolini M., Russo V. & Ferrari G. (2014) Imaging of nano-seeded nucleation in cement pastes by X-ray diffraction tomography. Int. J. Mater. Res., 105 (7), 628-631. Cerca con Google

Badger S.R., Tikalsky P.J. & Scheetz B.E. (2002) Increased Durability Through Nano-Scale Seeding in Portland Cement. Draft Paper for Publication to Transportation Research Board. Cerca con Google

Banhart J. (2008) Advanced Tomographic Methods in Materials Research and Engineering, Oxford University Press. Cerca con Google

Barcherini M. (2013) Idratazione del silicato tricalcico (C3S) del cemento Portland: studio mediante diffrazione di raggi X in situ. Tesi di Laurea Magistrale in Scienza dei Materiali. Cerca con Google

Bentz D.P. (2005) CEMHYD3D: A Three-dimensional Cement Hydration and Microstructure Development Modeling Package, Version 3.0, NISTIR 7232, U.S. Department of Commerce. Cerca con Google

Bentz D.P. & Garboczi E.J. (1991) A digitized simulation model for microstructural development., Ceram. Trans., 16, 211-226. Cerca con Google

Bishnoi S. & Scrivener K.L. (2009) ic: a new platform for modelling the hydration of cements. Cem. Concr. Res., 39, 266-274. Cerca con Google

Boin M. & Haibel A. (2006) Compensation of ring artefacts in synchrotron tomographic images. Optics Express, 14, 12071. Cerca con Google

Bullard J.W. (2007a) Approximate rate constants for nonideal diffusion and their application in a stochastic model. J. Phys. Chem., A (111), 2084-2092. Cerca con Google

Bullard J.W. (2007b) A three-dimensional microstructural model of reactions and transport in aqueous mineral systems. Modell. Simul. Mater. Sci. Eng., 15, 711-738. Cerca con Google

Bullard J.W. (2008) A Determination of Hydration Mechanisms for Tricalcium Silicate Using a Kinetic Cellular Automaton Model. J. Am. Ceram. Soc., 91 (7), 2088-2097. Cerca con Google

Bullard J.W. & Flatt R.J. (2010) New Insights Into the Effect of Calcium Hydroxide Precipitation on yhe Kinetics of Tricalcium Silicate Hydration. J. Am. Ceram. Soc., 93, 1894-1903. Cerca con Google

Bullard J.W., Jennings H.M., Livingston R.A., Nonat A., Scherer G.W., Schweitzer J.S., Scrivener K.L. & Thomas J.J. (2011) Mechanisms of cement hydration. Cement and Concret Research, 41, 1208-1223. Cerca con Google

Bullard J.W., Scherer G.W. & Thomas J.J. (2015) Time dependent driving forces and the kinetics of tricalcium silicate hydration. Cement and Condret Research, 74, 26-34. Cerca con Google

Canton P. (2007) Tecniche di analisi di materiali semi-cristallini. In: Guagliardi A. & Masciocchi N., Analisi di Materiali Policristallini Mediante Tecniche di Diffrazione. Insubria: Insubria University Press, 2007, 175-185. Cerca con Google

Cheary R.W., Coelho A.A. & Cline J.P. (2004) Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers. J. Res. Natl. Stand. Technol., 109, 1-25. Cerca con Google

Cheung J., Jeknavorian A., Roberts L. & Silva D. (2011) Impact of admixtures on the hydration kinetics of Portland cement. Cem. Concr. Res., 41, 1289-1309. Cerca con Google

Clennell M.B. (1997) Tortuosity: a guide through the maze. In: Lovell M.A. & Harvey P.K. editors. Developments in Petrophysics, Vol. 122, London: Geological Society Special Publication, 1997, 299-344. Cerca con Google

Collepardi M. (2006) Il nuovo calcestruzzo. 4 ed. Villorba: Grafiche Tintoretto. Cerca con Google

Cruciani G. & Guagliardi A. (2007) Analisi quantitativa: metodi tradizionali e Rietveld. In: Guagliardi A. & Masciocchi N., Analisi di Materiali Policristallini Mediante Tecniche di Diffrazione. Insubria: Insubria University Press, 2007, 146-161. Cerca con Google

Dapiaggi M. (2007) Analisi qualitativa. In: Guagliardi A. & Masciocchi N., Analisi di Materiali Policristallini Mediante Tecniche di Diffrazione. Insubria: Insubria University Press, 2007, 139-145. Cerca con Google

Davis, R. & Elliott, J.C. (1997) X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image. Nuclear Instruments and Methods in Physics Research, A (394), 157-162. Cerca con Google

Delaney C.F.G. & Finch E.C. (1992) Radiation detectors, physical principles and applications. Clarendon Press. Cerca con Google

Diamond S. (2004) The microstructure of cement paste and concrete – a visual primer. Cement & Concrete Composites, 26, 919-933. Cerca con Google

Dinnebier R.E.& Billinge S.J.L. (2008) Powder Diffraction: Theory and Practice. edited by Dinnebier R.E., Billinge S.J.L., Cambridge, The Royal Society of Chemistry Publishing, 2008. Cerca con Google

EN 197-1 (2011) Cemento – Parte 1: Composizione, specificazioni e criteri di conformità per cementi comuni. Cerca con Google

Feldkamp L.A., Davis L.C. & Kress J.W. (1984) Practical cone-beam algorithm. J. Opt. Soc. Am., 1 (6), 612-619. Cerca con Google

Feldman R.F. & Sereda P.J. (1968) A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Matériaux et Construct, 1, 509-520. Cerca con Google

Feldman R.F. & Sereda P.J. (1970) A new model for hydrated Portland cement paste and its practical implications. Eng. J. Can., 53, 53-59. Cerca con Google

Ferrari G., Russo V., Salvioni D., Surico F., Artioli G., Dalconi M.C., Secco M. & Valentini L. (2015) The influence of a new metal silicate hydrate accelerating admixture on concrete strength and durability. Ottawa Conference. Cerca con Google

Garboczi E.J. & Bentz D.P. (1991) Fundamental Computer Simulation Models for Cement-based Materials. In: Skalny J. & Mindess S. (Eds.) Materials Science of Concrete II, American Ceramic Society, Westerville, OH, 249-273. Cerca con Google

Gartner E.M. & Macphee D.E. (2011) A physico-chemical basis for novel cementitious binders. Cem. Concr. Res., 41, 736-749. Cerca con Google

Gartner E.M., Young J.F., Damidot D.A. & Jawed I. (2002) Hudration of Portland cement. In: Bensted J. & Barnes P. (Eds.), Structure and performance of cements, Spon Press, New York. Cerca con Google

Gielen D. & Tanaka K. (2006) Energy efficiency and CO2 emission reduction potentials and policies in the cement industry: towards a plan of action. Proceedings of the IEA/WBCSD Workshop on Energy Efficiency and CO2 Emission Reduction Potentials and Policies in the Cement Industry, Paris, 4-5 September 2006. International Energy Agency, Paris, 2007. Cerca con Google

Glasbey C.A. (1993) An analysis of histogram-based thresholding algorithms. CVGIP: Graphical Models and Image Processing, 55, 532-537. Cerca con Google

Goldstein J.I., Newbury D.E, Echlin P., Joy D.C., Fiori C. & Lifshin E. (1981) Scanning Electron Microscopy and X-Ray Microanalysis. A Text for Biologists, Material Scientists, and Geologists. Plenum Press. Cerca con Google

Gommes C.J., Bons A-J., Blacher S., Dunsmuir J.H. & Tsou A.H. (2009) Practical Methods for Measuring the Tortuosity of Porous Materials from Binary or Gray-Tone Tomographic Reconstructions. AIChE J., 55 (8), 2000-2012. Cerca con Google

Gozzo F., Cervellino A., Leoni M., Scardi P., Bergamaschi A. & Schmitt B. (2010) Instrumental profile of MYTHEN detector in Debye-Scherrer geometry. Z. Kristallogr, 225, 616-624. Cerca con Google

Grangeon S., Claret F., Linard Y. & Chiaberge C. (2013) X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Cryst, B (69), 465-476. Cerca con Google

Guagliardi A. (2007) Tecniche di “Whole Powder Profile Fitting”. In: Guagliardi A. & Masciocchi N., Analisi di Materiali Policristallini Mediante Tecniche di Diffrazione. Insubria: Insubria University Press, 2007, 67-78. Cerca con Google

Guéguen Y. & Palciauskas V. (1994) Introduction to The Physics of Rocks. Princeton University Press. Princeton, New Jersey. Cerca con Google

Habert G., Billard C., Rossi P., Chen C. & Roussel N. (2010) Cement production technology improvement compared to factor 4 objectives. Cement and Concrete Research, 40, 820-826. Cerca con Google

Herman G.T. (1980) Image Reconstruction from Projections: Fundamentals of Computerized Tomography. Academic Press, New York. Cerca con Google

Hewlett P.C. (Ed.) (2007) Lea‟s chemistry of cement and concrete (fourth edition). Elsevier, Amsterdam (Netherlands). Cerca con Google

Huang L-K. & Wang. M-J.J. (1995) Image thresholding by minimizing the measures of fuzziness. Pattern Recognition Scociety, 28 (1), 41-51. Cerca con Google

Jennings H.M. (2008) Refinements to colloid model of C-S-H in cement: CM-II. Cement and Concret Research, 38, 275-289. Cerca con Google

Klein C. (2004) Mineralogia. Zanichelli, Bologna. Cerca con Google

Klug H.P. & Alexander L.E. (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed, Wiley, New York. Cerca con Google

Knoll G.F. (1989) Radiation detection and measurement. John Wiley and Sons Inc. New York. Cerca con Google

Land G. & Stephan D. (2012) The influence of nano-silica on the hydration of ordinary Portland cement. J Mater Sci, 47, 1011-1017. Cerca con Google

Lawes G. (1987) Scanning Electron Microscopy and X-Ray Microanalysis. John Wiley and Sons Inc. New York. Cerca con Google

Lutterotti L. (2007) Tessitura: teoria ed applicazioni all‟analisi Rietveld. In: Guagliardi A. & Masciocchi N., Analisi di Materiali Policristallini Mediante Tecniche di Diffrazione. Insubria: Insubria University Press, 2007, 162-174. Cerca con Google

MacLaren C. & White M.A. (2003) Cement: Its Chemistry and Properties. J Chem Ed, 80 (6), 623-635. Cerca con Google

McCusker L.B., Von Dreele R.B., Cox D.E., Louёr D. & Scardi P. (1999) Rietveld refinement guidelines. J. Appl. Cryst, 32, 36-50. Cerca con Google

Milanesio M. (2007) Diffrazione da materiali policristallini I: principi e campi di applicazione. In: Guagliardi A. & Masciocchi N., Analisi di Materiali Policristallini Mediante Tecniche di Diffrazione. Insubria: Insubria University Press, 2007, 3-26. Cerca con Google

Mills R. & Lobo V.M.M. (1989) Self-Diffusion in Electrolyte Solutions. Elsevier, Amsterdam. Cerca con Google

Mollah M.Y.A., Adams W.J., Schennach R. & Cocke D.L. (2000) A review of cement-superplasticizer interactions and their models. Advances in Cement Research, 12 (4), 153-161. Cerca con Google

Monaco H.L. & Artioli G. (2002) Experimental methods in X-ray and neutron crystallography. In: C. Giacovazzo ed. Fundamentals of crystallography, 2nd edition, Oxford Science Publications, 295-411. Cerca con Google

Natterer F. (1986) The mathematics of computerized tomography. Teubner, Stuttgart. Cerca con Google

Nicoleau L. (2013) The acceleration of cement hydration by seeding: influence of the cement mineralogy. ZKG International, 1, 40-49. Cerca con Google

Nicoleau L., Nonat A. & Perrey D. (2013) The di- and tricalcium silicate dissolutions. Cem. Concr. Res., 47, 14-30. Cerca con Google

Nonat A. (2004) The structure and stoichiometry of C-S-H. Cem. Concr. Res., 34, 1521-1528. Cerca con Google

Noiriel C. (2005) Contribution à la détermination expérimentale et à la modélisation des différents processus contrôlant l‟évolution géochimique, structurale et hydrodynamique des roches fi ssurées carbonatées. PhD thesis, Ecole des Mines de Paris. Cerca con Google

Noiriel C. (2015) Resolving Time-dependent Evolution of Pore-Scale Structure, Permeability and Reactivity using X-ray Microtomography. Mineral Society of America, 80, 247-285. Cerca con Google

Parisatto M. (2008) Applications of X-ray tomographic techniques to the study of cement-based materials. Scuola di Dottorato di Ricerca in Scienze della Terra. Cerca con Google

Parisatto M., Dalconi M.C., Valentini L., Artioli G., Rack A., Tucoulou R., Cruciani G. & Ferrari G. (2015) Examining microstructural evolution of Portland cements by in-situ synchrotron micro-tomography. J Mater Sci, 50, 1805-1817. Cerca con Google

Pecharsky V.K. & Zavalij P.Y. (2009) Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer. Cerca con Google

Press H., Fannery B.P., Teukolsky A.A. & Vetterling W.T. (1992) Numerical Recipes. Cambridge University Press. Cerca con Google

Prokopski G. & Halbiniak J. (2000) Interfacial transition zone in cementitious materials. Cement and Concret Research, 30, 579-583. Cerca con Google

Raki L., Beaudoin J.J., Alizadeth R., Makar J.M. & Sato T. (2010) Cement and concrete nanoscience and nanotechnology. Materials, 3, 918-942. Cerca con Google

Raven C. (1998) Numerical removal of ring artifacts in microtomography. Review of Scientific Instruments, 69, 2978. Cerca con Google

Richardson I.G. (1999) The nature of C-S-H in hardened cements. Cem. Concr. Res., 29, 1131-1147. Cerca con Google

Ridi F., Fratini E. & Baglioni P. (2011) Cement: A two thousand year old nano-colloid. Journal of Colloid and Interface Science, 357, 255-264. Cerca con Google

Satterfield C.N. (1970) Mass Transfer in Heterogeneus Catalysis. Cambridge: MIT Press. Cerca con Google

Scardi P. (2007) Il profilo di diffrazione di polveri. In: Guagliardi A. & Masciocchi N., Analisi di Materiali Policristallini Mediante Tecniche di Diffrazione. Insubria: Insubria University Press, 2007, 54-66. Cerca con Google

Scrivener K.L. (1989) The microstructure of concrete. In: Skalny J., editor. Materials Science of Concrete, vol. 1. Westerfield, OH: American Ceramic Society, 127-162. Cerca con Google

Scrivener K.L. (2004) Backscattered electron imaging of cementitious microstructures: understanding and quantification. Cement & Concrete Composites, 26, 935-945. Cerca con Google

Scrivener K.L., Crumbie A.K. & Laugesen P. (2004) The Interfacial Transition Zones (ITZ) Between Cement Paste and Aggregate in Concrete. Interface Science, 12, 411-421. Cerca con Google

Sijbers J. & Postnov A. (2004) Reduction of ring artifacts in high resolution micro-CT reconstructions. Physics in Medicine and Biology, 49, 247. Cerca con Google

Skalny J. & Maycock J.N. (1975) Mechanisms of acceleration by calcium chloride: a review. ASTM J. Test. Eval., 3, 303-311. Cerca con Google

SkyScan (2005) SkyScan 1172, Desktop X-ray microtomograph, Instruction Manual. SkyScan N.V. Vluchtenburgstraat 3C 2630 - Aartselaar Belgium. Cerca con Google

Streitwolf H.W. (1959) Zur Theorie der Sekundärelektronenemission von Metallen. Der Anregungsprozess. Ann Phys, (Leipzig), 3, 183. Cerca con Google

Stutzman P. (2004) Scanning electron microscopy imaging of hydraulic cement microstructure. Cement & Concrete Composites, 26, 957-966. Cerca con Google

Taylor H.F.W. (1997) Cement chemistry. 2nd edition. Thomas Teldford Publishing. Cerca con Google

Thomas J.J., Biernacki J.J., Bullard J.W., Bishnoi S., Dolado J.S., Scherer G.W. & Luttge A. (2011) Modeling and simulation of cement hydration kinetics and microstructure development. Cement and Concret Research, 41, 1257-1278. Cerca con Google

Thomas J.J., Jennings H.M. & Chen J.J. (2009) Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement. J. Phys. Chem., 113 (11), 4327-4334. Cerca con Google

UNI EN 196-1 (2005) Metodi di prova dei cementi – Parte 1: Determinazione delle resistenze meccaniche. Cerca con Google

Valentini L. (2013) RieCalc: quantitative phase analysis of hydrating cement pastes. J. Appl. Cryst., 46, 1-4. Cerca con Google

Valentini L., Dalconi M.C., Parisatto M., Cruciani G. & Artioli G. (2011) Towards three-dimensional quantitative reconstruction of cement microstructure by X-ray diffraction microtomography. J. Appl. Cryst., 44, 272-280. Cerca con Google

Van Breugel K. (1995) Numerical simulation of hydration and microstructural development in hardening cement paste (II): applications. Cement and Concret Research, 25, 522-530. Cerca con Google

Van Oss H.G. (2015) Cement. U.S. Geological Survey, Mineral Commodity Summaries, 38-39. Cerca con Google

Voltolini L., Dalconi M.C., Artioli G., Parisatto M., Valentini L., Russo V., Bonnin A. & Tucoulou R. (2013) Understanding cement hydration at the microscale: new opportunities from „pencil-beam‟ synchrotron X-ray diffraction tomography. J Appl Crystallogr, 46 (1), 142-152. Cerca con Google

Walsh D., Otooni M.A., Taylor M.E. Jr & Marcinkowski M.J. (1974) Study of Portland cement fracture surfaces by scanning electron microscopy techniques. J Mater Sci, 9, 423-429. Cerca con Google

Walther J. (2008) Essentials of Geochemistry. Jones & Bartlett Learning. Cerca con Google

Whitfield P.S., Davidson I.J., Mitchell L.D., Wilson S.A. & Mills S.J. (2010) Problem solving with the TOPAS macro language: corrections and constraints in simulated annealing and Rietveld refinement. Materials Science Forum, 651, 11-25. Cerca con Google

Young J.F. (1972) A review of the mechanisms of set-retardation in Portland cement pastes containing organic admixtures. Cement and Concret Research, 2 (4), 415-433. Cerca con Google

Young R.A. (1993) The Rietveld Method. Oxford University Press. Cerca con Google

Zevin L.S. & Kimmel G. (1995) Quantitative X-Ray Diffractometry, edited by Murenik I., Springer-Verlag, New York, Inc. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record