Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Visentin, Stefano (2016) Significato biostratigrafico e biocronologico delle associazioni a nannofossili calcarei durante l'Optimum climatico dell'Eocene Medio: risultati dal Site ODP 1260 (Demerara Rise, Atlantico Equatoriale). [Magistrali biennali]

Full text disponibile come:

PDF (Tesi)


This Master degree thesis aims to perform biostratigraphic and biocronological results based on chages observed in calcareous nannofossils assemblages across the Middle Eocene Climatic Optimum (MECO). The MECO is a global and relatively long-lasting (ca. 500 kyr) warming event, occurred at about 40 Ma (Sexton et al. 2006; Bohaty et al., 2009). Since they enter in the geological in the Late Triassic, calcareous nannoplankton show high abundances, wide biogeographic distributions and high rates of evolution. These characteristics make them one of the most powerful tools for dating marine sedimentary successions. The intergration with other chronological disciplines, such as magnetostratigraphy and cyclostratigraphy, allows the construction of reliable age models. As a side result, absolute dating techniques provide estimates for the absolute ages of biohorizons based on calcareous nannofossil bioevents, which can be used either to evaluate the reliability of any single biohorizons or to use the calibrated ages when absolute chronologic data are not available. Sediments studied here were recovered during ODP Leg 207, in particular, the material comes from ODP Site 1260 (Hole A,B). The main scientific objectives of this expedition were to construct a depth transect of coring sites distributed down the north flank of Demerara Rise (western equatorial Atlantic), in order to better constrain the Cenozoic history of deep-water circulation and chemistry. A high resolution calcareous nannofossil biostratigraphy is provided and this results in precise biostratigraphic classification of the studied interval at ODP Site 1260. The investigated succession can be ascribed to Zone NP16 (Martini, 1971) or Subzone CP14a (Okada & Bukry, 1980). According to the biozonation of Agnini et al. (2014), the succession belongs to Zone CNE14. Calcareous nannofossil biohorizons recognized during this study are calibrated using the two different age models available for the study section (Edgar et al., 2010; Westerhold & Röhl, 2013). Biochronological results are then comprehensevely discussed in view of literature data and published stable oxygen and carbon isotope profiles. At ODP Site 1260, biostratigraphic results are generally consistent with data available from other areas and depositional setting (Fornaciari et al., 2010; Agnini et al., 2014). Overall, these results confirm the validity of the additional events recently proposed for the middle Eocene (Fornaciari et al., 2010; Agnini et al., 2014), though some possible discrepancies are suggested for the Base of D. bisectus if the age models available are used. The study interval spans the MECO, which is a hyperthermal event characterized by a prominent shoaling of the CCD documented by the carbonate dissolution of sediments. Data gathered for the equatorial Atlantic at ODP Site 1260 and 929 suggest that deeper ODP Site 929 is much affected by dissolution than the shallower ODP Site 1260, where processes of dissolution are less evident. The integration of these data with others coming from different areas and depositional settings could serve to depict the history of the global CCD evolution across the MECO.

Item Type:Magistrali biennali
Codice ID:51633
Relatore:Agnini, Claudia
Data della tesi:11 March 2016
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Agnini, C., Costa, A., 2014. Calcareous nannofossil changes across the Middle Eocene Climatic Optimum from IODP Site U1410 (NW Atlantic): Preliminary results.Soc. Geol. Italiana, vol. 31/2014, pp.7-8. Cerca con Google

Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., Rio, D., 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low to middle latitudes. Newsletters on Stratigraphy, vol.47/2, pp.131-181. Cerca con Google

Agnini, C., Fornaciari, E., Giusberti, L., Grandesso, P., Lancia, L., Luciani, V., Muttoni, G., Pälike, H., Rio, D., Spofforth, D.J.A., Stefani, C., 2011. Integrated biomagnetostratigraphy of Alano section (NE Italy): a proposal for defining the middle-late Eocene boundary. Geological Society of America Bullettin, vol. 123, pp. 841-872. Cerca con Google

Agnini, C., Menini, A., 2015. Biostratigraphic study and paleocological response of the calcareous nannofossil assemblages acrosse the middle Eocene climatic optimum (MECO) at ODP Site 929 (Ceara Rise, equatorial Atlantic). Soc. Geol. Italiana, vol. 31/2014, pp.7-8. Cerca con Google

Aubry, M.-P., 1998. Early Paleogene calcareous nannoplankton evolution: a tale of climatic amelioration. In: Aubry, M.-P., Lucas, S., Berggren, W. (Eds.), Late Paleocene–early Eocene Climatic and Biotic Events in the Marine and Terrestrial Record. Columbia University Press, pp. 158-203. Cerca con Google

Archer, D., Kheshgi, H., Maier-Reimer, E., 1997. Multiple timescales for neutralization of fossil fuel CO2. Geophys. Res. Lett., vol. 24(4), pp. 405-408. Cerca con Google

Backman, J., 1987. Quantitative calcareous nannofossil biochronology of middle Eocene through early Oligocene sediments from DSDP Sites 522 and 523.Abhandlungen Geologischen Bundesanstalt, vol, 39, pp.21-31. Cerca con Google

Backman, J., Raffi, I., Rio, D., Fornaciari, E., Pälike, H., 2012: Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy 45(3), pp. 221-244. Cerca con Google

Berggren, W. A., Kent, D. V., Swisher III, C. C. & Aubry, M. P., 1995. A revised Cenozoic Geochronology and chronostratigraphy. Sepm, No. 54, pp. 129-212. Cerca con Google

Bohaty, S. M., Zachos, J.C., Florindo, F., Delaney, M.L., 2009. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography, vol. 24, PA2207. Cerca con Google

Bohaty, S. M., Zachos, J.C., 2003. A significant Southern Ocean warming event in the late middle Eocene. Geology. v. 31, p. 1017-1020. Cerca con Google

Bown, P.R., Lees, J.A. & Young, J.R. 2004. Calcareous nannofossil evolution and diversity through time. In: H.R. Thierstein & J.R. Young (Eds). Coccolithophores: From Molecular processes to global impact. SpringerVerlag: 481- 508. Cerca con Google

Cande, S.C., Kent, D.V., 1995. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, vol. 100 (B4, pp.6093-6093). Cerca con Google

Dickens, G.R., 2000. Methane oxidation during the late Paleocene thermal maximum. Bull.Sco. Geol. Fr., vol. 171 (1), pp.37-49. Cerca con Google

Edgar, K.M., Wilson, P.A., Sexton, P.F., Gibbs S.J., Roberts A.P., Norris, R.D, 2010. New biostratigraphic, magnetostratigraphic, and isotopic insights into the Middle Eocene Climatic Optimumin low latitudes. Paleogeography, paleoclimatology, paleoecology, 297 (2010) 670-672. Cerca con Google

Edgar, K.M., Wilson, P.A., Sexton, P.F, Suganuma, Y., 2007. No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature, vol. 448, pp.908-911. Cerca con Google

Fornaciari, E., Agnini, C., Catanzariti, R., Rio, D., Bolla, E. M., Valvasoni, E.,2010. Mid-latitude calcareous nannofossil biostratigraphy, biochronology and evolution across the middle to late Eocene transition. Stratigraphy, vol.7, pp. 229-264. Cerca con Google

Jovane, L., Florindo, F., Coccioni, R., Dinarès-Turell, Marsili, A., Monechi, S.,Roberts, A. P., Sprovieri, M., 2007. The middle Eocene climatic optimum event in the Contessa Highway section, Umbrian Appennines, Italy. Geological Society Am. Bull., vol. 119 (3-4), pp. 413-427. Cerca con Google

Kerrick, D., Caldeira, K., 1993, Paleoatmospheric consequences of CO2 released during early Cenozoic regional metamorphism in the Tethyan orogen. Chem. Geol., vol. 108, pp. 201-230. Cerca con Google

Lourens, L. J., Sluijs A., Kroon, D., Zachos, J. C., Thomas, E., Rohl, J., Bowles, J., Raffi, I., 2005. Astronomical pacing of late Paleocene to early Eocene global warming events. Nature, vol. 435, pp. 1083-1087. Cerca con Google

Lyle, M., Lyle, A. O., Backman, J., Tripati, A., 2005. Biogenic sedimentation in the Eocene in equatorial Pacific: The stuttering greenhouse and Eocene carbonate compensation depth. Proceedings of the Deep Sea Drilling Project, Scientific Results, 199, pp.1-35. Cerca con Google

Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplakton zonation. In: Proc. II Planktonic Conf. Roma, pp. 739-785. Cerca con Google

Norris, R.D., Wilson, P. A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Kumar Ghosh, A., Hollis, C.J., Hull, Cerca con Google

P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, Cerca con Google

H.D., Sexton, P., Takagi, H., Kirtland Turner, S., Whiteside, J.H., Yamaguchi, T., Yamamoto, Y., 2012. Paleogene Newfoundland sediment drifts. IODP Prel. Rept., 342. Cerca con Google

Okada, H. & Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphy zonation (Bukry, 1973, 1975). Marine Micropaleontology, vol.51, pp.321-32. Cerca con Google

Pälike,H., Lyle M.W., Nishi, H., Raffi, I., et al., 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, vol. 488, pp. 609-614. Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H., Lear, C. H., Shackleton, N.J., Tripati, A.K., Wade, B. S., (2006): The Heartbeat of theO ligocene Climate System. Science, 314(5807), 1894-1898. Cerca con Google

Pagani,Mark; Pedentchouk, Nikolai; Huber, Matthew; Sluijs, Appy; Schouten, Stefan; Brinkhuis, Henk; Sinninghe Damsté, Jaap S; Dickens, Gerald Roy; Expedition 302 Scientists (2006): Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature, 442(10), 671-675. Cerca con Google

Perch-Nielsen, K., 1985. Cenozoic calcareous nannoplankton. In: Bolli, H.M., Saunders, J. B., Perch-Nielsen, K., (Eds.), Plankton Stratigraphy, Cambridge University Press, pp. 427-554. Cerca con Google

Peterson, L.C., Backman, J., 1990. Late Cenozoic carbonate accumulation and the history of the carbonate compensation depth in the western equatorial Indian Ocean. Proocedings of the Deep Sea Drilling Project, Scientific Results, 115, pp.467-507. Cerca con Google

Rea, D.K.; Lyle M.W. Paleogene calcite compensation depth in the eastern subtropical Pacific: Answers and questions Volume 20, Issue 1 March 2005. Cerca con Google

Ruddiman, W.F., 2007. Earth’s climate, Past and Future (2nd edition). Eds. W. H. Freeman and Company, New York. Cerca con Google

Salvador, A., 1994. International Stratigraphic Guide. 2 nd ed. I.U.G.S. & Geol. Soc. Amer., Boulder, Colo., pp.214. Cerca con Google

Sexton, P.F., Wilson, P.A., Norris, R.D., 2006. Testing the Cenozoic multisite composite δ18O and δ13C curves: New monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207). Paleoceanography. Vol. 21, PA2019. Cerca con Google

Spofforth, D.J.A., Agnini, C., Pälike, H., Rio, D., Fornaciari, E., Giusberti, L., Luciani, V., Lanci, L., Muttoni, G., 2010. Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys. Paleoceanography, vol.25, PA3210. Cerca con Google

Suganuma, Y.; Ogg, J.G. . Campanian Through Eocene Magnetostratigraphy of sites 1257-1261, ODP Leg 207, Demerara rise (Western equatorial Atlantic). Mosher, Cerca con Google

D.C., Erbacher, J., and Malone, M.J. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results Volume 207 Cerca con Google

Thomas, E., Zachos, J.C., Bralower, T.J., 2000. Deep sea acidification on a warm Earth. In: Warm Climates in Earth History, Eds., Huber, MacLeod and Wing, pp. 132-160, Cambridge University Press, New York. Cerca con Google

Toffanin, F., Agnini, C., Fornaciari, E., Rio, D., Giusberti, L., Luciani, V., Spofforth, D. J.A., Pälike H., 2011. Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum: Clues from the central-western Tethys (Alano section, NE Italy). Marine Micropaleontology, 81:22-31. Cerca con Google

Toffanin, F., Agnini, C., Rio, D., Acton, G., Westerhold, T., 2013. Middle Eocene to early Oligocene calcareous nannofossil biostratigraphy at IODP Site U1333 (equatorial Pacific). Micropaleontology, vol. 59, pp.1-14. Cerca con Google

Tripani, A., Backman, J., Elderfield, H., Ferretti, P., 2005. Eocene bipolar glaciation associated with global carbon cycle changes. Nature vol. 346, Number 7049, pp. 341-346. Cerca con Google

Villa, G., Fioroni, C., Pea, L., Bohaty, S.M., Persico, D., 2008. Middle-Eocene-late Oligocene climate variability: Calcareous nannofossil at Kerguelen Plateau, Site 748. Marine Micropaleontology, vol. 69(2), pp. 173-192. Cerca con Google

Wade, B.S., Pearson, P.N.,Bergreen, W.A., Pälike,H., 2011. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Science Reviews, vol. 104, pp. 111-142. Cerca con Google

Wei, W., Wise JR, S.W., 1990. Biogeographic gradients of middle Eocene Oligocene calcareous nannoplankton in the South Atlantic Ocean. Paleogeography, Paleoclimatology, Paleoecology, vol. 79, pp. 29-61. Cerca con Google

Westerhold, T., Reohl, U. Orbital pacing of Eocene climate during the Middle Eocene Climate Optimum and the chron C19r event: Missing link found in the tropical western Atlantic.(2013) vol 14. pp 4811-4825. Cerca con Google

Zachos, J.C:, Dickens, G.R., Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse warming and carbon - cycle dynamics. Nature, vol. 451, pp. 279-283. Cerca con Google

Zachos, J.C., Kroon, D., Blum, P. et al., 2004, Early Cenozoic Extreme Climates: The Walvis Ridgge Transect. Prooceedings of the Ocean Drilling Program, Initial Report. Volume 208: College Station TX: Ocean Drilling Program, 112 pp. Cerca con Google

Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, Rhythms and Aberrations in Global Climate 65 Ma to Present. Paleocl. Review, Science, vol. 292, pp. 686-693. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record