

¦bL±9w{L¢!Ω 59D[L {¢¦5L 5L t!5h±!

Corso di Laurea Magistrale in Ingegneria Elettronica

a.a. 2015/2016

Release and Verification of an Operating

System for Testing e-Flash on

Microcontrollers for Automotive

Applications based on Multicore

Architecture

Studente: Claudio Menin

Matricola: 1065593

Relatore: Ph.D. Prof. Andrea Cester

Correlatore Aziendale: Ing. Angelo De Poli

Tutor Aziendale: Ph.D. Ing. Giambattista Carnevale

Padova, 11 aprile 2016

Abstract

The global automotive electronics industries are constantly growing as the cars produced

contain an increasing number of electronic devices for active assistance to driving, safety

controls, energy efficiency, passenger comfort and entertainment. Some future goals that

we can mention are autonomous driving, gesture controls, 360° view parking assistance and

so on. Safety is the keyword for these automotive systems and means to have electronic

components high reliability. Infineon microcontroller division at Padua works to improve

reliability and guarantee the quality of microcontroller flash memories. These last are

actually tested by a firmware (single-core operating system Test-Application) called testware

that aims to verify their proper functionalities through a long set of tests. The cost of these,

on e-Flash memories, is high and highly dependent on the time employed in the tests. Due

to the increase of number of electronic devices in cars, the size of flash memories increase

more and more and then the company needs faster solutions to fully test these memories.

Table of Contents
Introduction

1 Context Analysis, Company Methodologies and Tools .. 1

1.1 Infineon brief Presentation ... 1

1.2 FTOS ... 1

1.3 /ƻƳǇŀƴȅΩǎ aŜǘƘƻŘƻƭƻƎȅ ƻŦ 5ŜǾŜƭƻǇƳŜƴǘ ... 3

1.4 Testware Development Process .. 5

1.5 Tools for Operating System Release and Testing .. 6

1.5.1 TASKING .. 6

1.5.2 UDE ... 7

1.5.3 JAZZ ... 7

2 Flash Memories .. 9

2.1 Memories Introduction ... 9

2.2 Single Flash Cell ... 10

2.3 Flash Memory Architecture ... 13

2.4 Flash Memory Defects and Tests... 15

3 System on Chip Architecture .. 20

3.1 Internal Buses .. 21

3.2 On-Chip Debug Controller ... 22

3.3 MMU .. 23

3.4 ¢Ǌƛ/ƻǊŜϰ /ƻǊŜ !ǊŎƘƛǘŜŎǘǳǊŜ hǾŜǊǾƛŜǿ .. 26

3.5 Context Management System ... 29

3.6 System Timer and Interrupts Management .. 31

4 Operating System ... 32

4.1 Why a Multi-core/Multi-task Functional Test Operating System? 32

4.2 Scheduler Module.. 36

4.3 Multi-core Verify and Iterator Module .. 39

4.4 Test Results Merging ... 42

5 Operating System Release ... 44

5.1 Synchronization ... 46

5.1.1 Mutex ... 46

5.1.2 Alignment Function .. 55

5.2 Code Cloning .. 63

5.2.1 The C build process .. 64

5.2.2 Code Cloning Requirements ... 68

5.2.3 Feasibility Study .. 68

5.2.4 Reverse Engineering for Fixing Problem .. 74

5.3 Multi-Core vs Single-Core Measurements .. 76

6 Scheduler Characterization .. 84

6.1 Measurements Results .. 89

6.2 Code Analysis ... 91

6.3 A New Concept for the Aligning Function ... 102

6.4 New Aligning Function Implementation .. 104

7 Conclusions ... 111

7.1 Next Steps .. 112

Appendix A ... 114

Appendix B ... 117

Bibliography

Introduction

The microcontroller-team challenge is to realize a fast method for testing e-Flash memories.

The initial idea was a single-core Functional Test Operating System (FTOS) that checks

autonomously with various tests the memory reliability. The increase of memory banks that

must be analyzed lead to the idea of designing a multi-core multi-task FTOS, to decrease as

much as possible the flash memory test time with parallel analysis and maximize the

operating system throughput. Thanks to the studies of several thesis students and the

determination of the MC team of Infineon Development Center in Padua we arrived today in

a first implementation of this multi-core multi-task operating system.

The aims of the thesis are the new operating system release and the verification of multi-

core and multi-task modes.

This thesis is divided into seven sections: first chapter focuses on the introduction to the

working context explaining why we adopted an operating system to test the microcontroller

flash memory, the company project development approach and the tools used in the

analysis. The second, the third and the fourth chapters give a brief overview of the flash

memories architecture, the microcontroller architecture and the operating system structure.

These informations are then used in the next chapters: the fifth chapter focuses on my

contribution to the operating system release with the implementation and the verification of

new synchronization functions and the solution to the code cloning problem; at the end of

the chapter there is the multi-core verification. The sixth chapter explains the multi-task

analysis performed and proposes a solution to fix an issue found in the multi-task

verification. The last chapter recaps the obtained results and lists the project next steps.

Context Analysis, Company Methodologies and Tools | Page 1

1 Context Analysis, Company Methodologies and Tools

1.1 Infineon brief Presentation

The work presented in this brief document has been developed at the Infineon Technologies

Development Center in Padua. Infineon Technologies is a German semiconductor

manufacturer with headquarter in Munich founded in 1999 with more than 36,000

employees worldwide (as of Sep. 2015). Infineon focus areas are:

¶ Automotive (ATV)

¶ Industrial Power Control (IPC)

¶ Power Management & Multimarket (PMM)

¶ Chip Card & Security (CCS)

Infineon automotive market covers powertrain modules (engine and transmission control),

comfort electronics (steering, shock absorbers, air conditioning etc.) and safety systems

(ABS, airbags, ESP and so on). The product portfolio includes microcontrollers (MC), power

semiconductors and sensors.

Padua Development Center activity in ATV MC sector is focused on embedded Flash testing

in close collaboration with the partner sites of Villach, Munich and Singapore. The MC

department is mainly split into a characterization team and a testware team. Product

Engineering (PT) group works for characterization, validation and verification of device

features and requirements. This group is involved in automotive microcontroller

development activities, starting from first silicon analysis, till massive production support,

trough customer validation, product qualification and testing support. Testware Engineers

(TE) instead work on the development of software in order to speed up test execution and

ideation of new test algorithms in order to increase test coverage.

1.2 FTOS

The quality and reliability required by the automotive industry are guaranteed by tight

quality standards. The first approach used by the company to meet these standards for the

test of e-Flash memories was the so called Build-In Self-Test (BIST), which is a main standard

in many SoC modules. In this approach, a specific area on the dice is entirely dedicated to

perform the desired tests on the target module. Anyway the BIST has several drawbacks,

starting from silicon area occupation (consider that a flash module often occupies a huge

percentage of the physical chip area), to the very low portability1 of the designed test.

1 Portability is the capability of being used on different systems. In this particular case, the systems are
different e-Flash memories.

Context Analysis, Company Methodologies and Tools | Page 2

In 2002, Product and Test Engineers (PTE) chosen to use a different self-test for the SoC

based on a software solution for embedded memories. This technique consists on using the

DUT to test its memory itself, and this is possible only after a proper test of the necessary

modules in the DUT (for instance, the CPUs, the RAM...). This is achieved by loading a

dedicate test firmware (so called testwarŜύ ƛƴǘƻ ǘƘŜ ŀƭǊŜŀŘȅ ǘŜǎǘŜŘ ŘŜǾƛŎŜΩǎ RAM. The

testware is then executed by the processing units, which actually run the test. Testware

fulfill quite well all the requirements of e-Flash testing, and the availability of DUT resources

is powerful enough to support complex algorithms and to guarantee fast execution times.

The PTE Padua team is owner of the library of e-Flash testware functions, and in 2007 the

team developed a concept to standardize the testware layers [Figure 1], meeting given

requirements to support different ATE machines and to have code easily portable among

different DUT derivatives [1]. This was the birth of the Functional Test Operating System

(FTOS).

Figure 1: The latest version of testware layers

But first, what is functional testing? It is a quality assurance (QA) process and a type of black-

box testing that bases its test cases on the specifications of the software component under

test. Functions are tested by feeding them input and examining the output, and internal

program structure is not theoretically considered (contrary to white-box testing). Now that

https://en.wikipedia.org/wiki/Quality_assurance
https://en.wikipedia.org/wiki/Black-box_testing
https://en.wikipedia.org/wiki/Black-box_testing
https://en.wikipedia.org/wiki/White-box_testing

Context Analysis, Company Methodologies and Tools | Page 3

we know a definition of functional testing we can define what FTOS is: it is a software layer

to interface ATE and DUT, which is responsible for the management of activities and

resources. FTOS is loaded in RAM at the beginning of the test flow and it supports execution

of product family oriented Test Applications (TAs) containing functions and algorithms used

for both e-Flash production test and e-Flash analysis purposes. TAs releases are scheduled

quite often due to constant test coverage improvement or test costs reductions. This is a

trade-off in software testing because optimal test coverage need time for design these tests

and execute them (time is money) but an optimal coverage guarantee low post-production

cost avoiding defects. FTOS releases are less frequent: they have to follow only ATE or DUT

new hardware requirements. We can hence say that FTOS was born to standardize

execution of Infineon microcontroller e-Flash tests and is meant to support several Test

Applications execution over different products belonging to the same family.

New generation products are introducing several cores into each microcontroller and

memory space is rapidly increasing making the test time increase consequentially. These

expansions are due to the increase of the power calculation demanded by the increase of

the artificial intelligence into the cars and the space needed for processed data storing. In

this sense the development of a multi-core version of the FTOS is required in order to:

¶ Reduce test time (thus reduce costs and upsurge the revenues) by making advantage

of parallel memory access from different cores (timing requirement)

¶ Get closer to the actual multi-core usage of the costumer itself (test coverage

requirement)

These two requirements justify the proposal of a multi-core OS.

FTOS is also a multi-task operating system. Multitasking permits to execute different

processes simultaneously, alternating the execution of these. The change of process

executed is called context switch, the switching decisions are taken by the scheduler and the

dispatcher execute the switch operation. Multi-task permits to boost the throughput of the

testing system.

1.3 /ƻƳǇŀƴȅΩǎ aŜǘƘƻŘƻƭƻƎȅ ƻŦ 5evelopment

Infineon development process [2] is divided in 10 milestones which identify the current

status of the product development. A milestone is the end of a stage that marks the

completion of a work package or sub-phase, typically marked by a high level event such as

completion, endorsement or signing of a deliverable document or high level review

meetings. Five of these milestones are Business Gates (BG) that are management reviews of

the business case and the technical risk assessment. They must have clear and visible criteria

so that senior managers can make go/kill and prioritization decisions objectively.

Context Analysis, Company Methodologies and Tools | Page 4

Figure 2: IFX Development Process

Across these milestones we can identify five main phases:

1. IDEATION: The costumer and the developers study a new idea usually based on

ŎƭƛŜƴǘΩǎ ƴŜŜŘǎΣ ƳŀǊƪŜǘ ǇǊŜŘƛŎǘƛƻƴǎ ŀƴŘ ŎƻƳǇŜǘƛǘƻǊΩǎ ōŜƴŎƘƳŀǊƪǎ

2. DEFINITION: The idea is synthetized to a concept, which is a collection of all system
macro requirements (REQs, in short). The concept requires several team reviews,
redefinitions, proposal and finally ends up with a specification for the
implementation. The specification is than proposed again to the costumer, which
have to agree before the implementation.

3. IMPLEMENTATION: The specifications are then implemented by the developers, who
realize a prototype of the desired product. Implementation constraints that crops up
because were not considered in the specs definition may stop the process
development and require a redefinition of the original concept.

4. VERIFICATION & VALIDATION: to validate a product means to check whether it
works properly respecting all requirements and specifications, in all operating
situations and with all possible boundary conditions (e.g. inputs, software loading
and executing, high/low temperature, supply voltage range). If some requirements
are not achieved, the product is pushed back to Implementation phase.

5. PRODUCTION: when validation BG is passed, the production stars, delivering the

product to the final costumer

Context Analysis, Company Methodologies and Tools | Page 5

The passage across different BGs is not unidirectional. The product development state can

cycle many times among all phases, requiring a great communication from one team to

another.

1.4 Testware Development Process

Testware process development is based on V-Model for software development structure. V-

Model [Figure 4] is an extension of the waterfall model [Figure 3]. This last is simpler, should

be used for developing small projects, has no overlap phases and finally is not suitable for

projects where REQs have high risk of changes. If there is a change in one intermediate step,

the subsequent steps must be repeated until the end of the process.

REQs

DESIGN

IMPLEMENTATION

VERIFICATION

MAINTENANCE

Figure 3: Waterfall model

Application

REQs

Product

REQs

Module

REQs

Details

System

Verification

Product

Verification

Module

Verification

Implementation

Definition Integration

Time

Figure 4: Testware V-Model

Context Analysis, Company Methodologies and Tools | Page 6

Instead of moving down in a linear way, the V-Model steps are bent upwards after

the coding phase, to form the typical V shape. It is divided into:

1. APPLICATION REQUIREMENTS: defines the external requirements of the product to
be implemented

2. PRODUCT REQUIREMENTS: defines the system behavior

3. MODULE REQUIREMENTS: defines the macro architectural blocks which compose

the system

4. DETAILS: the single module behavior is described in details (aka LLD standing for Low
Level Design)

5. IMPLEMENTATION: all modules are transcript into the specific programming

language

Any phase has an associated phase of testing in the shape. This permits to have a proactive
defect tracking and avoids the downward flow of defects. Software is developed during the
implementation phase (no early prototypes of the software are produced) and gives equal
weight to development and testing. This structure guarantee a stable and ordered way of
work compared to agile approaches, losing in flexibility. For more details about this phrase
see [3].

1.5 Tools for Operating System Release and Testing

The FTOS code is written in C programming language to guarantee a good level of

abstraction and use also opcode functions to speed up the code execution. The OS is always

committed to have a backup of what is done with the possibility of comparing actual version

of code with the one committed. The testing apparatus is formed by a personal computer,

an interface device and the ǘŜǎǘƛƴƎ ōƻŀǊŘ ǿƛǘƘ ǘƘŜ он ōƛǘ LƴŦƛƴŜƻƴ ¢Ǌƛ/ƻǊŜϰ ƳƛŎǊƻŎƻƴǘǊƻƭƭŜǊ

(the Device Under Test). With its real-time performance, embedded safety and security

ŦŜŀǘǳǊŜǎΣ ǘƘŜ ¢Ǌƛ/ƻǊŜϰ ŦŀƳƛƭȅ ƛǎ ŀ ǇƭŀǘŦƻǊƳ ŦƻǊ ŀ ǿƛŘŜ ǊŀƴƎŜ ƻŦ ŀǳǘƻƳƻǘƛǾŜ ŀǇǇƭƛŎŀǘƛƻƴǎ ǎǳŎƘ

as the control of combustion engines, electrical and hybrid vehicles, transmission control

units, chassis domains, braking systems, electric power steering systems, airbags and

ŀŘǾŀƴŎŜŘ ŘǊƛǾŜǊ ŀǎǎƛǎǘŀƴŎŜ ǎȅǎǘŜƳǎΦ ¢Ǌƛ/ƻǊŜϰ-based products also deliver the versatility

required for the industrial sector, excelling in optimized motor control applications and

signal processing. The pc with the interface devices forms the Automatic Test Equipment.

1.5.1 TASKING

It is the Altium microcontroller compiler for advanced automotive applications and it is used

for writing code and compiling it. It supports different family of products, also the Infineon

TriCore. It supports C/C++ coding, provides a project files trunk, a console for log/error

https://en.wikipedia.org/wiki/Source_code

Context Analysis, Company Methodologies and Tools | Page 7

messaging and, last but not least, the workspace where write the code. For more info see

[4].

1.5.2 UDE

The abbreviation stands for Universal Debugging Environment and takes part in the interface

devices of ATE. Debug sessions are part of the daily job during software development, due to

the impossibility of never making mistakes. UDE software tool is the debugger used by the

testware group before releasing new software. It supports most of Infineon products, using

a standard JTAG connection and offers an easy access in read-write to RAM locations,

windows to control directly CPU registers and memory locations, while new versions also

allow a multi-core debug. Indeed cores can be set in halt/release state independently from

the status of other ones, in order to better understand the execution of each CPU. Among

other functionalities, a code profiler is provided, which can help in finding execution

bottlenecks when unexpected slowdowns are detected. For more info see [5].

1.5.3 JAZZ

It is the Infineon microcontroller test harness. It is an instrument for testing and analysis,

which can reproduce the test sequences of the ATE using a PC. JAZZ tool provides interface

to device under test, typically with a JTAG access. Moreover, it can drive several control and

measure instruments like power supplies, thermo-chambers or multimeters. JAZZ

development is based on Object Oriented Programming concept which is a very powerful

solution to get test reusability and portability. JAZZ tool can also import or export test

patterns from and to other testers, following the direction of strict collaboration between

product and test engineers. It is also based on a graphical user interface (GUI), easing user

work and training, minimizing man-made errors probability. In JAZZ tool it is possible to

create a dedicated tests collection for each device. Tests collection permits to build different

test flows. Test flow is a tests collection subset to perform a certain analysis or

characterization task; it can contain many copies of the same test and it must return always

a "pass" or "fail" depending on result of each test.

Context Analysis, Company Methodologies and Tools | Page 8

Flash Memories | Page 9

2 Flash Memories

Since the OS presented is meant for e-Flash testing, an overview on the destination

architecture and e-Flash model is needed in order to better understand the specific design

choices and the case study.

2.1 Memories Introduction

For thousands of years, humans seek trickery to make less effort, which means evolve to a

state of minimum energy. Manual tools, machinery, transportation equipment, industries,

software tools, robots and so on are examples of trickeries that minimize the body energy

consumption. A major reason of energy consumption of the human body is the brain: it

represents only 2% of the weight of an adult but it uses 20% of the energy produced by the

body [6]. Efficient energy supply is crucial for the mind so that our memory, mobility and

senses can function normally. Then humans searched techniques for storing informations

minimizing brain energy consumption and climb over the limits of manual storing. Today,

almost every electronic device contains a memory device. Even in the automobile, electronic

memories are becoming crucial, given the rise of artificial intelligence to be introduced in the

control units of vehicles.

All memories, and in particular, Complementary Metal-Oxide-Semiconductor (CMOS)

memories can be divided into two main categories: volatile and non-volatile. Volatile

memories lose stored information as soon as the voltage supply is switched off; they require

constant power to remain viable. Most types of Random Access Memories (RAM) fall into

this category which can be further divided into Static-RAM (SRAM) and Dynamic-RAM

(DRAM). On the other hand, memories that maintain their data when the power supply is

removed are called Non-Volatile Memories (NVM). The first type of NVM was implemented

by writing permanently the data in the memory array during manufacturing (mask-

programmed Read Only Memories, ROM). A big step in CMOS memories was made when

Erasable Programmable Read Only Memories (EPROM) were introduced, which can be

electrically programmed and erased by exposing them to Ultra-Violet (UV) radiation for

about 20 minutes. Electrically Erasable Programmable Read Only Memories (EEPROM) are

electrically erasable and programmable, but require more area on silicon to be

implemented, lowering density of the memory itself. Flash memories are non-volatile

memories in which a set of cells can be electrically programmed and a large number of cells

(block, sector or page) are electrically erasable at the same time. So erase operation is very

fast since the whole memory can be erased in a single operation. One of the major

applications for Flash memories is their integration inside SoC to allow software updates,

Flash Memories | Page 10

reconfigure the system, and allow non-volatile storage; Flash memories which are integrated

in SoC are generally called embedded-Flash memories (e-Flash). The two fundamentals

parameters of a non-volatile memory are:

1. ENDURANCE: the capability of keeping stored informations are a huge number of

erase/program/read cycles

2. DATA RETENTION: the capability of keeping the stored informations after a big lapse

of time

The focus of this big overview is the embedded flash memory, the type of memory tested at

Padua Development Center of Infineon Technologies AG.

2.2 Single Flash Cell

To have a memory cell that has two logical states and maintains its stored information

independently of external conditions, the storage element needs to be a device whose

conductivity can be altered in a non-destructive way and when it is turned off must keep the

charge inside. In CMOS Flash memories, this is achieved changing the threshold voltage ὠ of

the transistor, by making it lower or higher of a predefined value, and thus identifying the

ǘǿƻ ƭƻƎƛŎŀƭ ǎǘŀǘŜǎ ƻŦ ŀ άǇǊƻƎǊŀƳƳŜŘέ ƻǊ άŜǊŀǎŜŘέ ŎŜƭƭΦ This threshold voltage can be

described as

6 +
1

#

where

¶ ὑ is a constant that depends on gate and substrate material, channel doping and

gate oxide capacitance

¶ ὗ is the charge in the gate oxide

¶ ὅ is the oxide capacitance between CG and FG

.ȅ ƳƻŘƛŦȅƛƴƎ ǘƘŜ ŎƘŀǊƎŜ ǘǊŀǇǇŜŘ ƛƴ ǘƘŜ ƎŀǘŜ ƻȄƛŘŜΣ ǿŜ Ŏŀƴ ŎǊŜŀǘŜ ŀ άǎƘƛŦǘέ ƛƴ ǘƘŜ L-V curve of

the transistor and then codify a right-shift with a logical state and a left-shift with the other

logical state. ¦ǎǳŀƭƭȅ άлέ ǎǘŀǘŜǎ ŦƻǊ άunŎƘŀǊƎŜŘέ (erased) ŀƴŘ άмέ ŀǎ άchargedέ (or

programmed) as it can see on [Figure 5].

Flash Memories | Page 11

Figure 5: I-V curves shifting for uncharged/charged cases

The technology adopted in the e-Flash memory used in the SoC is the FGMOS where the

charge is stored in a conductive layer that is between the gate and the channel and is

completely surrounded by insulator.

The [Figure 6] shows the cross-sectional view of a flash cell. On top of a flash cell is the

control gate (CG) and below is the floating gate (FG). The FG is insulated on both sides, on

top by an inter-poly oxide layer and below by a tunnel oxide layer. As a result, the electrons

p-substrate

n+ n+

 oxide
FG

CG

ὠ

ὠ ὠ

Figure 6: FGMOS cross section

Ὅ

ɝὠ
ὗ

ὅ

ὠ

Ὅ

άлέ ά1έ

ὠ ὠ ὠ

Flash Memories | Page 12

programmed on the floating gate will not discharge even when flash memory is powered off.

The voltage applied on the CG generates and controls the conductivity of the conductive

channel between the source and the drain electrodes. The minimum voltage that can turn

on the channel is the threshold voltage. As we can see in the ὠ equation, if are injected

electrons between CG and FG the threshold voltage increase: this means that the cell is

charged. Programming is done on one bit (or byte) at a time, while erasure is done on all

cells in the same memory block. The saturation region for a conventional MOS is where Ὅ

is essentially independent of the drain voltage. In a FGMOS transistor, the drain current will

continue to rise as the drain voltage increases and saturation will not occur. But, how it can

be checked if a bit cell is programmed or erased? Simple, if charge is stored in FG, it is

possible to measure the drain current Ὅ of the cell with a fixed ὠ voltage. If this current is

over a reference current, the cell results erased (ὗ π) and if it is under the reference

value the cell can be considered as programmed. Storing/removing FG charge is commonly

done using one of these mechanisms:

¶ Channel Hot Electron Injection (CHEI)

¶ Fowler-Nordheim (FN) tunneling

The choice of program/erase mechanism depends on the bit cell structure, array

organization, and process technology. The physical mechanism of CHEI is relatively simple to

understand qualitatively. An electron traveling from the source to the drain gains energy

from the lateral electric field and loses energy to the lattice vibrations (acoustic and optical

phonons). At low fields, this is a dynamic equilibrium condition, which holds until the field

strength reaches approximately ρππ ὯὠȾὧά. For fields exceeding this value, electrons are

no longer in equilibrium with the lattice, and their energy relative to the conduction band

ŜŘƎŜ ōŜƎƛƴǎ ǘƻ ƛƴŎǊŜŀǎŜΦ 9ƭŜŎǘǊƻƴǎ ŀǊŜ άƘŜŀǘŜŘέ2 by the high lateral electric field and a small

fraction of them have enough energy to surmount the barrier between oxide and silicon

conduction band edges. For an electron to overcome this potential barrier, three conditions

must hold:

1. Its kinetic energy has to be higher than the potential barrier

2. It must be directed toward the barrier

3. The field in the oxide should be collecting it

If these conditions are satisfied, the electrons are injected by the high electric field in the FG.

This is a power consuming mechanism due to the large currents and low injections

efficiency. The FN tunneling instead is based on quantum mechanics. The solutions of the

2 Refers to the effective temperature term used when modelling carrier density (i.e., with a Fermi-Dirac
function) and does not refer to the bulk temperature of the semiconductor (which can be physically cold,
although the warmer it is, the higher the population of hot electrons it will contain all else being equal). The
ǘŜǊƳ άƘƻǘ ŜƭŜŎǘǊƻƴέ ǿŀǎ ƻǊƛƎƛƴŀƭƭȅ ƛƴǘǊƻŘǳŎŜŘ ǘƻ ŘŜǎŎǊƛōŜ ƴƻƴ-equilibrium electrons (or holes) in
semiconductors

Flash Memories | Page 13

Schrodinger equation represent a particle. The continuous nonzero nature of these

solutions, even in classically forbidden regions of negative energy, implies an ability to

penetrate these forbidden regions and a probability of tunneling from one classically

allowed region to another. This occurs with the presence of a high electric field. The FN

tunneling method is widely used in NVM. The reasons for this choice:

¶ Tunneling is a pure electrical mechanism

¶ The involved current level is quite low

¶ It allows to obtain a program time shorter than retention time

But, on the other hand, the exponential dependence of FN tunnel current on the oxide field

causes critical problems. A small variation of oxide thickness ὸ among the cells in a

memory array results in a great difference in programming or erasing currents thus

spreading the ὠ distribution. Therefore, oxide defects must be avoided to control

program/erase characteristics and obtain a good reliability.

A common problem for CHEI and FN tunneling is the high electric filed used for programming

the cells. The negative charge trapped into the floating gate decrease the electric field across

the gate oxide, so that at the increasing of cell living time it is more and more difficult to

inject charge in the FG. Besides, for sustain high electric fields is requested a good doping

profile shaping. For more detailed info about single flash cells see [7] , [8] and [9].

2.3 Flash Memory Architecture

Two main technologies dominate the non-volatile flash memory market today: NOR and

NAND. Both NOR and NAND flash memories were invented by Dr. Fujio Masuoka while

working for Toshiba around 1980. The name "flash" was suggested by Dr. Masuoka's

colleague, Mr. Sho-ji Ariizumi, because the erasure process of the memory contents

reminded him of the flash of a camera [10]. NOR flash was first introduced by Intel in 1988.

There are two main types of flash memory, which are named after the connection in a way

that resembles NAND and NOR logic gates, as NAND and NOR flash memories. The NOR

Flash memory is the most commonly used in a wide range of applications that require both

medium density and performance. This is the memory architecture of our SoC. In a NOR

matrix organization cells are arranged in rows (called word lines) and columns (called bit

lines): all the gates of the cells in a row are connected to the same word line (WL), while all

the drains of the cells in a column are connected to the same bit line (BL); the source of all

the cells in the sector are connected to a common source line (SL). The read operation is

done by byte or by word; therefore one cell for each output is addressed. There are some

methods to identify the cell status but the most commonly used is to compare the current of

the cell with the one of a reference current; the result of the comparison in then converted

https://en.wikipedia.org/wiki/NAND_gate
https://en.wikipedia.org/wiki/NOR_gate

Flash Memories | Page 14

into a voltage which is fed to the output. The Sense Amplifier converts this small voltage

level to the external higher level. Like read, also program operation is generally performed

by byte or by word. The array of cells is physically divided in different sector, each one

erasable separately by means of a dedicated source switch. Sectors can be equal or of

different size.

Figure 7: NOR flash matrix with decode circuitry and sense amplifiers

Flash Memories | Page 15

It is helpful to divide the memory into blocks, banks and sectors to reduce the delays over

the wordlines and bitlines traces. The decoder has the task to enable rows and columns that

must be accessed by the externa circuits.

The NAND Flash memory is similar to the NOR, but the access to the matrix is different

because the cells are arranged into the array in serial chains: the drain of a cell is connected

with the source of the following one. The elementary unit of a NAND architecture flash

memory is not a single cell but a serial chains of more FG transistor connected to the bit line

and ground through two selection transistors. This organization permits to eliminate all

contacts between Word Lines (WL), reducing in this way the occupied area. The reduction of

the matrix area is the main advantage of this solution. Selection transistors are biased to

connect the chain to the bit line and isolate it from the ground. If the memory is organized in

a NAND array, both program and erase mechanism are electrons tunneling. Since tunneling

is more power efficient than CHE injection, currents are smaller and different supply

voltages can be internally generated by charge pumping circuits implemented in the same

die. NAND array are preferred for high-density Flash memories. During reading operation

the selected cell has the control gate at 0V while the other cells in series are driven at high

voltage, thus acting as ON pass gates independently of their actual thresholds. The current,

which flows through the series only if the selected transistor presents a negative threshold,

can be detected by the sense amplifier, which can interpret the stored data.

2.4 Flash Memory Defects and Tests

A defect is a ǇƘȅǎƛŎŀƭ ŀƴƻƳŀƭȅ ƛƴ ǘƘŜ ŎƛǊŎǳƛǘΩǎ ƳŀǘŜǊƛŀƭΣ ǿƘƛŎƘ Ŏŀƴ ƻŎŎǳǊ ŘǳŜ ǘƻ Ƴŀƴȅ ŦŀŎǘƻǊǎ

in every manufacturing process. Defects can be characterized as a short, an open, increased

resistance or capacitance and so on. A fault is the logical representation of a defect. Not all

defects lead to faults. Some flash memories defects are listed below.

For the single cell:

¶ ὸ oxide thickness variation

¶ WL to FG resistance

¶ FG to drain resistance

¶ FG to source resistance

¶ CG to drain resistance

¶ Source and drain to bulk resistances

¶ Source to drain resistance

¶ CG, drain, bulk opened

¶ Mobility reduced

Flash Memories | Page 16

For the word line:

¶ WL opened

¶ WL to bulk resistance

For the sectors:

¶ WL i-th to WL (i+1)-th resistance

¶ Local BL opened

¶ Local SL opened

¶ Local BL i-th to local BL (i+1)-th resistance

¶ Local BL i-th to local SL (i+1)-th resistance

For the memory blocks:

¶ Global BL opened

¶ Global SL opened

¶ Global BL i-th to global BL (i+1)-th resistance

¶ Global SL i-th to global SL (i+1)-th resistance

For the decoders:

¶ Same WL of two sectors selected

¶ Multiplexer incorrect output

For the sense amplifiers:

¶ Wrong reference current, i.e. not good sensing operation

These defects occurs after the manufacturing and must be tested how many are and correct

it if it is possible. For this purpose, redundancy banks are often used in e-Flash memories:

those banks are not used unless a defect is detected in the memory array. In this case, the

failing BL/sector is logically replaced with a redundancy one, saving the SoC from being

discarded. The mapping of redundancy bitlines is saved into a particular area location, and it

is configured during the automated test flows.

Flash Memories | Page 17

The test and characterization engineers must take into account the list of some aspects

reported below:

¶ PE3 performance

¶ PE disturbs

¶ Retention

¶ Endurance

¶ DC test/parametric

When a cell is programmed (or erased) the threshold voltages are different depending on

silicon process variations. The distribution of the threshold voltages for erased and

programmed cells can compromise the operation of storing and reading information inside

the memory array. As it can read on page 2 in [11], the ὠ voltage of erased memory cells

tends to have a wide Gaussian-like distribution:

ὴ ὼ
ρ

„Ѝς“
 Ὡ

Where ʈ and „ are the mean and standard deviation of the erased state threshold

voltage. A test which verifies the correct writing of 0s and 1s patterns can detect anomalous

distribution of threshold voltages. Flash memory PE cycling causes damage to the tunnel

oxide of floating gate transistors in the form of charge trapping in the oxide and interface

states which directly results in threshold voltage shift and fluctuation and hence gradually

degrades memory device noise margin. Major distortion sources include:

¶ Electrons capture and emission events at charge trap sites near the interface

developed over PE cycling directly result in memory cell threshold voltage

fluctuation, which is referred to as random telegraph noise

¶ Interface trap recovery and electron detrapping gradually reduce memory cell

threshold voltage, leading to the data retention limitation

Moreover, electrons trapped in the oxide over PE cycling make it difficult to erase the

memory cells. On [Figure 8] we can see the Gaussian distributions of threshold voltages. The

sketched lines represent the drain-source currents: when the cell is erased the FG is

uncharged and all the charge is in the channel; for this reason the current is higher than Ὅ.

When the cell is programmed the FG is charged and only a part of the total charge is in the

channel; for this reason the current is lower than Ὅ. The Gaussian distributions (bold lines)

are centered in the respective mean threshold voltages ‘.

3 PE stands for Program/Erase. Flash memory cells gradually wear out with the PE cycling which is reflected as
gradually diminishing memory cell storage noise margin (or increasing raw storage bit error rate).

Flash Memories | Page 18

Figure 8: Statistical distributions of ╥╣ during erase and program operations

A test which verifies the correct writing of 0s and 1s patterns can detect anomalous

distribution of threshold voltages. Reference currents for the read operations define the

tolerance in the variation of threshold voltages, and are generally set differently for erase

and program operations, as shown in figure. A sweep on the read currents is performed for

the characterization oŦ ǘƘŜ ŦƭŀǎƘ ƳŜƳƻǊȅ ŀƴŘ Ŏŀƴ ǇǊƻǾƛŘŜ ǳǎŜŦǳƭ ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ άƘƻǿ

ǿŜƭƭέ ƻǊ άƘƻǿ ōŀŘέ ŎŜƭƭǎ ŀǊŜ ǇǊƻƎǊŀƳƳŜŘ ƻǊ ŜǊŀǎŜŘ όƳŀǊƎƛƴ ǎǿŜŜǇ ǘŜǎǘύΦ [ƛƪŜǿƛǎŜ ŀ ǘŜǎǘ

which modifies the Control Gate voltages for the read operations can provide similar

information (CG scan).

The failure mechanisms referred to as program disturb concern data corruption of written

cells caused by the electrical stress applied to these cells while programming other cells in

the memory array. Considering a NOR array of flash cells, if we want to program a cell, a high

voltage applied to the WL and a negative voltage to the BL are necessary to permit FN

tunneling. In these bias conditions there are two major disturbs. The first one, due to the

high positive voltage applied to the WL, is called Gate Disturb. This kind of disturbs stress

FGMOS which have their gate connected to the WL. There might be tunneling through the

oxide and so it is possible to put some charge into the FG of transistors that are not selected.

In the second kind of disturb, called Drain Disturb, a relatively high voltage applied to the

selected BL can stress the drain of all the cells whose are in the same bit line of the cell to

program. In this way, a loss of the charge trapped into the FG could happen. The test flow of

a Flash memory, have also to detect if Gate Disturbs and Drain Disturbs can compromise the

information stored into disturbed bitcells. Programming Checkerboard [Figure 9] or Zebra

patterns can help the tester to detect these stress conditions. A checkerboard pattern [12]

Ὅ

ἴ
ἷ
ἯΠ
╬
▄
■
■
▼

ὠ ὠ

Ὅ

Ὅ

ͼπͼ

ͼρͼ

Ὅ

Erased

ὠ π

Programmed

ὠḻπ

Flash Memories | Page 19

alternates 0s and 1s in both rows and columns of the array, while a zebra pattern alternates

columns of all 1s with columns of all 0s. The pattern must be programmed at physical level

and not at logical level.

Retention errors are value dependent; their frequency is asymmetric with respect to the

value stored in the flash cell. Examples of retention errors are 00Ą01, 01Ą10, 01Ą11 and

so on. During retention test, the electrons stored on the floating gate gradually leak away

under stress induced leakage current. When the floating gate loses electrons, its ὠshifts left

from the state with more electrons to the state with fewer programmed electrons. For more

details [13].

As blocks are repeatedly erased and programmed the oxide layer isolating the gate

degrades. This reduces the endurance of the e-Flash memory. Program/erase endurance can

be tested by repeatedly programming a single page with all 0s (vs. the erased state of all 1

bits), and then erasing the containing block; this cycle can be repeated until a program or

erase operation terminated with an error status [14]. This parameter is measured as number

of PE cycles.

DC tests/parametric are contacts tests (opens and short checks), power consumption tests,

leakage tests, threshold tests (max and min input voltage at which the device switch from

high to low), current tests, timing measurements (rise and fall time, delay, access time

measurements), Schmoo plots, etc.

Figure 9: Example of checkerboard pattern where a and b are 0 and 1

System on Chip Architecture | Page 20

3 System on Chip Architecture

Figure 10: Aurixϰ system architecture

!ǳǊƛȄ ƛǎ LƴŦƛƴŜƻƴΩǎ ŦŀƳƛƭȅ ƻŦ ƳƛŎǊƻŎƻƴǘǊƻƭƭŜǊǎ ǎŜǊǾƛƴƎ ǘƘŜ ƴŜŜŘǎ ƻŦ ǘƘŜ ŀǳǘƻƳƻǘƛǾŜ ƛƴŘǳǎǘǊȅ ƛƴ

terms of performance and safety. Some applicationǎΣ ǿƘŜǊŜ !¦wL·ϰ ƛǎ ǳǎŜŘΣ ŀǊŜΥ ŎƘŀǎǎƛǎ

domain control, ADAS4, gasoline engine management and the transmission control unit

ό¢/¦ύΦ !¦wL·ϰ ǇŜǊƳƛǘǎ ǘƻ ŀŎƘƛŜǾŜ ǘƘŜ !{L[-D level. ASIL stands for Automotive Safety

Integrity Level and refers to the highest classification of initial hazard (injury risk) defined

ǿƛǘƘƛƴ L{h нснсн ŀƴŘ ǘƻ ǘƘŀǘ ǎǘŀƴŘŀǊŘΩǎ Ƴƻǎǘ ǎǘǊƛƴƎŜƴǘ ƭŜǾŜƭ ƻŦ ǎŀŦŜǘȅ ƳŜŀǎǳǊŜǎ ǘƻ ŀǇǇƭȅ ŦƻǊ

avoiding an unreasonable residual risk [15].

4 Advanced Driver Assistant Systems is the group of safety mechanisms like lane assist, emergency brake assist,
distance control, etc. Radar technology collects the information in and around the vehicle and the
microcontroller elaborate the informations.

System on Chip Architecture | Page 21

It has a multi-core architecture that is based on three 32-ōƛǘ ¢Ǌƛ/ƻǊŜϰ CPUs running at 200

MHz in the full automotive temperature range. The block diagram of the presented SoC is

showed in [Figure 10]. The 3 red blocks are the CPUs in the SoC. The TC27x sub-family

includes two high performance TriCore TC1.6P CPU cores and one high efficiency TriCore

TC1.6E CPU core. The two cores are slave cores and the high efficiency core is the master

core [16].

In this chapter will be reported, synthetically, some selected features of the SoC needed to

understand the operating system release and the validation.

3.1 Internal Buses

The SoC has two independent on-Chip buses:

¶ SRI crossbar5, that is the Shared Resources Interconnect protocol that connects the

TriCore CPUs, the high bandwidth peripherals and the Direct Memory Access module

(DMA) to its local resources for instruction fetches and data accesses

¶ SPB ό{ȅǎǘŜƳ tŜǊƛǇƘŜǊŀƭ .ǳǎύ ǘƘŀǘ ŎƻƴƴŜŎǘǎ ǘƘŜ ¢Ǌƛ/ƻǊŜϰ /t¦ǎΣ ǘƘŜ ƘƛƎƘ ōŀƴŘǿƛŘǘƘ

peripherals and the DMA module to the medium and low bandwidth peripherals

For our intents we use the SRI crossbar (X-bar) that supports parallel transaction between

different SRI-Master and SRI-Slave peripherals, which are both referred as Agents of the SRI

bus. The SRI X-bar supports also pipelined requests from the SRI-Master interfaces. This is

the first important capability of the presented SoC, which actually allows us to consider the

implementation of a Multi-Core OS in which a parallel access to the e-Flash memory is

desired. The arbitration of the SRI X-bar supports atomic6 transfers that are generated by

atomic assembly instructions which require two single transfer instructions of read and

write.

Due to the support for parallel transactions, an arbiter module, on [Figure 11], is

implemented for each SRI-Slave, as shown in the figure. The operating frequency is called

Ὢ and is generated separately from the Clock Control Unit (CCU).

5 In analogy with old electromechanical telephony crossbar switches
6 Uninterruptable read-modify-write memory operations limited to specific functions and data size

System on Chip Architecture | Page 22

3.2 On-Chip Debug Controller

The SoC provides the infrastructure for the various tools used during the development and

maintenance of the application. A fundamental tool is the internal debugger: in this situation

the application is not yet ready, the system outside of the microcontroller is either not

connected or under control by other means so that misbehavior of the software has no

catastrophic consequences. In this condition, the user is a software engineer with thorough

knowledge of the device and the system, in other words, no protection is needed. From the

debug tool the user expects:

¶ Download capability: The memories of the SoC (and of other external memories

attached to the SoC) must be written (and programmed in case of non-volatile

memories) without need to disassemble the application system

SRI

Master

(M1)

SRI

Slave

(S1)

SRI

Slave

(S2)

Arbiter

S1

Arbiter

S2

M

U

X

M

U

X

M

U

X

X-bar SRI

Figure 11: SRI arbitration module

System on Chip Architecture | Page 23

¶ Running Control: Each processor core can be stopped and started at will, either

separately or synchronously throughout the SoC

¶ Visibility/Writability : The content of all storage locations inside the SoC, i.e.

memories, SFRs and processor registers, can be read and written, preferably even

while the system is running

¶ Traceability: A log of the processing is desired, ŀǎ ŘŜǘŀƛƭŜŘ όάŎȅŎƭŜ ŀŎŎǳǊŀǘŜέύ ŀƴŘ

wide (aligned trace of parallel processes) as possible

These capabilities are mainly managed via the On-Chip Debug Support infrastructure (OCDS).

Of particular interest are the Run Control features, by which the running CPUs are

dynamically configured via access of dedicated Debug Status Register (DBSR). The internal

implementation of the SoC sets only the CPU0 in run mode at startup, and puts other CPUs

in a Halt-After-Reset state. Halted CPUs have to be released by user (via Debug control

features, see [Paragraph 1.5.2]) or by the running CPU with specific debug control

instructions. Of course a state-aware watchdog timer suspension during debug sessions is

implemented.

3.3 MMU

As the FTOS is oriented to test the Flash Memory Unit of the presented SoC, a deeper insight

of the Memory Management Unit (MMU) is required. Furthermore, since the FTOS code is

downloaded into the RAM memory, we will also have a look at both volatile and non-volatile

memories contained in the SoC.

The TriCore microcontroller has the following CPU related memories:

Program Memory Unit (PMU0) with:

¶ 4 MB of Program Flash Memory

¶ 384 KB of Data Flash Memory

¶ User Configuration Blocks (UCB)

¶ 32 KB of Boot ROM (BROM)

System on Chip Architecture | Page 24

CPU0 with:

¶ 24 KB of Program Scratch-Pad SRAM (PSPR)

¶ 112 KB of Data Scratch-Pad SRAM (DSPR)

¶ 8 KB of Program Cache (PCache)

CPU1 with:

¶ 32 KB of Program Scratch-Pad SRAM (PSPR)

¶ 120 KB of Data Scratch-Pad SRAM (DSPR)

¶ 16 KB of Program Cache (PCache)

¶ 8 KB of Data Cache (DCACHE)

CPU2 with:

¶ 32 KB of Program Scratch-Pad SRAM (PSPR)

¶ 120 KB of Data Scratch-Pad SRAM (DSPR)

¶ 16 KB of Program Cache (PCache)

¶ 8 KB of Data Cache (DCACHE)

The system has non-uniform memory access timing (NUMA), i.e.:

Fast (1 cycle typical)

¶ Read/Write to local Data Scratch (DSPR) or DCache

¶ Fetch from local Program Scratch (PSPR) or PCache

Medium (6-8 cycles)

¶ other DSPRs/PSPRs (including data in local PSPR and fetch from local DSPR)

Slow (8-20 cycles)

¶ Program Flash

Very Slow (> 20 cycles)

¶ Data Flash (EEPROM + UCB)

Boot ROM is the memory sector that permits the startup of the system. Scratchpad RAMs

are high-speed internal memories used for temporary storage of calculations, data, and

other work in progress. They are used to hold small items of data for rapid retrieval and are

mostly suited for storing temporary results (as it would be found in the CPU stack) that

typically wouldn't need to always be committing to the main memory. In particular PSPR

(Program Scratchpad RAM) stores codes and DSPR (Data Scratchpad RAM) stores data. Each

System on Chip Architecture | Page 25

RAM segment can be accessed in an absolute addressing mode, or with a relative addressed

mode. Using the relative address mode, each CPU can access only its own PSPR and DSPR,

and this feature is useful to make some particular data/code private for each CPU (i.e. not

accessible from other cores). As a consequence, a CPU trying to access a private data/code,

different from its own one, will trap into an illegal instruction or load a wrong content. In

order to increase performances, every data/code frequently used by a CPU should be

located inside the relative RAM (PSPR or DSPR), reducing the penalty for accessing far

memory location. The cache instead, is a component that stores data so future requests for

that data can be served faster; the data stored in a cache might be the result of an earlier

computation, or the duplicate of data stored elsewhere. A cache hit occurs when the

requested data can be found in a cache, while a cache miss occurs when it cannot. The

caches are usually very small to be cost-effective and to enable efficient use of data.

Naturally PCache stands for Program Cache and DCache for data cache.

Also the flash module is divided into program and data sections:

¶ Program flash 0

¶ Program flash 1

¶ Data flash 0

¶ Data flash 1

Each bank is further divided in Physical Sectors which contain a different number of Logical

Sectors. Logical Sectors are divided in word-line clusters, word-lines and then in pages. The

benefit of having sectors is that the Flash memory is sector-erasable, meaning you can erase

one sector at a time. In the past, erase commands erased the entire memory chip - therefore

to keep a working copy of that data during run-time, an application required additional

memory [17]. For reliability reasons, each page has a subset of Error Correction bits, which

guarantee the detection and correction of failing bits, referred as ECC. This expensive

correction mechanism is fundamental in automotive applications, where errors must be

avoided for safety reasons. Flash memory consists also of some redundancy sections, as

already mentioned. Whenever a bit-line has a process defect, it is logically replaced (i.e.

mirrored) with a new bit-line of the redundancy section. The PMU is connected with the SRI

X-bar via dedicated SRI Ports on the Program Flash 0, Program Flash 1, and Data Flash

[Figure 12]. That means that a concurrent access is possible for PF0 and PF1, but not for DF0

and DF1 (it should need between arbitration master agents, introducing some access delay).

The operating frequency of the PMU is generated by the CCU, which also provides the clock

for all modules inside the SoC. Low level instructions on the flash triggered by the CPU (such

as read, program, erase, ECC check, etc.) are executed by the internal logic of the PMU and

by a finite state machine.

System on Chip Architecture | Page 26

3.4 TriCoreϰ Core Architecture Overview

TriCoreϰ is a 32-bit DSP and microcontroller with single-core architecture optimized for real-

time embedded systems. The TriCoreϰ Instruction Set Architecture (ISA) combines the real-

time capability of a microcontroller, the computation power of a DSP and the high

performance/price ratio of RISC architectures, in a compact re-programmable core. The ISA

supports a uniform, 32-bit address space, with virtual addressing capabilities and memory-

mapped I/O. The architecture allows for a wide range of implementations, ranging from

scalar through to superscalar, and is capable of interacting with different system

architectures, including multiprocessing. The architecture supports both 32-bit and 16-bit

instructions formats (as a subset of the 32-bit instructions chosen by their frequency of use)

to reducing code space occupation, lowering consequently memory requirements and

power consumption. Typical DSP instructions and data structures are largely supported by

seven addressing modes used, for instance, in Finite Impulse Response (FIR) filters, or in FFT

calculation. They also support efficient compilation of C/C++ programs.

PMU0

PFlash DFlash

PF0 PF1 DF0 DF1

ECC ECC ECC

FSI

Boot ROM

CCU

PF0

SRI Port

PF1

SRI Port

DF/ROM/SFR

SRI Port

Figure 12: PMU synthetic scheme

System on Chip Architecture | Page 27

Real-time responsiveness is largely determinate by interrupt latency and context-switch

time7; the high-performance architecture minimizes the interrupt latency by avoiding multi-

cycle instructions and by providing a flexible hardware-supported interrupt scheme which

also grants a fast-context switch.

The key features are here summarized:

¶ 32-bit architecture

¶ 4GBytes of address space (physical and virtual)

¶ 16/32-bit instructions for reduced code size

¶ Most instructions executed in one cycle

¶ Branch instructions with branch prediction module

¶ Low interrupt latency with fast context-switch using wide pathway to on-chip

memory

¶ Zero-overhead loop capabilities

¶ Floating-Point Unit (FPU)

¶ Memory Management Unit (MMU)

¶ Single bit handling capabilities

¶ Flexible interrupt prioritization scheme

¶ Little-endian byte ordering for data memory and CPU registers

¶ Memory protection

¶ Coprocessor support

¶ Debug support

The main topics of interest will be the Context-Management System, supported by an

Infineon international patent, the System Timer Module (STM), Interrupts and Traps

management. The registers are divided into:

¶ 32 General Purpose Registers (GPRs)

¶ Program Counter (PC)

¶ Two 32 bit registers containing status flags, previous execution informations and

protection informations: Previous Context Information (PCXI) and Program Status

Word (PSW)

t/·LΣ t{² ŀƴŘ t/ ŀǊŜ ŦǳƴŘŀƳŜƴǘŀƭ ŦƻǊ ǎǘƻǊƛƴƎ ŀƴŘ ǊŜǎǘƻǊƛƴƎ ǘŀǎƪΩǎ ŎƻƴǘŜȄǘΦ

7 In order to be classifiable as an RTOS an operating system must: have a time predictably response and be
deterministic. For these reasons interrupt latency and context-switch time must be minimized to have the
sureness of execute the processes in a determinate fixed times, imposed by the work context.

System on Chip Architecture | Page 28

The 32 GPRs are divided into sixteen 32-bit data registers (D [0] to D [15]) and an equal

number of address registers (A [0] to A [15]). Architectural registers, together with the

Context Management registers, compose the context of a task. Registers [0H - 7H] are

referred to as the Lower Context registers and registers [8H - FH] are called Upper Context

registers. In addition to the GPRs, the core registers are composed of a certain number of

Core Special Function Registers (SFRs) which control the operation of the core and provide

status information about the core itself.

The TriCore microcontroller implements Harvard architecture [18], which means physically

separate storage and signal pathways for instructions and data. The term originated from

the άHarvard Mark Iέ8 relay-based computer, which stored instructions on punched tape (24

bits wide) and data in electro-mechanical counters. This architecture is in contrast with von

Neumann classical architecture where the CPU can be either reading an instruction or

reading/writing data from/to the memory, but one and the other cannot occur at the same

8 The IBM Automatic Sequence Controlled Calculator was installed at Harvard University in 1944. 51 feet long,
5 tons and incorporates 750,000 parts which was including 72 accumulators and 60 sets of rotary switches,
each of which can be used as a constant register, plus card readers, a card punch, paper tape readers, and
typewriters.

A [15] (Implicit Base Address)

A [14]

A [13]

A [12]

A [11] (Return Address)

A [10] (Stack Return)

A [9] (Global Address Register)

A [8] (Global Address Register)

A [7]

A [6]

A [5]

A [4]

A [3]

A [2]

A [1] (Global Address Register)

A [0] (Global Address Register)

D [15] (Implicit Data)

D [14]

D [13]

D [12]

D [11]

D [10]

D [9]

D [8]

D [7]

D [6]

D [5]

D [4]

D [3]

D [2]

D [1]

D [0]

PCXI

PSW

PC

Address Data

System

31 0 31 0

31 0

GPRs

Figure 13Υ ¢Ǌƛ/ƻǊŜϰ ŎƻƴǘŜȄǘ ǊŜƎƛǎters

https://en.wikipedia.org/wiki/Computer_storage
https://en.wikipedia.org/wiki/Harvard_Mark_I
https://en.wikipedia.org/wiki/Punched_tape
https://en.wikipedia.org/wiki/Central_processing_unit

System on Chip Architecture | Page 29

time since the instructions or data use the same bus system. Then using Harvard

architecture permits to concurrent write/read data and reading codes.

¢ƘŜ ¢Ǌƛ/ƻǊŜϰ /t¦ Ƙŀǎ ŀƭǎƻ ŀ superscalar architecture: this means that the CPU executes

more than one instruction during a clock cycle by simultaneously dispatching multiple

instructions to different execution units (ALU, bit shifter, multipliers, etc.) within it.

Any CPU in the microcontroller accesses separate Program and Data Stretch Pad RAM (PSPR

and DSPR), with their own caches and interfaces. This distinction will be relevant while

discussing the code/data allocation during the linking phase. While operating context

switches9, a particular attention to the pipelines state will be required, using specific Data-

Synchronization instructions (DSYNC) in order to avoid Pipeline hazards10. These last are

situations that must be avoided. There are 3 types of hazards:

¶ Structural hazards: when a planned instruction cannot execute in the proper clock

cycle because the hardware does not support the combination of instructions that

are set to execute

¶ Data hazards: when a planned instruction cannot execute in the proper clock cycle

because data that is needed to execute the instruction is not yet available (pipeline

stall11)

¶ Control hazards: arises from the need to make a decision based on the results of one

instruction while others are executing

For more detailed info about hazards and computer structures read intensively [19]. In the

¢Ǌƛ/ƻǊŜϰ /t¦ǎ ǇƛǇŜƭƛƴŜ Ƙazards are minimized by the use of forwarding paths between

pipeline stages allowing the results of one instruction to be used by a following instruction as

soon as the result becomes available. For the 1.6 Efficiency core, single pipeline architecture

is implemented (scalar Harvard), in order to allow a power efficient computation, at the cost

of a slower processing.

3.5 Context Management System

An overview of Context Management System will be reported below. A more detailed

explanation can be found in the thesis [20] and in the Infineon Patent [21]. In the TriCore

architecture, the RTOS layer can be very thin and the hardware can efficiently handle much

of the switching between one task and another. At the same time the hardware architecture

9 Context switch is the process of storing and restoring the state of a process or thread so that execution can be
resumed from the same point at a later time. This operation is fundamental for the multi-core system.
10 Situations in pipelining when the next instruction cannot execute in the following clock cycle
11 (aka bubble) is a delay in execution of an instruction in an instruction pipeline in order to resolve a hazard

https://en.wikipedia.org/wiki/Execution_unit
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Instruction_pipeline
https://en.wikipedia.org/wiki/Hazard_(computer_architecture)

System on Chip Architecture | Page 30

allows a software management of the context switch with relatively few constraints imposed

to the system designer by the architecture.

ά! ǘŀǎƪ ƛǎ ŀƴ ƛƴŘŜǇŜƴŘŜƴǘ ǘƘǊŜŀŘ ƻŦ ŎƻƴǘǊƻƭέΣ ŀǎ ŘŜŦƛƴŜŘ ƛƴ [22]. The state of a task is defined

ōȅ ƛǘǎ ŎƻƴǘŜȄǘΦ ²ƘŜƴ ŀ ǘŀǎƪ ƛǎ ƛƴǘŜǊǊǳǇǘŜŘΣ ǘƘŜ ǇǊƻŎŜǎǎƻǊ ǳǎŜǎ ǘƘŀǘ ǘŀǎƪΩǎ ŎƻƴǘŜȄǘ ǘƻ ǊŜ-enable

the continued execution of the task when is requested. The lower context registers are

similar to global registers in the sense that an interrupt/ trap handler or a called function

sees the same values that were present in the registers just before the interrupt, trap or call.

Any changes made to those registers that are made in the exception routine or call, remains

after the return from the event: that means that the lower context registers can be used to

pass arguments to called functions and pass return values from those functions.

Contexts, when saved to memory, occupy blocks of storage referred as Context Save Areas

(CSAs). The architecture uses linked lists of fixed-size CSAs, and each CSA can thus hold

exactly one upper or one lower context, linked together through the Link Word. During a

context save operation, the upper and lower contexts can be saved into CSAs. The unused

CSAs are linked in the Free Context List (where FCX is the free context pointer) and the CSAs

that contain the upper and/or lower context are linked in the Previous Context List (where

PCX is the previous context list pointer), as can be seen in [Figure 14].

FCX

CSA 3

Link to 4

CSA 4

Link to 5

CSA 5

Link to 6

CSA 6

Link

PCX

CSA 2

Link to 1

CSA 1

Link

Free Context List

Previous Context List

SFRs

Figure 14: CSA chain before a function call (this image is present on the US 7434222 B2 ǇŀǘŜƴǘΩǎ ŜȄǘǊŀŎǘ ŀǾŀƛƭŀōƭŜ ƻƴƭƛƴŜύ

System on Chip Architecture | Page 31

¢ƘŜ [ƛƴƪ ²ƻǊŘ ά[ƛƴƪ ǘƻ пέ ŜΦƎΦ ǘŀƪŜǎ ŀŎŎƻǳƴǘ ǘƘŀǘ /{!п ƛǎ ǘƘŜ ƴŜȄǘ /{! ŀǾŀƛƭŀōƭŜ ŀŦǘŜǊ /{!оΦ

Before a context is saved in the first available CSA (in this case CSA3), the Link Word of this

last is read to supply a new value for the FCX register. PCX is updated as soon as the new

task completes its execution. There is also another register that points to the last free CSA:

the LCX register. When FCX matches with LCX, the CSA chain is full. An important detail is

that the upper context is saved automatically by the hardware instead the lower context is

saved through an instruction.

3.6 System Timer and Interrupts Management

Any CPU has a System Timer Module (STM), after a reset is always enabled and starts

counting. The timer is implemented as a 64-bits upward counter register running at the

system frequency. There are 7 registers (STM_¢LaлΧSTM_TIM6), each with different timing

range and resolution. The content of these registers can be compared with other registers

(STM_CMP0 and STM_CMP1). Each CMP register has its compare match interrupt request

flag that is set by hardware on a match event. An interrupt is an exception signaled by a

peripheral or generated by a software request. Not all interrupts has the same priority, for

this reason is defined an interrupt priority level for any of it. Service Request Nodes (SRNs)

are linked to the Interrupt Control Unit (ICU). This last manages the arbitration among the

requests from the SRNs, provides the winner and checks the signal integrity possible errors.

SRNs instead are nodes whose skill is to request the interrupts and have registers that takes

account of priority level. When an interrupt is triggered by a CPU, an Interrupt Service

Routine (ISR) is executed as a callback function12. While the processor executes an ISR, it

works in an isolated context since an interrupt with higher priority have been triggered.

For more info refer to [20].

12 It is a function that is passed as an argument to another function

Operating System | Page 32

4 Operating System

4.1 Why a Multi-core/Multi -task Functional Test Operating System?

In [Paragraph 1.2] has been introduced the road traveled by the company from the old Built-

In Self-Test mechanism to the Functional Test Operating System. This version, nowadays

used by InfineonΩǎ e-Flash test engineers, is a single-core OS13. This system permits to test

different families of products respect to BIST where there is no portability because any test

must be written for any microcontroller and stored on any of it. But, the increase of the

requested computing power for the AI14 has pushed the technology to realize multi-core

CPU architectures and increasing the e-Flash dimensions for storing more pre and post-

elaborated data. Then, the single-core Functional Test OS has become obsolete, because the

ǘŜǎǘ ǘƛƳŜǎ ŀǊŜ ƛƴŎǊŜŀǎŜŘ ŀƴŘ ǘƘŜ ǎƻŦǘǿŀǊŜ ŘƻƴΩǘ ƎƛǾŜǎ ǘƻǘŀƭ ƘŀǊŘǿŀǊŜ ŎƻǾŜǊŀƎŜ όŀ ǎƛƴƎƭŜ-core

OS on a multi-core architecture). So, the MC team proposed to improve the OS with a multi-

core version. As it can be seen in [Figure 15], with a single CPU it can be test a memory bank

at time (sequential memory test) and if the memory dimension increase the test time

increase. With a multi CPU system it can be possible to concurrent test the memory banks,

reducing the test time respect to single core architecture. The MC team decided also to have

a multi-task OS. Thus, as already said, the target is a multi-core multi-task operating system.

.ǳǘΣ ƭŜǘΩǎ Řƻ ǎƻƳŜ ƻǊŘŜǊΦ

For definition a multi-core OS is a system that can handle a multiprocessor architecture.

There are several types of it:

¶ Symmetric Multi-Processor (SMP) system: each core shares the same OS and user

applications, resulting in a system in which each core can run all programs and

perform all operations. It is reliable, use resources effectively, can balance workloads

well but it is the most difficult configuration to implement

¶ Loosely Coupled Multi-Processor system: each core has its own memory, I/O devices

and operating system. The cores can communicate each other. When a job arrives,

ƛǘΩǎ ŀǘǘŀŎƘŜŘ ǘƻ ǘƘŜ ŦǊŜŜ ǇǊƻŎŜǎǎƻǊΦ ¢ƻ ƪŜŜǇ ǘƘŜ ǎȅǎǘŜƳ ǿŜƭƭ ōŀƭŀƴŎŜŘ ŀƴŘ ǘƻ ŜƴǎǳǊŜ

the best use of resources, job scheduling is based on several requirements and

policies. When a processor fails, the other continues to work independently

13 {ǘŀƴŘǎ ŦƻǊ άhǇŜǊŀǘƛƴƎ {ȅǎǘŜƳέ
14 Stands ŦƻǊ άArtificial LƴǘŜƭƭƛƎŜƴŎŜέΥ the ability of a computer or other machine to perform actions thought to
require intelligence. Among these actions are logical deduction and inference, creativity, the ability to make
decisions based on past experience or insufficient or conflicting information, and the ability to understand
ǎǇƻƪŜƴ ƭŀƴƎǳŀƎŜ όŘŜŦƛƴƛǘƛƻƴ ƻŦ άThe American Heritage® New Dictionary of Cultural Literacy, Third Editionέύ

Operating System | Page 33

Figure 15: Single-core vs Multi-core e-Flash tests

¶ Master-Slave Multi-Processor system: only one core, referred as the Master Core,

has a complete access to all OS code and to all user applications. All other cores

(Slave Cores), can access only a small subset of the OS and are usually triggered by

the Master Core in order to execute any program. This configuration is well suited for

computing environments in which processing time is divided between front-end and

back-end processors; in these cases, the front-end processor takes care of the

interactive users and quick jobs, and the back-end processor takes care of those with

long jobs using the batch mode. The reliability is not higher because if the master

core fails, the system fails. It increases the interrupts because anytime slave cores

need an OS intervention they must interrupt the master core. It can lead to poor time

management because a free slave core must to wait the master core for the next

operation

As we see, there are various pro and cons. The ¢Ǌƛ/ƻǊŜϰ has a master-slave configuration,

because the SMP solution was discarded due to the HW limitations of the SoC. Another

Operating System | Page 34

problem to the SMP configuration was coming from the ATE communication protocol, which

expects the executions of flows to be sequential, and not parallel, so ATE commands are

always triggered one by one. This also limits the parallelization of the execution if no update

to the ATE interface is desired. But it has also a scheduler that permits the multitasking. This

means that is not the traditional master-slave configuration.

Multitasking instead is not related to the core architecture, but is related to the processes

scheduling. It can be implemented also in a single-core CPU. More rigorously, it is a synonym

for multiprogramming, a technique that allows a single processor to process several

programs residing simultaneously in main memory and interleaving their execution by

overlapping I/O requests with CPU requests.

Thus, the engineers choose to implement a multi-core master and slave OS with a

multitasking ability for any CPU. The scheduler was designed and developed during multi-

task and also multi-core improve. This not means that the scheduler is designed for having a

multi-core OS. The multi-core speeds up the e-Flash tests execution. The multitasking

ƛƴǎǘŜŀŘ ƛƳǇǊƻǾŜǎ ŀƴȅ ŎƻǊŜΩǎ ǘƘǊƻǳƎƘǇǳǘΦ ¢Ƙƛǎ ƭŀǎǘ ƛǎ ǘƘŜ ǊŀǘŜ ŀǘ ǿƘƛŎƘ ǘƘŜ ǇǊƻŎŜǎǎŜǎ ŀǊŜ

executed. In pragmatic way, the multitasking avoids dead time in the mechanism of

processes execution on any core. Finally we can answer to the initial question: it is used a

multi-core multi-task OS because it is improved the e-Flash tests speed using a master-slave

configuration (this to maintain a lower power consumption when only one core is needed to

execute) and the multi-task feature needs to compensate the problem of a low throughput

of a traditional master-slave configuration. For more theory definitions and deepening of

theory read [22] and [23].

Now that the idea is clear, we can proceed to the OS structure. The multi-core version has

been coded from the single-core version. Thus, we can analyze some basic things that we

have also in the multi-core version. The Functional Test OS is initialized at the startup of the

testing sequence (where only master core is running), and is active across the whole

execution, in order to provide a standard interface with the ATE and the DUT, handling the

correct scheduling of the test flow. The ATE can start the execution of Task Applications from

the testware libraries, while the Task Application itself sees in the FTOS a hardware

abstraction of the Device Under Test. The list of sequence of test is grouped into some Flow

Tables (FT) where any element contains the list of tests that must be performed. Flow tables

are loaded in RAM with the TW library, and thanks to the FTOS the ATE can ask the DUT to

execute all the tests inside the FT one by one. After the entire sequence of test executed,

the OS returns a log of the tests executed. In [Figure 16] are represented the operating

system modules and how can be accessed.

Operating System | Page 35

Figure 16: OS modules and layers

Functional Test OS can be accessed through:

¶ ATE command interface: ATE access to the RAM locations and writes the opcode of

the command

¶ Testware System Call: when a Task Application (TA) needs to perform a low level

operation a jump to FTOS is taken. This allows the upper code layers to be more

ǇƻǊǘŀōƭŜ ŀŎǊƻǎǎ ŘƛŦŦŜǊŜƴǘ ƳƛŎǊƻŎƻƴǘǊƻƭƭŜǊǎ ό˃/ǎύ ŦŀƳƛƭƛŜǎ

¶ Hardware Trap Event: If an illegal instruction (contained in the trap vector table) is

performed, the trap handler provides informations about the anomalous termination

The tests are executed via flow commands. The Flow Manager module permits to embed

test flows into DUT and to handle their execution threads. Tests are stored in DUT SRAM in a

structured Flow. Flow Manager saves the index of test to run and the flow status.

Regarding the multi-core scenario, the master core is the only CPU running at the startup

and awakes the other cores during the initialization sequence. All the commands from the

test equipment are received from the master core that coordinates the other cores deciding

what processes they must execute. All slave cores are always on waiting for new commands

ŎƻƳƛƴƎ ŦǊƻƳ ǘƘŜ ƳŀǎǘŜǊ ŀƴŘ ŎŀƴΩǘ ŎǊŜŀǘŜ ŀƴȅ ǇǊƻŎŜǎǎΦ The multi-core feature has been

introduced for a specific task called Verify. This last contains a list of tests performed of the

e-Flash memories.

Operating System | Page 36

The new Functional Test OS guarantee the backward compatibility with the old operating

system. It also guarantee the scalability of the system to more CPUs, more e-Flash banks,

major dimensions of Word Lines, Sectors, Pages, redundancy and so on. For more detailed

informations see [20].

4.2 Scheduler Module

The scheduler is the module that choices what process to run next. To describe the OS

scheduler, we must to define and explore what are processes and the difference between

threads. A process is all the software that is runnable. There are two types: foreground

processes (principal processes that interact with the user) and daemons (processes that run

in background). A process could be in one of the next three states:

¶ Running: when a CPU is using this process

¶ Ready: when the process execution is stopped temporarily till another process,

usually with high priority, is running on the same CPU

¶ Blocked: unable to run until some external event happens

Four transitions are possible:

1. Process blocks for input

2. Scheduler picks another process

3. Scheduler picks this process

4. Input becomes available

Figure 17: States possible transitions

1

Running

Ready Blocked
3

2

4

Operating System | Page 37

A process is an entry of the process table where are stored informations, stack pointers,

program counters, memory allocations, etc. about the process. For any process there are

lightweight processes called threads. When a process thread interrupts its execution,

another thread of the same process continues to run. This multitasking solution permits a

high throughput, because the core has no dead time. The [22] is a good reference for what

concerning OS, processes, threads and schedulers theory.

In the new FTOS, the scheduling policy is a round robin which accepts a configurable

maximum number of processes, priority levels and maximum call depth per process. To each

process is assigned a time interval, called its quantum, during which it is allowed to run. If a

process is still running when its quantum is finished, the CPU is preempted and given to

another process. If the process has blocked or finished before the quantum has elapsed, the

CPU switching is done when the process blocks. All the schedulers need to maintain a list of

runnable processes. An interesting issue is the length of quantum. Switching from a process

to another requires some time for doing the administration (saving and loading registers,

updating tables, flushing and reloading caches, etc.). This operation is called context switch

(see what has almost been said in [Paragraph 3.5]). If the quantum is set too short causes

too many process switches and lowers the CPU efficiency, but setting it too long may cause

poor response to short interactive requests. The scheduler has a priority scheduling: each

process is assigned a priority and the runnable processes with highest priority are allowed to

run before which have a lower prio15. All other processes are organized in queues [Figure

18], sorted by the level of priority. When no process is running, they are all listed inside a

άCǊŜŜ ǇǊƻŎŜǎǎŜǎ ǉǳŜǳŜέΦ When a new task is needed by the CPU, a process for that task is

created, popping it from the list of free processes. When the process is created, a priority

level is assigned to it, and it is immediately pushed inside the proper priority queue. If no

other process is ready for the execution, or if the process wins the priority competition, that

process is set as running process for a quantum time slice. During the quantum time slice,

ǘƘŜ ǇǊƻŎŜǎǎ ŎŀƴΩǘ ōŜ ƛƴǘŜǊǊǳǇǘŜŘ ōȅ ǘƘŜ ǎŎƘŜŘǳƭŜǊΣ ŀƴŘ ƛǘ ŎƻƴǘƛƴǳŜǎ ƛǘǎ ŜȄŜŎǳǘƛƻƴ ǳƴǘƛƭ ƴŜȄǘ

ǎŎƘŜŘǳƭŜǊΩǎ ǎǘŜǇΣ ǿƘƛŎƘ ƛǎ ŀǳǘƻƳŀǘƛŎŀƭƭȅ ǘǊƛƎƎŜǊŜŘ ōȅ ŀ {ȅǎǘŜƳ ¢ƛƳŜǊ LƴǘŜǊǊǳǇǘΦ ¢ƘŜ ŘǳǊŀǘƛƻƴ

of the quantum is configured during the initialization procedure of the scheduler itself, and

ǿƘŜƴ ǘƘŜ ǘƛƳŜ ǉǳŀƴǘǳƳ ŜƭŀǇǎŜǎΣ ǘƘŜ ǇǊƻŎŜǎǎΩ ŎƻƴǘŜȄǘ ƛǎ ǎŀǾŜŘ ŀƴŘ ǘƘŜ ǎŎƘŜŘǳƭƛƴƎ ǊƻǳǘƛƴŜ

starts executing, also if no other process is ready. Instead, if new processes are available, the

schedulers set as running the ready process with the highest priority, keeping other

processes in wait until the higher processes terminate their execution. Round robin policy is

applied for processes which share the same priority level [Figure 19].

15 Abbreviation ƻŦ άpriorityέ

Operating System | Page 38

The processes are implemented as structures in C programming language. They contains the

context registers (LCX, PCX and FCX) and the pointer to the users stack (pstack). A pointer to

the next_process implements the process queue. The process_id and the index are useful to

identify the process among the whole program (process_id) and inside its queue (index). For

more detailed info on the scheduler implementation refer to [20].

Figure 19: Round robin scheduling

R
e

a
d

y

F
re

e R
e

a
d

y

R
e

a
d

y

R
e

a
d

y

Prio 0 Prio 1 Prio 2 Prio 3

Figure 18: Free process queue and priority queues

Operating System | Page 39

4.3 Multi -core Verify and Iterator Module

As it can be seen in [Figure 15] some pages back, the multi-core verify permits to reduce the

test time used for testing memory banks using a concurrent e-Flash modules scanning. The

function flowchart is depicted below in [Figure 20].

Figure 20: Verify function flowchart

Operating System | Page 40

The Verify Interface decodes input parameters from the RAM and consequently initializes

input and output structures to be used inside the Verify test. The Verify run is responsible for

the execution of the test. The Verify term is the function which merges all partial results and

passes the relevant ones to the FTOS for the final logging. The Verify run is stratified in the

same manner as the e-Flash memory:

1. Bank

2. Extended Sector

3. Sector

4. Word Line Cluster

5. Word Line

6. Page

7. Byte

8. Bit

Inside of any memory layer occur a not-priori defined number of the Verify iterations. The

iterations are test performed repeatedly over the e-Flash memory like 0s, 1s, checkerboard,

etc. As Verify outputs are logged: data errors, redundancy errors, unrepaired failing bits,

pump load errors, timeouts and the debug table.

The iterations are controlled by an iterator module which is part of the test library, and not

specifically related to the Verify functions. The iterator is the SW module which performs the

Verify cycles for each section of the flash. The multi-core Verify has some synchronization

functions that permits to align all cores at the same iteration level, after all the CPUs has

finished to iterate over its own memory section. The operations performed are the same for

all iteration levels. The synchronization functions are inside the iteration module, which in

the new version of FTOS will be responsible for the alignment of all cores. Each time a

memory section has been verified, the Special Function Register (SFR) configuration is

changed for all cores by one core (not necessary the master core). The synchronization for

levels below the sector iteration is not required. Across different banks there are different

number of extended sectors, sectors, WL and so on, while all cores recognize what is the

iteration level of other cores in order to understand if they have to wait or not for them. In []

is reported the multi-core update for the iteration module: this structure has some issues

and takes part of the modification targets of this thesis.

Operating System | Page 41

Figure 21: Iterator flowchart

The multi-core iterator has Look Up Table (LUT) that defines what memory sections are

tested by any CPU. The LUT is writable in RAM before the ATE triggers.

Operating System | Page 42

LUT Bank 0 Bank 1 Bank 2 Bank 3 Bank 4

CPU0 1 0 0 0 1

CPU1 0 1 0 0 0

CPU2 0 0 1 1 0

Figure 22: Example of LUT, before iteration

If the master core LUT row has all zeros (CPU0 has no banks assigned). The slave cores must

wait the start command by the master. To avoid this problem, in the new FTOS, has been

introduced a new status flag: the promoted core. This allows the master core to choose a

slave core and give it the executions of functions that normally execute only the master. The

promoted core is able to:

¶ Access to Special Function Register for the synchronization

¶ Control tƘŜ ƳŀǎǘŜǊ ŎƻǊŜΩǎ ŀƭƛƎƴƳŜƴǘ ŦƭŀƎ

4.4 Test Results Merging

Once the LUT has been emptied from all bank Verify requests, the results are still contained

in the temporary variables of each core, and they have to be merged together. Indeed the

higher software layers do not expect to receive N results for N CPUs, because in their eyes

the Verify function is still executing in a sequential mode. Thus output results have to be

merged. Most of results are cumulative, i.e. they represent the sum of all errors inside a

bank, or the number of repaired bits, number of failing 1s, number of failing 0s and so on.

Only the sum of their values is relevant. The flowchart of how the merging is implemented is

reported in [Figure 23].

Operating System | Page 43

Figure 23: Multi-core verify results merging flowchart

Operating System Release | Page 44

5 Operating System Release

Any developed software follows a Software Development Life Cycle (SDLC) shown in [Figure

24]. When this life cycle is completed, a new phase called release period begins. Also for this

last, is defined a standard Software Release Life Cycle (SRLC) that allows standardizing, in a

more generic and flexible way as possible, the phases of software release. The major stages

of software release are:

¶ Pre ς Alpha: Software ŘƻŜǎƴΩǘ ƴŜŎŜǎǎŀǊƛƭȅ Ŏƻƴǘŀƛƴ ŎƻƳǇƭŜǘŜŘ

features/functions. It is often an interim product build, prior to testing, often

ǘƻ ǾŀƭƛŘŀǘŜ ǇƛŜŎŜǎ ƻŦ ǿƻǊƪ ƻǊ ǘƘŀǘ ŘŜǾŜƭƻǇƳŜƴǘ ǘƻ ǘƘƛǎ Ǉƻƛƴǘ ƘŀǎƴΩǘ ōǊƻƪŜƴ ǘƘŜ

build process. Examples of activities are: requirements analysis, software

design, software development, unit testing and nightly builds16.

¶ Alpha: It is the first phase to begin software testing usually with the white-

box approach17. Then, grey and black-box tests are performed. It is often a

preliminary build that is only partially complete and typically contains

temporary codes, comments, product breaks, etc. Alpha software can be

ǳƴǎǘŀōƭŜ ŀƴŘ ŎƻǳƭŘ ŎŀǳǎŜ ŎǊŀǎƘŜǎ ƻǊ Řŀǘŀ ƭƻǎǎΦ ¢ƘŜ ʰ-phase usually ends with

ŀ άŦŜŀǘǳǊŜ ŦǊŜŜȊŜέ ǘƘŀǘ ƳŜŀƴǎ ǘhat no features will be added to the software.

¶ Beta: On this phase the software is the first version released outside for the

real-world testing, must include all the features but often contains known

bugs. The idea is to introduce the beta version in the market or to the

costumers in order to have available a huge number of testing users that give

feedback about the product and its issues increasing the probability of

detecting faults.

16 The term is frequently used for large projects where a complete rebuild of the finished product from source

takes too long for the individual developer to do this as a part of their normal development cycle. Instead a

complete rebuild is done automatically during the night so the build computer have 8-10-12 hours to do the

build and have it ready for the developers coming in the next morning, so they can continue working on their

individual tiny bit on top of the new version.

17 White-box testing is associated with source code testing (i.e., unit testing). For example, correct infinite
loops, unreachable code problems or undefined variables. Black-box testing instead, ensures that those parts
of the applications that will be exposed to the user work correctly (i.e. check that the requirements are
reached). Finally, the grey-box approach is a hybrid version of white and black-box approaches. More info at
[34].

