Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Moro, Luca (2015) Analisi conformazionale di HydF, proteina di maturazione delle [FeFe]-idrogenasi, in risposta al legame con GTP. [Magistrali biennali]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2539Kb

Abstract

Nel futuro delle energie rinnovabili il bioidrogeno suscita un grande interesse in quanto fonte di energia totalmente pulita, sostenibile e molto versatile. In questo contesto lo studio delle idrogenasi acquista sempre maggiore importanza, e in particolar modo quello sulle [FeFe]-idrogenasi, le più promettenti per applicazioni biotecnologiche in virtù della miglior resa di substrato in idrogeno molecolare rispetto alle altre classi di idrogenasi.

Tipologia del documento:Magistrali biennali
Parole chiave:HydF, [FeFe]-Idrogenasi, EPR, Bioidrogeno
Settori scientifico-disciplinari del MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Codice ID:52618
Relatore:Carbonera, Donatella
Data della tesi:2015
Biblioteca:Polo di Scienze > CIS "A. Vallisneri" - Biblioteca Biologico Medica
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Albertini M., Vallese F., Di Valentin M., Berto P., Giacometti G. M., Costantini P., Carbonera D. (2014). The proton iron-sulfur cluster environment of the [FeFe]-hydrogenase maturation protein HydF from Thermotoga neapolitana. International Journal of Hydrogen Energy 39, 18574-18582; Cerca con Google

Allakhverdiev S. I., Tomo T., Shimada Y., Kindo H., Nagao R., Klimov V. V., Mimuro M.(2010). Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci. 23, 3924-9: Cerca con Google

Berto P., Di Valentin M., Cendron L., Vallese F., Albertini M., Salvadori E., Giacometti G. M., Carbonera D., Costantini P. (2012). The [4Fe-4S]-cluster coordination of [FeFe]-hydrogenase maturation protein HydF as revealed by EPR and HYSCORE spectroscopies. Biochim Biophys Acta 1817, 2149-57; Cerca con Google

Bowen H., Dafa C., Xile H. (2014). Synthesis and Reactivity of Mononuclear Iron Models of [Fe]-Hydrogenase that Contain an Acylmethylpyridinol Ligand. Chemistry, A European Journal, 20, 1677-1682; Cerca con Google

Brazzolotto X., Rubach J. K., Gaillard J., Gambarelli S., Atta M., Fontecave M. (2006). The [FeFe]-hydrogenase maturation protein HydF from Thermotoga maritima is a GTPase with an iron-sulfur cluster. J. Biol. Chem. 281, 769-774; Cerca con Google

Brown K. A., Wilker M. B., Boehm M., Dukovic G., King P. W. (2012) Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. J Am Chem Soc 134, 5627-36; Cerca con Google

Cendron L., Berto P., D’Adamo S., Vallese F., Govoni C., Posewitz M. C., Giacometti G. M., Costantini P., Zanotti G. (2011). Crystal structure of HydF scaffold protein provides insights into [FeFe]-hydrogenase maturation. J. Biol. Chem. 286, 43944-43950: Cerca con Google

Cohen J., Kim K., Posewitz M., Ghirardi M. L., Schulten K., Seibert M., King P. (2005). Molecular dynamics and experimental investigation of H2 and O2 diffusion in [Fe]-hydrogenase. Biochem Soc Trans. 33, 80-82; Cerca con Google

Das D., Veziroglu T. N. (2008). Advances in biological hydrogen production processes. Int. J. hydrogen Energy. 33, 6046-6057; Cerca con Google

Florin L., Tsokoglou A., Happe T. (2001). A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem. 276, 6125-32; Cerca con Google

Fontecilla-Camps J. C., Volbeda A., Cavazza C., Nicolet Y. (2007). Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev. 107, 4273-4303; Cerca con Google

Frey M. (2002). Hydrogenases: hydrogen-activating enzymes. Chembiochem 3, 152-160; Cerca con Google

Happe T. and Kaminski A. (2002). Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem. 269, 1022-32; Cerca con Google

Hu M. Q., Wen H. M., Ma C. B., Li N., Yan Q. Y., Chen H., Chen C. N. (2010) . Synthesis, structures and electrochemistry studies of 2Fe2S-Fe(ii)(S-2N)(2) models for H-cluster of [FeFe]-hydrogenase. Dalton Trans. 39, 9484-6 ; Cerca con Google

King P. W., Posewitz M. C., Ghirardi M. L., Seibert M. (2006). Functional studies of [FeFe]-hydrogenase maturation in an Escherichia coli biosynthetic system. J. Bacteriol. 188, 2163-2172; Cerca con Google

Kuchenreuther J. M., Myers W. K., Suess D. L., Stich T. A., Pelmenschikov V., Shiigi S. A., Cramer S. P., Swartz J. R., Britt R. D., George S.J. (2014). The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster. Science. 6169, 424-7; Cerca con Google

Lubitz W., Reijerse E., van Gastel M. (2007). [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev. 107, 4331-65; Cerca con Google

Manish S. and Barenjee R. (2008). Comparison of bio-hydrogen production processes. Int. J. hydrogen Energy. 33, 279-268; Cerca con Google

Maso L., Galazzo L., Vallese F., Di Valentin M., Albertini M., De Rosa E., Giacometti G. M., Costantini P., Carbonera D. (2015). A conformational study of the GTPase domain of [FeFe]-hydrogenase maturation protein HydF by PELDOR spectroscopy. Appl Magn Reson 46, 465-479; Cerca con Google

MathWorks (2014). MATLAB. MathWorks, URL http://www.mathworks.it/products/matlab/ (01/07/2014); Vai! Cerca con Google

McGlynn S. E., Mulder D. W., Shepard E. M., Broderick J. B., Peters J. W. (2009). Hydrogenase cluster biosynthesis: organometallic chemistry nature's way. Dalton Trans. 22, 4274-85; Cerca con Google

McGlynn S. E., Shepard E. M., Winslow M. A., Naumov A. V., Duschene K. S., Posewitz M. C., Broderick W. E., Broderick J. B., Peters J. W. (2008). HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis. FEBS Lett. 582, 2183-2187; Cerca con Google

Melis A., Happe T. (2001). Hydrogen production. Green algae as a source of energy. Plant Physiol. 127, 740-748; Cerca con Google

Meyer J. (2007). [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci. 64, 1063-1084; Cerca con Google

Mulder D. W., Boyd E. S., Sarma R., Lange R. K., Endrizzi J. A., Broderick J. B., Peters J. W. (2010). Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(ΔEFG). Nature 465, 248-251; Cerca con Google

Nicolet Y., Rubach J. K., Posewitz M. C., Amara P., Mathevon C., Atta M., Fontecave M., Fontecilla-Camps J. C. (2008). X-ray structure of the [FeFe]-hydrogenase maturase HydE from Thermotoga maritima. J. Biol. Chem. 283, 18861-18872; Cerca con Google

Peters J.W., Broderick J.B. (2012). Emerging paradigms for complex iron-sulfur cofactor assembly and insertion. Annu. Rev. Biochem. 81, 429-450; Cerca con Google

Polyhach Y., Bordignon E., Jeschke. (2011). Rotamer libraries of spin labelled cysteines for protein studies. G. Phys. Chem. Chem. Phys13, 2356-2366 Cerca con Google

Posewitz M. C., King P. W., Smolinski S. L., Zhang L., Seibert M., Ghirardi M. L. (2004). Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J. Biol. Chem. 279, 25711-20; Cerca con Google

Sambrook J., Fritsch E. F., Maniatis T. (1989). Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press; Cerca con Google

Shepard E. M., McGlynn S. E., Bueling A. L., Grady-Smit, C. S., George S. J., Winslow M. A., Cramer S. P., Peters J. W., Broderick J. B. (2010). Synthesis of the 2Fe sublcuster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. Proc. Natl. Acad. Sci. 107, 10448-10453; Cerca con Google

Shima S., Pilak O., Vogt S., Schick M., Stagni M. S., Meyer-Klaucke W., Warkentin E., Thauer R. K., Ermler U. (2008). The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321, 572-5; Cerca con Google

Silakov A., Wenk B., Reijerse E., Lubitz W. (2009). (14)N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys. Chem. Chem. Phys. 11, 6592-6599; Cerca con Google

Sofia H. J., Chen G., Hetzler B. G., Reyes-Spindola J. F., Miller N. E. (2001). Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097-1106; Cerca con Google

Stephenson M., and Stickland L. H. (1931). Hydrogenase: a bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme. Biochem. J. 25, 205–214; Cerca con Google

Svedružić D., Blackburn J. L., Tenent R. C., Rocha J. D., Vinzant T. B., Heben M. J., King P. W. (2011) High-performance hydrogen production and oxidation electrodes with hydrogenase supported on metallic single-wall carbon nanotube networks. J Am Chem Soc. 133, 4299-306; Cerca con Google

Thauer R. K., Kaster A. K., Goenrich M., Schick M., Hiromoto T., Shima S. (2010). Hydrogenase s from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem. 79, 507-36; Cerca con Google

Tosatto S. C., Toppo S., Carbonera D., Giacometti G. M., Costantini P. (2007). Comparative analysis of [FeFe]-hydrogenase from Thermotogales indicates the molecular basis of resistance to oxygen inactivation. Int. J. hydrogen Energy. 33, 570-578; Cerca con Google

Vallese F., Berto P., Ruzzene M., Cendron L., Sarno S., De Rosa E., Giacometti G. M., Costantini P. (2012). Biochemical analysis of the interactions between the proteins involved in the [FeFe]-hydrogenase maturation process. J Biol Chem. 287, 36544-55; Cerca con Google

Van Ooteghem S. A., Jones A., Van Der Lelie D., Dong B., Mahajan D. (2004). H(2) production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol Lett. 15, 1223-32; Cerca con Google

Vetter I. R. and Wittinghofer A. (2001). The Guanine Nucleotide–Binding Switch in Three Dimensions. Science 294, 1299 Cerca con Google

Vignais P. M., and Billoud B. (2007). Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206-4272; Cerca con Google

Vignais P. M. and Colbeau A. (2004). Molecular biology of microbial hydrogenases. Curr Issues Mol Biol. 6, 159-88; Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record