Simulazioni di osservazioni polarimetriche in banda X con la missione XIPE

Candidato:
Davide De Grandis
mat. 1070145

Relatore:
Prof. Roberto Turolla

Correlatore:
Dott. Roberto Taverna

Anno Accademico 2015-2016
Indice

<table>
<thead>
<tr>
<th>Capitolo</th>
<th>Titolo</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduzione</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Le stelle di neutroni</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Generalità</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Le Magnetar</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Modello per le magnetar transient</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>La polarimetria X</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>I parametri di Stokes</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Misure di polarizzazione</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Il GPD di XIPE</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Emissione polarizzata dalle magnetar</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>La polarizzazione del vuoto</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>Propagazione della radiazione nel vuoto magnetizzato</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Simulazioni di osservazioni con XIPE</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>Simulazione dell'emissione</td>
<td>17</td>
</tr>
<tr>
<td>4.2</td>
<td>Simulazioni osservative</td>
<td>18</td>
</tr>
<tr>
<td>4.3</td>
<td>Ricostruzione della configurazione geometrica</td>
<td>19</td>
</tr>
<tr>
<td>4.4</td>
<td>Test della QED</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Conclusioni</td>
<td>25</td>
</tr>
</tbody>
</table>
Abstract

Neutron stars (NSs) and, in particular, ultra magnetized NSs (magnetars) provide a unique scenario to investigate the properties of matter under extreme conditions. All observations made so far were performed in the timing and spectral domain and have not addressed polarization. The ESA XIPE (X-ray Imaging Polarimetry Explorer) mission, which is expected to be launched within 2025, will at last perform polarization measurements. This work discusses how polarimetry with XIPE can open a new window in NS astrophysics and allow us to measure quantities that are impossible to estimate otherwise. The focus is on a particular class of NSs, transient magnetars i.e. ultra-magnetized NSs which become bright during outbursts and, in particular, on how polarimetry will be able to determine the geometrical properties of the source (inclination of line of sight and magnetic axis with respect to the rotational axis). Furthermore, the possibility of testing “vacuum polarization”, a QED effect never experimentally verified as yet, is discussed. A set of simulated XIPE observations was produced and compared with theoretical models. Results show a good predictive capability in determining the source geometry and that, under favourable conditions, polarimetry can indeed provide a direct test of QED effects.
Introduzione

Lo studio delle stelle di neutroni permette di investigare la fisica di processi che avvengono in condizioni estreme, impossibili da riprodurre a terra. D'altra parte l'osservazione di oggetti così lontani richiede misure particolari per poter ottenere un'informazione completa. Lo sviluppo delle osservazioni in banda X, che devono essere necessariamente effettuate da satelliti in orbita, ha consentito finora di ricavare dettagliate informazioni spettrali e di timing su queste sorgenti.

L'analisi spettrale, tuttavia, non è sufficiente a determinare univocamente molti parametri che descrivono le proprietà fisiche e geometriche di queste sorgenti. Molti fenomeni fisici, infatti, influenzano lo stato di polarizzazione della radiazione emessa. Le misure di polarizzazione possono quindi completare l'informazione che deriva dalle misure spettroscopiche, consentendo una visuale più ampia sui processi che avvengono in questi oggetti.

Un primo tentativo di misure di polarizzazione nella banda X è stato effettuato tra la fine degli anni '70 e l'inizio degli anni '80 tramite i satelliti OSO-8 e INTEGRAL ([18], [6], [2]), ma i risultati ottenuti non sono stati determinanti. La missione XIPE (X-ray Imaging Polarimetry Explorer) si pone come obiettivo la realizzazione di queste misure, utilizzando nuove tecnologie che combinano la polarimetria con una buona capacità di imaging. Essa è attualmente allo studio presso l'ESA nel programma M4, ed è prevista in lancio entro un decennio per un periodo di attività di almeno tre anni [19]. Le sorgenti astrofisiche che verranno studiate sono molteplici, ma la nostra attenzione si concentrerà sulle magnetar transienti. Esse sono una particolare classe di stelle di neutroni, che mostrano campi magnetici molto elevati (fino a $10^{13} - 10^{14}$ G) e periodi di attività anomala in cui il flusso emesso aumenta di un fattore $100 - 1000$.

La radiazione proveniente da questo tipo di oggetti presenta delle caratteristiche di polarizzazione che consentono di ricostruire la geometria della sorgente e di effettuare dei test riguardanti la fisica fondamentale. Gli effetti legati all'elettrodinamica quantistica, infatti, influenzano anche la polarizzazione della radiazione, ma i campi magnetici necessari per avere scostamenti apprezzabili dal caso classico sono così elevati che una verifica di questi effetti non è mai stata effettuata. L'efficacia delle misure di XIPE è messa alla prova simulando la risposta dello strumento alla radiazione emessa dalle magnetar transienti, a sua volta simulata sulla base degli attuali modelli teorici.

Il lavoro è organizzato come segue:

- nel Capitolo 1 si dà un inquadramento generale sulle stelle di neutroni altamente magnetizzate ed in particolare sulle magnetar transienti;
• nel Capitolo 2 si descrivono le tecniche utilizzate per lo studio della polarizzazione, sia dal punto di vista teorico che da quello osservativo, con particolare riguardo agli strumenti di XIPE;
• nel Capitolo 3 si discute la propagazione della radiazione nel vuoto quantistico ultra-magnetizzato in relazione alla polarizzazione;
• nel Capitolo 4 sono mostrate le simulazioni delle misure di XIPE e discusi i risultati così ottenuti.
1 | Le stelle di neutroni

Uno degli obiettivi della missione XIPE sarà lo studio delle stelle di neutroni ed in particolare delle magnetar, che forniscono un ambiente ideale per investigare i fenomeni che avvengono in presenza di forti campi magnetici in regimi fortemente general-relativistici. Questo lavoro si concentrerà su questo tipo di oggetti, di cui in questo capitolo si dà una descrizione generale.

1.1 Generalità

Le stelle di neutroni sono oggetti compatti prodotti dal core collapse di stelle di massa $10M_\odot \lesssim M \lesssim 25M_\odot$: quando le reazioni di fusione nel nucleo si interrompono, la forza gravitazionale che tende a far contrarre la stella non è più bilanciata dalle forze di pressione del gas degenere, e nelle zone interne inizia il processo di neutronizzazione $p^+ + e^- \rightarrow n^0 + \nu_e$ che normalmente non avviene perché gli elettroni termici non hanno abbastanza energia. Si forma quindi un nucleo di materia altamente degenere, costituita principalmente da neutroni, in cui il processo di neutronizzazione e il decadimento dei neutroni sono all’equilibrio chimico. Gli oggetti risultanti hanno masse dell’ordine di $1—2M_\odot$ e raggi di $10—20\text{km}$ che comportano densità elevatissime, nell’ordine dei 10^{15}g cm^{-3} (paragonabili a quelle del nucleo atomico). Assumendo che nel processo di core collapse si conservi con buona approssimazione il momento angolare, il periodo di rotazione, a fronte di una diminuzione consistente del momento di inerzia, cresce dalle decine di giorni delle stelle ordinarie fino a valori tipici di $P = 10^{-3}—10\text{s}$. Nel collasso si conserva anche il flusso magnetico, per cui il campo iniziale della stella, dell’ordine di 10^{15}G, arriva a valori $10^{11}—10^{14} \text{G}$. Un oggetto magnetizzato in rotazione con velocità angolare Ω emette radiazione elettromagnetica con potenza data dalla formula di Larmor1:

$$\dot{E} = \frac{2}{3c^3} |\mathbf{\tilde{m}}|^2 = -\frac{B_{\text{pol}}^2 R_{NS}^6 \Omega^4}{6c^3} \sin^2 \xi,$$ \hspace{1cm} (1.1)

dove B_{pol} è l’intensità ai poli magnetici del campo, assunto dipolare con momento \mathbf{m}, e ξ è l’angolo tra \mathbf{m} e l’asse di rotazione. Uguagliando questa espressione a quella della perdita di energia rotazionale o spin-down luminosity

$$\dot{E}_{\text{sd}} = I \dot{\Omega},$$ \hspace{1cm} (1.2)

1Si useranno le unità elettromagnetiche di Gauss.
1.2. Le Magnetar

dove I è il momento di inerzia, si ottengono il campo magnetico di spin down e l’età caratteristica della stella di neutroni. In particolare, equagliando le 1.1 e 1.2 e risolvendo per B_{pol} si ottiene il campo di spin down al polo come funzione delle quantità direttamente misurabili P e \dot{P},

$$B_{\text{pol}} = \sqrt{\frac{6Ic^3}{R_{\text{NS}} \sin^2 \xi \Omega^3}} \frac{\Omega}{P} = \sqrt{\frac{3Ic^3}{4\pi^2 R_{\text{NS}} \sin^2 \xi \Omega^3}} P \dot{P} \approx 3.2 \times 10^{19} \sqrt{\frac{P}{\dot{P}}} \text{ G},$$

(1.3)

dove il valore numerico è stato ricavato per i valori caratteristici $R_{\text{NS}} = 10\text{ km}$, $M = 1.5\ M_\odot$, $I = 10^{45}\ \text{g cm}^2$ e ponendo $\sin^2 \xi = 1$. Integrando la stessa espressione vista come funzione di t e Ω tra 0 e un istante generico, nell’ipotesi che la velocità angolare iniziale sia molto maggiore di quella finale e che il campo magnetico sia costante, si può legare questo istante a P e \dot{P}; utilizzando per queste variabili i valori misurati al tempo attuale si ottiene l’età caratteristica τ_c della stella:

$$\tau_c = \frac{1}{2} \frac{P}{\dot{P}}.$$

(1.4)

Questa quantità fornisce una stima dell’età della stella a partire da quantità osservabili, nell’ipotesi che tutta la perdita di energia sia dovuta all’irraggiamento di dipolo magnetico. Queste relazioni mostrano come il periodo e la sua derivata giocino un ruolo fondamentale nella caratterizzazione delle stelle di neutroni, che sono quindi usualmente rappresentate nel diagramma $P-\dot{P}$, figura 1.1. Similmente a quanto accade nel diagramma di Hertzsprung-Russell per le stelle ordinarie, si evidenziano diverse popolazioni nelle varie zone del diagramma: nella zona centrale si trova la maggior parte degli oggetti, le pulsar radio, mentre il nostro interesse si concentrerà nella zona ad alti campi magnetici, dove si trovano le magnetar.

1.2 Le Magnetar

Sono dette magnetar le stelle di neutroni che mostrano una luminosità molto maggiore di quella di spin-down: l’emissione non è solamente dovuta alla perdita di energia magneto-rotazionale, di conseguenza un contributo determinante deve arrivare da altri meccanismi collegati alla dissipazione del campo magnetico interno alla stella, che si stima dell’ordine di 10^{16} G [11], [16]. Questi oggetti sono fortemente attivi e oltre alla loro emissione persistente (luminosità dell’ordine di $10^{35}-10^{36}\text{ ergs}^{-1}$) emettono burst di radiazione X, usualmente classificati in tre categorie [17]:

- short bursts, di energie fino a 10^{41} erg e durata inferiore al secondo;
- intermediate flares, di energie nell’intervallo $10^{41}-10^{43}\text{ erg}$ e durata nell’ordine delle decine di secondi;
- giant flares di energie da 10^{44} a 10^{46} erg e durate dell’ordine delle centinaia di secondi.

L’origine di questi fenomeni è legata a una riconfigurazione del campo magnetico [16]. Il campo magnetico all’interno della stella in fase di quiescenza presenta, probabilmente, un’intensa componente toroidale, mentre quello esterno è quasi
1.2. Le Magnetar

Figura 1.1: Diagramma $P - \dot{P}$ (in scala doppio-logaritmica). Le linee oblique a pendenza negativa rappresentano le curve a costante campo magnetico, quelle a pendenza positiva a età caratteristica τ_c costante. I diversi simboli corrispondono a diverse popolazioni di stelle di neutroni.
dipolare. La fase attiva inizia quando il campo interno riesce a provocare una deformazione della crosta della stella portando l’elicità\(^2\) a trasferirsi anche nel campo esterno: essendo allora \(\nabla \times \mathbf{B}_{\text{ext}} \neq 0 \) si formano delle correnti che, riscal-dando la superficie per effetto ohmico, aumentano la luminosità della stella. L’origine della grandissima quantità di energia dei giant flares può essere spiega-ta come trasferimento di elicità dal campo interno a quello esterno: per avvenire, questo processo deve deformare la crosta della stella, e una volta innescato provoca un grande rilascio di energia. Le condizioni particolari necessarie alla deformazione della crosta spiegano la rarità di questi fenomeni: da quando sono iniziate le osservazioni in banda X, sono stati rilevati solamente tre giant flares [17].

1.2.1 Modello per le magnetar transienti

Tra le magnetar vi è poi una classe di oggetti particolari, la cui emissione varia in maniera molto repentina con un fenomeno detto outburst: l’emissione persistente aumenta di un fattore circa 100—1000 in un lasso di tempo di qualche ora, decadendo poi con tempi caratteristici dell’ordine dell’anno. Alle prime fasi dell’outburst è associata l’emissione di burst ordinari. Questi oggetti sono detti \textit{magnetar transienti} e la nostra analisi si concentrerà d’ora in avanti su di essi. Ad oggi si conoscono una decina di magnetar transienti e viene osservato in media un outburst ogni anno, sia da sorgenti nuove che ripetuti da sorgenti già note. Lo spettro delle magnetar transienti durante il periodo di emissione è ben interpretato in termini di due componenti di corpo nero [17]. Dal fit con le corrispondenti curve di Planck si ricavano la temperatura e l’area di emissione delle due componenti; da questi valori si desume che la stella abbia una piccola zona calda (hotspot), quella in cui gli effetti dissipativi del campo sono più forti, di raggio dell’ordine del kilometro e temperatura dell’ordine del keV\(^3\) mentre il resto della superficie si trova ad una temperatura più bassa, paragonabile a quella della fase di quiescenza.

\(^2\)L’elicità del campo magnetico è definita come \(h = \int \mathbf{A} \cdot \mathbf{B} \, d^3 x \), dove \(\mathbf{A} \) è il potenziale vettore e l’integrazione è estesa al volume in cui è presente il campo in esame. Questa quantità descrive le proprietà topologiche del campo magnetico, ed è conservata fintantoché non si ha una riconnessione delle linee di campo.

\(^3\)Le temperature vengono date in eV assumendo \(k_B=1 \) cosicché 1 eV = 11604.5 K
2 | La polarimetria X

In questo capitolo saranno discusse delle generalità sulla polarizzazione della radiazione, sulle quantità e sui metodi usati per misurarla nella banda X con particolare attenzione alle tecniche che verranno impiegate da XIPE.

2.1 I parametri di Stokes

Introduciamo un’onda monocromatica di pulsazione \(\omega \) che si propaga lungo l’asse \(z \) di un sistema di riferimento ortonormale essendo polarizzata ellitticamente nel piano \((x, y)\): il campo elettrico ha componenti (vedi fig. 2.1)

\[
E_x = \mathcal{E}_1 \cos(\omega t - \varphi_1) \quad E_y = \mathcal{E}_2 \cos(\omega t - \varphi_2).
\]

(2.1)

Queste sono le equazioni di un’ellisse, che riferite al sistema degli assi principali \((x', y')\), ruotati di un angolo \(\chi \) rispetto ai precedenti, diventano

\[
E'_x = \mathcal{E}_0 \cos \beta \cos \omega t \quad E'_y = -\mathcal{E}_0 \sin \beta \sin \omega t,
\]

(2.2)

dove sono state introdotte le quantità \(\mathcal{E}_0 = \sqrt{\mathcal{E}_1^2 + \mathcal{E}_2^2} \) e \(\beta = \tan b/a \), dove \(a \) e \(b \) sono i semiasse dell’ellisse. Questa scrittura comprende i due casi limite di polarizzazione circolare, \(\beta = \pi/4 \), e lineare, \(\beta = 0 \) o \(\beta = \pi/2 \).

Per trattare queste quantità in modo più maneggevole introduciamo i parametri di Stokes per un singolo fotone\(^1\) come

\[
I = \mathcal{E}_1^2 + \mathcal{E}_2^2
Q = \mathcal{E}_1^2 - \mathcal{E}_2^2 = \mathcal{E}_0^2 \cos 2\beta \cos 2\chi
U = 2\mathcal{E}_1\mathcal{E}_2 \cos(\varphi_1 - \varphi_2) = \mathcal{E}_0^2 \cos 2\beta \sin 2\chi
V = 2\mathcal{E}_1\mathcal{E}_2 \sin(\varphi_1 - \varphi_2) = \mathcal{E}_0^2 \sin 2\beta.
\]

(2.3)

Essendo la polarizzazione descritta completamente dai tre parametri \(\mathcal{E}, \beta \) e \(\chi \), questi quattro nuovi parametri non possono essere indipendenti; in effetti è immediato verificare che, per un’onda piana monocromatica, vale la relazione

\[
I^2 = Q^2 + U^2 + V^2
\]

(2.4)

in virtù della quale possono essere introdotti i parametri di Stokes ridotti

\[
\tilde{Q} = \frac{Q}{I} \quad \tilde{U} = \frac{U}{I} \quad \tilde{V} = \frac{V}{I}
\]

(2.5)

\(^1\) D’ora in poi ci si riferirà indifferentemente a “singoli fotoni” o “onde piane monocromatiche”.

7
2.1. I parametri di Stokes

![Geometria del piano ortogonale alla direzione di propagazione.](image)

che sono invece indipendenti. Queste quantità hanno una precisa interpretazione fisica: I corrisponde all'intensità della radiazione, V è il parametro di circolarità (nullo se la polarizzazione è lineare) e Q e U misurano l'orientazione dell'ellisse rispetto all'asse x ($Q = U = 0$ se la polarizzazione è puramente circolare). I parametri possono essere formalmente scritti come “vettori di Stokes”: questo approccio permette anche di rappresentare una rotazione degli assi (x, y), di un angolo ζ (corrispondente ad un cambiamento di χ in $\chi + \zeta$) in forma di matrice,

$$
\begin{pmatrix}
I' \\
Q' \\
U' \\
V'
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos 2\zeta & \sin 2\zeta & 0 \\
0 & -\sin 2\zeta & \cos 2\zeta & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
I \\
Q \\
U \\
V
\end{pmatrix}
$$

(2.6)

come è facilmente ricavabile dalla definizione tramite le usuali relazioni trigonometriche. Considerando radiazione composta da più onde piane monocromatiche, si può vedere che i parametri di Stokes siano additivi rispetto alla sovrapposizione di onde indipendenti. Questa caratteristica costituisce il principale vantaggio nell’uso di questi parametri. Si possono allora definire i parametri di Stokes per l’intera radiazione come somma dei parametri dei singoli fotoni, prendendo attenzione al fatto che i parametri dipendono dal sistema di riferimento in cui sono definiti: prima di sommarli è necessario dunque riferirli tutti allo stesso sistema di riferimento tramite rotazioni, operazione resa semplice dalla 2.6. Sommando i parametri, tuttavia, i valori di β saranno diversi per ciascun termine e l'identità 2.4 deve essere sostituita dalla relazione

$$
I^2 \geq Q^2 + U^2 + V^2.
$$

(2.7)
2.2. Misure di polarizzazione

Le proprietà di polarizzazione possono essere caratterizzate anche in termini di altri osservabili dati da opportune combinazioni dei parametri di Stokes: la frazione di polarizzazione lineare Π_L, l’angolo di polarizzazione χ_p e la frazione di polarizzazione circolare Π_C, legate ai parametri da

$$
\Pi_L = \frac{\sqrt{Q^2 + U^2}}{I} \leq 1
$$

(2.8)

$$
\chi = \frac{1}{2} \arctan \frac{U}{Q}
$$

(2.9)

$$
\Pi_C = \frac{V}{I} \leq 1.
$$

(2.10)

2.2 Misure di polarizzazione

Le misure di polarizzazione richiedono strumenti specifici, che sfruttano un’ampia gamma di fenomeni fisici e possono essere di concezione radicalmente diversa nelle varie bande energetiche da studiare. Per quanto riguarda la radiazione X, esistono tre tipi principali di polarimetro:

- il polarimetro **Bragg**, basato sulle proprietà di riflessione dei raggi X da parte di un cristallo;
- il GPD, **Gas Pixel Detector**, basato sull’effetto fotoelettrico, usato per energie nell’ordine del keV in intervalli di energia diversi a seconda del materiale da cui vengono estratti i fotoelettroni;
- il polarimetro **Compton**, basato su una serie di scintillatori che rivelano gli elettroni accelerati dalla radiazione per effetto Compton, usato per i raggi X più duri di energia $\gtrsim 30$keV.

La missione XIPE, **X-ray Imaging Polarimetry Explorer**, attualmente in fase di studio presso l’ESA, è prevista in lancio entro il 2025 e produrrà almeno tre anni di dati di analisi polarimetrica. Lo strumento scelto per la missione è un GPD, che permetterà di operare su sorgenti X quali microquasar, pulsar, nuclei galattici attivi e magnetar nella banda X intermedia, nell’intervallo 2—8keV.

2.2.1 Il GPD di XIPE

Lo strumento è rappresentato schematicamente in figura 2.2; esso è formato da tre parti principali [19]:

- uno strato di 50 μm di berillio;
- una camera riempita di elio ed etere dimetilico (CH$_3$OCH$_3$) che funge da GEM (Gas Electron Multiplier);
- un anodo costituito da un condensatore MOS (Metal-Oxide Silicon) tassellato con uno schema esagonale in 105600 pixel di lato 50 μm, ognuno collegato da un proprio canale analogico a un ADC (Analog to Digital Converter).
All’arrivo di un fotone X un fotoelettrone viene emesso dallo strato di Be, progettato in modo da operare su una banda \(2-8\text{keV}\), per passare poi nello strato di gas dove provoca una scarica di elettroni che viene letta dall’ADC collegato all’anodo. Il moto degli elettroni è accelerato da una tensione che viene mantenuta tra lo strato di berillio e l’anodo. Il dispositivo è anche dotato di un meccanismo di trigger che permette di confrontare letture in istanti diversi. La direzione di uscita del fotoelettrone dipende dalla direzione del campo elettrico dell’onda incidente secondo la sezione d’urto [1]

\[
\frac{\partial \sigma}{\partial \varphi} = 4 \sqrt{2} r_0^2 Z^5 \alpha^4 \left(\frac{m c^2}{\hbar \nu} \right)^{7/2} \cos^2 \varphi
\]

(2.11)
dove \(r_0\) e \(m\) sono raggio classico e massa dell’eletrone, \(\alpha\) la costante di struttura fine e \(Z\) il numero atomico del metallo, nel nostro caso 4 per il Be. Lo strumento non è in grado di misurare un’eventuale inclinazione tra il piano di polarizzazione e quello del rivelatore, quindi si è data l’espressione semplificata in cui essi sono paralleli; questo implica anche che il GPD non è in grado di misurare il grado di polarizzazione circolare \(\Pi_C\). Quello che il GPD misura è l’intensità del segnale in funzione dell’angolo \(\varphi\), che dà la curva di modulazione. Ricordando la 2.11 essa avrà la forma

\[
\mathcal{M} = A + B \cos^2 (\varphi - \varphi_0)
\]

(2.12)
dove \(A\), \(B\) e \(\varphi_0\) sono i parametri liberi da determinare con un fit, vedi figura 2.3. Da questa curva si ottiene l’ampiezza di modulazione

\[
M = \frac{\mathcal{M}_{\text{max}} - \mathcal{M}_{\text{min}}}{\mathcal{M}_{\text{max}} + \mathcal{M}_{\text{min}}} = \frac{B}{B + 2A}.
\]

(2.13)
2.2. Misure di polarizzazione

Il grado di polarizzazione lineare è allora dato da

\[\Pi_L = \frac{1}{\mu} M = \frac{1}{\mu} \frac{B}{B + 2A}, \]

(2.14)

dove \(\mu \) è il fattore di modulazione, definito come l’ampiezza di modulazione per fotoni polarizzati al 100%. Per uno strumento ideale \(\mu = 1 \) e \(M \equiv \Pi_L \), dunque \(\mu \) è un parametro, misurabile a terra, che quantifica la prestazione dello strumento. Se lo strumento viene investito da radiazione completamente non polarizzata, la curva di modulazione sarà piatta a meno di fluttuazioni statistiche; dal momento che la modulazione è definita positiva sarà sempre possibile fittarla con una distribuzione di tipo \(\cos^2 \phi \), per quanto piccola possa poi risultare l’ampiezza (figura 2.4). Per risolvere il problema di discriminare la radiazione polarizzata dalle fluttuaioni si introduce allora la MDP\(_{99}\), Minimum Detectable Polarization al 99% di confidence level, definita come il valore di grado di polarizzazione dato in risposta a radiazione completamente non polarizzata con livello di confidenza del 99%. Assumendo che i conteggi in ogni canale seguano la statistica di Poisson,

\[\text{MDP}_{99} = \frac{4.29}{\eta \mu F} \sqrt{\frac{B + \eta F}{ST}}, \]

(2.15)

dove \(\eta \) è l’efficienza dello strumento, \(S \) l’area efficace, \(F \) e \(B \) le intensità del segnale e del fondo e \(T \) il tempo di esposizione. Una lettura di polarizzazione maggiore di MDP\(_{99}\) ha una probabilità minore dell’1% di essere stata rivelata solo per effetto di fluttuazioni statistiche. L’angolo di polarizzazione \(\chi_p \) è dato dalla posizione angolare del massimo della curva di modulazione, corrispondente al parametro \(\phi_0 \).
2.2. Misure di polarizzazione

Figura 2.4: Risposta a radiazione completamente non polarizzata con un ingrandimento che mostra come le fluttuazioni statistiche del numero dei conteggi nei vari bin possano comunque essere fittate con una modulazione di tipo $\cos^2 \varphi$ [12].
3 | Emissione polarizzata dalle magnetar

Gli elevatissimi campi magnetici delle magnetar producono effetti rivelabili sulla polarizzazione della radiazione emessa. Questi effetti sono legati all'elettrodinamica quantistica, dunque il loro studio può dare un contributo nel testare la fisica fondamentale in condizioni estreme.

3.1 La polarizzazione del vuoto

Secondo l'elettrodinamica quantistica (QED, Quantum Electro-Dynamics) un fotone che si propaga nel vuoto può dividersi in una coppia virtuale elettrone-positrone. La presenza di un campo magnetico molto intenso che interagisce con queste particelle cariche virtuali può alterarne lo stato di polarizzazione. Questo effetto si può trattare pensando che in queste condizioni il vuoto si comporti come un mezzo dielettrico, caratterizzato dai tensori dielettrico \(\varepsilon \) e di permeabilità magnetica \(\mu \) dati da (cfr. \([9]\])

\[
\varepsilon = a + q \hat{B} \otimes \hat{B}, \\
\mu = a + m \hat{B} \otimes \hat{B},
\]

(3.1)
dove per semplicità si è data l'espressione dell'inverso di \(\mu, \bar{\mu} \). Questo effetto è detto di polarizzazione del vuoto. Se il campo è debole, cioè è molto minore del campo critico quantistico \(B_Q \) (a cui l'energia di ciclotrone dell'elettrone \(\hbar \omega_B \) è uguale alla sua energia di massa a riposo, \(B_Q = m^2 c^2 / e \hbar = 4.4 \times 10^{13} \) G),

\[
a = -2 \delta \quad q = 7 \delta \quad m = -4 \delta
\]

(3.2)
con

\[
\delta = \frac{a}{45 \pi} \left(\frac{B}{B_Q} \right)^2 \approx 3 \times 10^{-10} \left(\frac{B}{10^{11} \text{ G}} \right)^2.
\]

(3.3)

In realtà, questa parametrizzazione può essere considerata valida anche per campi fino all'ordine di \(10^{14} \) G, per poi essere sostituita da espressioni più complicate per \(a, q \) e \(m \) \([5]\). Dal valore di \(\delta \) si vede come l'effetto sia molto piccolo: per quanto i campi necessari possano essere considerati deboli rispetto a \(B_Q \), per avere scostamenti misurabili dal caso classico in cui \(\varepsilon = \mu = 1 \) è necessario che essi raggiungano valori estremamente elevati, non ottenibili a terra. Una stella di neutroni ultra magnetizzata è l'ambiente ideale per verificare l'esistenza di
3.2 Propagazione della radiazione nel vuoto magnetizzato

Il vuoto magnetizzato porta i fotoni a passare in uno dei due modi normali di polarizzazione, detti ordinario e straordinario. Diremo che un fotone è polarizzato nel modo ordinario (O) se la direzione su cui oscilla il campo elettrico è nel piano formato dal campo magnetico \(B \) e dal vettore di propagazione \(k \), nel modo straordinario (X) se è ortogonale al campo magnetico locale (fig. 3.4). Nel sistema definito localmente dal campo magnetico, con gli assi \(z \) parallelo a \(k \) e \(x \) nel piano \(kB \), usando la rappresentazione dei vettori di Stokes ridotti \((\tilde{Q}, \tilde{U}, \tilde{V})\) i due modi sono rappresentabili come

\[
\mathcal{S}_O = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathcal{S}_X = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix},
\]

la cui semplice forma è un altro vantaggio dell’uso di questi parametri. L’effetto della polarizzazione del vuoto è di portare tutti i fotoni in uno di questi modi in maniera quasi istantanea (“mode locking”); questo elimina anche eventuale polarizzazione ellittica. L’evoluzione dei modi di polarizzazione è descritta dall’equazione d’onda in un mezzo

\[
\nabla \times (\hat{\mu} \cdot \nabla \times E) = \frac{\omega^2}{c^2} e \cdot E
\]

dove i tensori \(e \) e \(\hat{\mu} \) sono dati dalla 3.1. Imponendo una soluzione nella forma \(E(z, t) = A(z)e^{i(k_0 z - \omega t)} \), con \(k_0 = \omega / c \), limitandosi ai termini lineari in \(\partial_z / k_0 \)
3.2. Propagazione della radiazione nel vuoto magnetizzato

L’equazione dà (cfr. [9])

\[
\begin{align*}
\frac{dA_x}{dz} &= i \frac{k_0 \delta}{2} [MA_x + PA_y] \\
\frac{dA_y}{dz} &= i \frac{k_0 \delta}{2} [PA_x + NA_y] \tag{3.6} \\
\frac{dA_z}{dz} &= -\frac{\varepsilon_{zz}}{\varepsilon_{xx}} A_x - \frac{\varepsilon_{zy}}{\varepsilon_{zz}} A_y
\end{align*}
\]

dove \(M, N \) e \(P \) sono funzioni delle componenti dei tensori \(\varepsilon \) e \(\bar{\mu} \) e dai parametri \(k_0 \) e \(\delta \) [14]. Dalla terza equazione si trova che, per un campo di dipolo, \(dA_z/dz = 0 \); assumendo che la radiazione sia inizialmente composta da onde piane, la componente lungo \(k \) rimane nulla e, anche per un campo con una componente toroidale, essa rimane trascurabile. Le equazioni 3.6 possono essere tradotte in equazioni per i parametri di Stokes ridotti [14]:

\[
\begin{align*}
\frac{d\tilde{Q}}{dz} &= -k_0 \delta P \tilde{V} \\
\frac{d\tilde{U}}{dz} &= -\frac{k_0 \delta}{2} (N - M) \tilde{V} \\
\frac{d\tilde{V}}{dz} &= 2P\tilde{Q} + (N - M) \tilde{U} \tag{3.7}
\end{align*}
\]

dove \(N, M \) e \(P \) sono le stesse che in 3.6. Dalle prime due equazioni in 3.6 e 3.7 si vede che la lunghezza di scala su cui evolvono l’ampiezza del campo elettrico e i corrispondenti parametri di Stokes è

\[
\ell_E = \frac{2}{k_0 \delta} = 130 \left(\frac{B}{10^{11} \text{G}} \right)^{-2} \left(\frac{\hbar \omega}{1 \text{keV}} \right)^{-1} \text{cm.} \tag{3.8}
\]

Per un fotone di energia 1 keV in un campo di \(10^{13} \text{G} \), \(\ell_E = 1.3 \text{mm} \), molto piccola rispetto alla scala spaziale del sistema tanto da poter considerare istantaneo il passaggio a uno dei due modi. Mentre il fotone emesso si allontana dalla stella, il campo magnetico esterno diminuisce e l’effetto di mode locking viene gradualmente meno; di conseguenza i fotoni vengono a trovarsi in un modo che non è né \(X \) né \(O \) rispetto al campo locale. Confrontando \(\ell_E \) con la lunghezza scala \(\ell_B \) lungo cui varia il campo magnetico stellare,

\[
\ell_B = \frac{|B|}{|\nabla B|} \approx \frac{r}{3} \tag{3.9}
\]

(dove l’ultima relazione è stata ricavata per un campo dipolare), poiché il rapporto tra queste due lunghezze cambia nello spazio, si possono individuare tre zone:

- \(\ell_E \ll \ell_B \), vicino alla superficie, dove il mode locking è praticamente istantaneo e la propagazione è detta adiabatica;
- \(\ell_E \approx \ell_B \), la direzione di polarizzazione è ancora influenzata dalla presenza del campo magnetico, ma la variazione di direzione del campo elettrico non è più istantanea;
- \(\ell_E \gg \ell_B \), distante dalla stella, dove il campo magnetico è sufficientemente decaduto e la direzione del campo elettrico dei fotoni è congelata, e dunque i modi di polarizzazione cambiano in funzione della variazione della direzione del campo esterno.
3.2. Propagazione della radiazione nel vuoto magnetizzato

All’interno della regione di propagazione adiabatica non può esservi polarizzazione circolare, essendo inizialmente $\tilde{V} = 0$; al di fuori di essa i valori del campo magnetico sono tali per cui M, N e P sono prossimi allo zero e la variazione di \tilde{V} è trascurabile. Per questo motivo considereremo la frazione di polarizzazione circolare sempre nulla. Dal momento che l’integrazione delle equazioni 3.6 (o 3.7) risulta piuttosto lenta, nel seguito si è adottato un approccio semplificato [15] in cui si considerano solo la regione adiabatica (mode locking istantaneo) e quella esterna (direzione del campo elettrico congelata) separate in modo netto. La distanza a cui avviene questo passaggio è detta raggio adiabatico, r_a, ed è quella per cui $\ell_E = \ell_B$:

$$r_a = \frac{6}{k_0 \delta} \approx 4.8 \left(\frac{\hbar \omega}{1 \text{keV}} \right)^{1/5} \left(\frac{B_{\text{pol}}}{10^{11} \text{G}} \right)^{2/5} R_{\text{NS}}. \quad (3.10)$$

Ad esempio per un fotone di 1keV e un campo al polo di 10^{14}G si ha $r_a \approx 76R_{\text{NS}}$. Con questa approssimazione i modi di polarizzazione fissati in superficie vengono mantenuti invariati per ciascun raggio fino alla distanza r_a, dove vengono ruotati per riferirli al sistema di riferimento dello strumento (vedi §2.1). È chiaro che non tenere conto degli effetti di QED significa portare r_a a coincidere con R_{NS}.

16
4 Simulazioni di osservazioni con XIPE

Utilizzando il modello di magnetar transiente descritto in §1.2, è possibile simulare le proprietà spettrali e polarimetriche della radiazione emessa ed il corrispondente segnale rivelato da un polarimetro. Queste simulazioni permettono di capire quali fenomeni possono essere studiati con questa tecnica e quali tempi di esposizione servano per ottenere misure affidabili. Il codice utilizzato per le simulazioni è stato sviluppato in ambiente IDL utilizzando routine già esistenti.

4.1 Simulazione dell’emissione

Il codice simula l’emissione di fotoni dalla superficie della stella, suddivisa in patches tramite una griglia angolare riferita all’asse magnetico; la rotazione è discretizzata in 10 intervalli in fase. Sulla superficie è posto un hotspot attorno al polo nord magnetico alla temperatura \(T_H = 0.456\text{keV} \) mentre il resto della superficie è alla temperatura \(T_C = 0.15\text{keV} \). L’apertura angolare \(\Theta \) è un parametro regolabile in input. I fotoni sono emessi secondo una distribuzione di corpo nero alla temperatura \(T_H \) o \(T_C \) a seconda che provengo da dentro o fuori l’hotspot. Si può dimostrare che in presenza di forti campi magnetici la radiazione si propaga preferibilmente nel modo X rispetto al modo O (cfr. [4], [7]), quindi si è assunto che i fotoni emessi dall’hotspot siano polarizzati al 100% nel modo X, mentre quelli provenienti dal resto della superficie siano polarizzati al 50% nel modo X e al 50% nel modo O (quindi complessivamente non polarizzati). La traiettoria viene simulata fino all’osservatore a distanza \(d \) tenendo conto degli effetti di relatività generale. È notevole il fatto che a causa di questi effetti più della metà della superficie stellare sia in vista: la radiazione viene infatti incurvata in modo tale da aggirare in parte la stella, come schematizzato in fig.4.1. Poiché le magnetar sono rotatori lenti per descrivere lo spazio-tempo all’esterno della stella si è usata la metrica di...
4.2 Simulazioni osservative

Schwarzschild, che presuppone simmetria sferica; il calcolo delle geodetiche comporta un integrale ellittico che viene calcolato numericamente. Il campo magnetico è stato assunto di dipolo, tenendo conto delle correzioni general-relativistiche [3], [13]. Vengono quindi calcolati i parametri di Stokes per i fotoni emessi da ciascuna patch; inizialmente questi parametri sono riferiti al sistema individuato localmente dal campo magnetico nella forma data nell’equazione 3.4 e dunque necessario ruotarli tutti nello stesso sistema di riferimento, quello del polarimetro, prima di sommarli per definire gli osservabili di polarizzazione della radiazione all’infinito. Tale rotazione è effettuata al raggio adiabatico \(r_a \), limite oltre il quale la direzione di polarizzazione rimane invariata.

Sebbene in linea di principio possano essere effettuate simulazioni con un numero elevatissimo di parametri liberi, in quanto segue ci si concentrerà sugli angoli che descrivono la geometria di vista. Essi sono gli angoli \(\chi \) tra la linea di vista (LOS, line of sight) e l’asse di rotazione della stella e \(\xi \) tra quest’ultimo e l’asse magnetico (vedi fig. 4.2). Per i restanti valori si è presa come modello la magnetar 1RXS J170849.0−400910, le cui caratteristiche sono state ben misurate e sono riportate in tabella 4.1 [10]; raggio e massa, la cui misura è più difficoltosa, sono stati assunti pari a \(R = 12 \text{km} \) e \(M = 1.4M_\odot \). L’apertura angolare dell’hotspot \(\Theta \) è stata inizialmente assunta pari a 0.045 rad, valore tipico per ottenere una regione emittente di raggio \(\sim 1\text{km} \). I valori così ottenuti sono stati impiegati su una griglia con 10 punti in fase di rotazione e 37 bin in energia, equispaziati (in scala logaritmica) tra 0.1 e 10 keV (intervallo che comprende la banda di XIPE, 2−8 keV).

<table>
<thead>
<tr>
<th>1RXS J170849.0−400910</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
</tr>
<tr>
<td>(\dot{P})</td>
</tr>
<tr>
<td>(B)</td>
</tr>
<tr>
<td>(\dot{E})</td>
</tr>
<tr>
<td>(\tau_c)</td>
</tr>
<tr>
<td>(T)</td>
</tr>
<tr>
<td>(d)</td>
</tr>
</tbody>
</table>

Tabella 4.1: Parametri fisici della stella presa come modello [10].

Dalla simulazione teorica si passa alla simulazione dell’osservazione vera e propria, che dà le quantità che verranno restituite dallo strumento. I valori simulati vengono alterati in maniera casuale, con l’aggiunta di un rumore di fondo, e a ciascuna “misura” viene associata un’incertezza. Il codice opera una simulazione della misura del GPD, calcolando il numero di conteggi registrati a ciascun angolo sulla base dei parametri di Stokes ottenuti dalle simulazioni teoriche. Il numero di conteggi in ciascun bin viene quindi moltiplicato per un fattore \(\mathcal{F} \), dell’ordine dell’unità, ottenuto in modo da associarvi una statistica poissoniana,

\[
\mathcal{F} = \frac{(\text{cont. sorgente} + \text{cont. fondo})_{\text{random}} - (\text{cont. fondo})_{\text{random}}}{(\text{cont. fondo})},
\]

(4.1)

dove i valori “random” sono ottenuti casualmente da una distribuzione di Poisson centratasi sul valore della simulazione teorica tramite un’apposita funzione di libreria. Il numero dei conteggi del fondo è generato a partire dai dati del background realmente osservato nel range di energia in cui lo strumento è operativo, ricavati dall’archivio XSPEC della NASA [20]. La curva di modulazione così ottenuta è quindi fittata con una curva del tipo 2.12, e vengono calcolate la frazione
4.3 Ricostruzione della configurazione geometrica

Figura 4.2: Significato degli angoli χ e ξ

di polarizzazione lineare Π e l’angolo di polarizzazione χ_p in ciascun intervallo di fase di rotazione della stella. Le incertezze di misura vengono poi associate a ciascun dato sulla base dei risultati del fit e sui parametri dello strumento ricavati a terra (area efficace e fattore di modulazione μ). Contestualmente viene calcolato anche il flusso di energia. I valori simulati mostrati nel seguito sono ottenuti mediando i valori degli osservabili di polarizzazione e del flusso nel range corrispondente a fotoni di energia da 2 a 6keV, all’interno della banda in cui lo strumento sarà operativo. In questa fase un parametro determinante è il tempo di esposizione della misura T_{exp}, da cui dipende l’errore associato alle misure.

4.3 Ricostruzione della configurazione geometrica

Sui valori simulati viene operata un’analisi basata sul confronto con un archivio di simulazioni teoriche e sul test del χ^2. L’archivio consiste in una serie di simulazioni ottenute per diversi valori dei parametri in tutte le loro possibili combinazioni; per questa analisi è stato usato un archivio con 10 valori per χ (da 15° a 150° a passi di 15°) e 6 per ξ (da 15° a 90° a passi di 15°), per un totale di 60 file. La necessità di avere tutte le possibili combinazioni dei parametri rende molto costoso dal punto di vista computazionale l’inserimento di un qualsiasi nuovo parametro libero. Poiché l’interesse non è fare una vera e propria analisi dati ma capire le potenzialità della missione, non viene simulata una singola osservazione ma un numero N, statisticamente significativo, tra cui andare a scegliere quella rappresentativa da confrontare con quelle in archivio. A ciascuno dei valori simulati di questa realizzazione sarà associato come errore la media
4.3. Ricostruzione della configurazione geometrica

Figura 4.3: Risultati del fit per $\chi = 75^\circ$, $\xi = 30^\circ$, $N = 100$, $T_{\text{exp}} = 250\,\text{ks}$. Le curve blu mostrano il modello teorico a partire dal quale sono state simulate le osservazioni, quelle arancioni (spesso così vicine da risultare indistinguibili) i risultati del fit.

degli errori delle N simulazioni. Nel seguito, si mostreranno a titolo di esempio i dati ottenuti per i valori $\chi = 75^\circ$, $\xi = 30^\circ$ ed un numero di osservazioni simulate $N = 100$, ciascuna con un tempo di esposizione $T_{\text{exp}} = 250\,\text{ks}$ (poco meno di tre giorni), come proposto per le magnetar nella missione XIPE [19]. Al fine di riprodurre il processo di misura, le simulazioni osservative di flusso F, frazione di polarizzazione lineare Π_L e angolo di polarizzazione χ_p in funzione della fase γ vengono fittate simultaneamente con le curve dell’archivio. In figura 4.3 sono rappresentate le realizzazioni di F, Π_L e χ_p risolte in fase i cui fit simultanei (curve blu in figura) corrispondono alla mediana (prima riga) e alla moda (seconda riga) della distribuzione dei χ^2 degli N fit. Sono anche mostrati i modelli teorici (curve rosse) da cui queste realizzazioni sono state estratte. Per chiarezza e leggibilità del grafico i valori teorici sono stati interpolati con una spline che evidenzia l’andamento, che non è però stata considerata nell’analisi statistica. Dai risultati di questo fit si ottiene un valore per i due angoli con la relativa incertezza: si può allora andare a verificare se le informazioni relative alla geometria sono deducibili dalle misure polarimetriche confrontando questi valori con quelli impostati all’inizio. Per il nostro esempio si ottengono i valori riportati in tabella 4.2, che sono tutti compatibili essenzialmente entro 1σ con i valori impostati inizialmente, con valori di χ^2_{red} attorno ad 1. È chiaro come sia necessario operare...
4.3. Ricostruzione della configurazione geometrica

<table>
<thead>
<tr>
<th>T_{exp} (ks)</th>
<th>χ (°)</th>
<th>ξ (°)</th>
<th>χ^2_{red} (sim.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>-</td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>Moda χ^2</td>
<td>200</td>
<td>75.5 ± 0.4</td>
<td>29.9 ± 0.6</td>
</tr>
<tr>
<td>Mediana χ^2</td>
<td>200</td>
<td>75.0 ± 0.4</td>
<td>30.0 ± 0.6</td>
</tr>
<tr>
<td>Moda χ^2</td>
<td>500</td>
<td>75.0 ± 0.3</td>
<td>29.9 ± 0.4</td>
</tr>
</tbody>
</table>

Tabella 4.2: Risultati dei fit per la determinazione della configurazione geometrica.

una scelta tra le due rappresentazioni selezionate dalla distribuzione dei χ^2 per ottenere l’osservazione simulata da andare a discutere; essendo i valori ottenuti per mediana e moda del χ^2 qualitativamente equivalenti, si è convenzionalmente scelta quest’ultima come realizzazione rappresentativa.

Gli errori di misura vengono ridotti aumentando il tempo di esposizione: la stessa procedura è stata ripetuta con un tempo di esposizione doppio (500 ks), figura 4.4, per gli stessi angoli. Si ottengono dei risultati, ultima riga di tabella 4.2, ancora perfettamente compatibili con i dati iniziali, in cui l’errore viene ridotto rispetto al caso precedente e la qualità del fit migliorata, avvicinando ulteriormente il χ^2_{red} ad 1.

Si può dunque affermare che le misure di polarizzazione effettuate da XIPE saranno in grado di risolvere i valori degli angoli χ e ξ con sufficiente accuratezza, fornendo nuovi dati sulla configurazione geometrica delle sorgenti. Bisogna tener presente che, volendo applicare questo tipo di analisi ad un caso reale, è necessario creare archivi con spaziature molto fini per i parametri, nonostante il grande costo computazionale richiesto sia per la creazione dell’archivio che per la successiva analisi, in quanto il fit dà i risultati migliori per i valori dei parametri vicini a quelli presenti in archivio.

Figura 4.4: Risultati del fit per $\chi = 75^\circ$, $\xi = 30^\circ$, $N = 100$, $T_{\text{exp}} = 500$ ks. Le curve blu mostrano il modello teorico da cui sono state simulate le osservazioni, quelle arancioni (spesso così vicine da risultare indistinguibili) i risultati del fit.
4.4 Test della QED

Come detto in §1.2 e §3.1, a motivo dei loro intensi campi magnetici le magnetar si presentano come il terreno ideale per testare gli effetti di polarizzazione del vuoto. Le simulazioni operate precedentemente vengono quindi affiancate da altre ottenute portando il raggio adiabatico r_a a coincidere con quello della stella, per descrivere la propagazione dei fotoni nel vuoto classico. Si ottiene una differenza qualitativa tra i due comportamenti: in figura 4.5 sono riportate le curve di F, Π_L e χ_p in funzione della fase per una stella che emette fotoni polarizzati X da tutta la superficie, distribuiti come un corpo nero a temperatura T_H. I punti con le barre d’errore si riferiscono ai dati generati tenendo conto degli effetti di polarizzazione del vuoto analogamente a quanto fatto precedentemente. Essi sono stati fittati con l’archivio usato in precedenza (“QED-on”) e con un nuovo archivio generato ponendo $r_a = R_{\rm NS}$ (“QED-off”): la differenza di comportamento di Π_L nei due casi è evidente e permette di scartare il modello “QED-off”. Una stella con queste caratteristiche (emissione puramente termica da tutta la superficie a temperatura relativamente elevata) non è mai stata osservata, in quanto la zona calda si estende tipicamente su un angolo molto piccolo, ma questo caso limite mostra le potenzialità della polarimetria nel rivelare gli effetti della polarizzazione del vuoto.

Bisogna capire se l’esistenza di questo effetto possa essere rilevata anche in oggetti come le magnetar transienti, in cui l’emissione polarizzata proviene da una zona limitata della superficie. La figura 4.6(a) mostra nuovamente una simulazione osservativa per gli stessi valori dei parametri usati nella sezione precedente, ma fittati utilizzando sia l’archivio “QED-on” che quello “QED-off”. Le curve corrispondenti ai due fit coincidono nel caso del flusso, dal momento che gli effetti di polarizzazione del vuoto modificano solo i parametri di Stokes Q ed U (vedi equazioni 3.6 e 3.7); anche l’andamento dell’angolo di polarizzazione risulta indipendente dagli effetti di QED, come mostrato in [15]. L’unica differenza si osserva nell’andamento di Π_L, sebbene in questo caso la misura polarimetrica non sia in grado di distinguere tra i due modelli. Infatti il χ^2_{red} per i due diversi fit simultanei è molto simile e comunque compatibile con l’unità (vedi tabella 4.3). Questi valori, quindi, non permettono di operare una scelta tra i due modelli.

Lo scostamento tra i due casi diventa più evidente se l’hotspot diventa più grande: infatti, quanto più l’hotspot è piccolo tanto meno le linee di campo che insistono su di esso divergono, e gli effetti della rotazione dei parametri di Stokes (§4.1) diventano meno importanti. Prendendo, invece, hotspot più ampi gli effetti geometrici sono più importanti e la differenza tra il considerare o meno la regione adiabatica attorno alla stella è più consistente. L’apertura Θ è stata dunque portata da 0.045 rad = 2.6° (corrispondente ad un raggio di circa 1 km) a 0.2 rad = 11.5° (raggio ~ 2.4 km). Questo valore è relativamente elevato rispetto a quanto osservato, ma serve a mostrare come la differenza tra i due modelli di propagazione della radiazione possa diventare significativa. Anche in questo caso, figura 4.6(b), i valori di flusso e angolo di polarizzazione non variano, ma per Π_L la differenza diventa evidente, e i valori del χ^2_{red} permettono di rigettare il fit con il modello senza polarizzazione del vuoto.
4.4. Test della QED

<table>
<thead>
<tr>
<th>(\Theta) (rad)</th>
<th>(\chi^2_{\text{red}}) QED-on</th>
<th>(\chi^2_{\text{red}}) QED-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>1.65</td>
<td>1.18</td>
</tr>
<tr>
<td>Flusso</td>
<td>2.66</td>
<td>2.69</td>
</tr>
<tr>
<td>(\Pi_L)</td>
<td>1.39</td>
<td>1.65</td>
</tr>
<tr>
<td>(\chi_p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simultaneo</td>
<td>1.17</td>
<td>1.11</td>
</tr>
<tr>
<td>0.2</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>Flusso</td>
<td>1.87</td>
<td>20.79</td>
</tr>
<tr>
<td>(\Pi_L)</td>
<td>0.41</td>
<td>0.80</td>
</tr>
<tr>
<td>(\chi_p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simultaneo</td>
<td>1.16</td>
<td>8.71</td>
</tr>
</tbody>
</table>

Tabella 4.3: Risultati dei fit con il confronto tra i due archivi.

Figura 4.5: Risultati simulati di un’osservazione su una stella con superficie completamente calda, \(\Theta = 180^\circ \). I risultati sono stati fittati usando sia un archivio di modelli QED-on (curve rosse continue) che QED-off (curve blu continue). Le curve tratteggiate rappresentano i modelli teorici dai rispettivi archivi corrispondenti ai valori di \(\chi \) e \(\xi \) scelti.
4.4. Test della QED

Figura 4.6: Risultati del fit per $\chi = 75^\circ$, $\xi = 30^\circ$, $N = 100$, $T_{\text{exp}} = 250\text{ks}$, con confronto con i due archivi: in rosso “QED-on”, in blu “QED-off”. Le linee continue si riferiscono al fit, quelle tratteggiate al modello in archivio.
Conclusioni

In questo lavoro si è affrontato il problema delle misure di polarizzazione della radiazione emessa dalle magnetar transienti, con particolare riguardo alle capacità del polarimetro con cui sarà equipaggiata la missione XIPE, attualmente in fase di studio per il programma M4 dell’ESA. Dopo aver illustrato in breve le caratteristiche di polarizzazione della radiazione emessa da queste sorgenti, compresi gli effetti quantistici indotti dalla presenza di campi magnetici molto elevati, si è proceduto alla descrizione del funzionamento dello strumento e della struttura dei codici utilizzati per simulare il pattern di polarizzazione predetto dal modello teorico, insieme alla relativa risposta di uno strumento come quello di XIPE.

I risultati ottenuti mostrano come la polarimetria possa costituire uno strumento di indagine efficace e innovativo per lo studio delle stelle di neutroni. La ricostruzione dell’orientazione della linea di vista e dell’asse magnetico della stella rispetto all’asse di rotazione può essere effettuata in maniera accurata con tempi di esposizione più che ragionevoli e inferiori rispetto a quelli richiesti per altri tipi di sorgente, mettendo a disposizione dei dati non ottenibili per altra via. Si è anche mostrato come, andando ad aumentare i tempi di esposizione, gli errori possano essere sensibilmente diminuiti, rimanendo in un limite compatibile con i vincoli previsti per la missione XIPE.

Infine, misure polarimetriche in sorgenti come le stelle di neutroni consentono di studiare processi fisici in regimi impossibili da riprodurre in laboratorio, mettendo a disposizione un metodo decisivo di verifica dell’effetto di polarizzazione del vuoto, e quindi dell’elettrodinamica quantistica in regime di campi forti. Questo tipo di simulazioni è stato effettuato per sorgenti dalle caratteristiche fisiche differenti (emissione polarizzata dall’intera superficie o da un hotspot di dimensione variabile), evidenziando come l’andamento degli osservabili di polarizzazione cambi a seconda che gli effetti di QED siano inclusi o meno nel modello, e come questo scostamento dipenda dall’estensione della regione emittente. Si è inoltre mostrato che la polarizzazione del vuoto influenza solo gli osservabili di polarizzazione (in particolare la frazione di polarizzazione lineare), mentre le misure di flusso risultano indipendenti da questo effetto. Questo conferma che la polarimetria può effettivamente aprire una nuova finestra nello studio di queste sorgenti astrofisiche.
Bibliografia