Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Crivellaro, Marco (2016) Applicazione dei termometri Ti-in-quarzo, Ti-in-zircone e Zr-in-rutilo alle granuliti metapelitiche della sequenza di Jubrique (Cordigliera Betica, Spagna Meridionale). [Magistrali biennali]

Full text disponibile come:

PDF (Tesi)


In this thesis, the new trace-element thermometers Ti-in-quartz, Zr-in-rutile and Ti-in-zircon are applied to the mylonitic gneisses from the anatectic sequence of Jubrique, which is located on the top of the Ronda peridotite slab (Betic Cordillera, Southern Spain). This sequence constitutes a strongly thinned crustal section. The rocks studied are granulite-facies migmatitic gneisses made up of Grt, Qz, Kfs, Pl, Ky, Sil, Crd, Bt and accessory Rt, Ilm, Zrn, Mnz, Spl, Gr, Ap and Py. The studied samples show the simultaneous presence of all three minerals required for the application of these thermometers (quartz, rutile, zircon) and offer the opportunity to compare the results with those previously obtained through phase equilibria modeling and conventional thermobarometry. Several crystals of quartz, zircon and rutile, both included in garnet porphyroclasts and present in the rock matrix, were investigated. Zircon was imaged by cathodoluminescence in order to reveal its internal structure: most zircons show a complex core and an irregular, homogeneous or weakly zoned, rim. Rutile and zircon were analyzed by LA-ICP-MS, giving contents of 1000- 2800 ppm Zr and 7-25 ppm Ti, respectively. Ti in quartz was measured by EMP, resulting in 100-260 ppm. Pressure values used for calculations are 13 kbar for minerals included in garnet, 5 kbar for matrix quartz, 9 kbar for matrix rutile. Two types of quartz included in garnet were recognized: 1) large (≈800 μm) irregularly shaped inclusions, both at the rim and at the core of garnet, yielding an average Ti-in-quartz temperature of 878 ± 65 °C; 2) small (< 50 μm) singlecrystal inclusions, at the garnet core only, yielding an average temperature of 906 ± 36 °C. Matrix quartz gave temperatures of 692 ± 44 °C (in melanosome) and 665 ± 24 °C (in leucosome). Crystallization temperatures calculated for rutile are 847 ± 50 °C (rutile in garnet) and 810 ± 25 °C (matrix rutile). Average Ti-inzircon temperatures for zircon included in garnet are 747 ± 34 °C (rim) and 750 ± 55 °C (core), whereas for matrix zircon the average temperatures are 766 ± 38 °C (rim) and 759 ± 46 °C (core). Quartz and rutile included in garnet seem to record peak metamorphic temperatures: Ti-in-quartz and Zr-in-rutile isopleths intersect at ≈850°C and 12 kbar, in agreement with peak conditions published in the literature. However, these rocks likely reached temperatures approaching UHT metamorphism conditions, as suggested by quartz in garnet (≈900 °C). Lower Ti-in-zircon temperatures probably record growth of zircon during cooling from peak temperatures. Lower temperatures calculated for matrix quartz (<700 °C) probably record crystallization from an anatectic melt and/or recrystallization under retrograde conditions and deformation. These temperatures are much lower than those obtained through phase equilibria modeling and conventional thermometry

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:Trace-element, Geothermometry, Migmatite, Betic Cordillera
Subjects:Area 04 - Scienze della terra > GEO/07 Petrologia e petrografia
Codice ID:52978
Relatore:Bartoli, Omar
Correlatore:Cesare, Bernardo
Data della tesi:30 June 2016
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Acosta-Vigil, A., Barich, A., Bartoli, O., Garrido, C. J., Cesare, B., Remusat, L., et al. (2016). The composition of nanogranitoids in migmatites overlying the Ronda peridotites (Betic Cordillera, S Spain): the anatectic history of a polymetamorphic basement. Contributions to Mineralogy and Petrology, 171, 24. Cerca con Google

Acosta-Vigil, A., Rubatto, D., Bartoli, O., Cesare, B., Meli, S., Pedrera, A., et al. (2014). Age of anatexis in the crustal footwall of the Ronda peridotites, S Spain. Lithos, 210–211, 147-167. Cerca con Google

Anczkiewicz , R., Chakraborty , S., Dasgupta, S., Mukhopadhyay, D., & Kołtonik, K. (2014). Timing, duration and inversion of prograde Barrovian metamorphism constrained by high resolution Lu–Hf garnet dating: A case study from the Sikkim Himalaya, NE India. Earth and Planetary Science Letters, 407, 70–81. Cerca con Google

Angel, R. J., Mazzucchelli, M. L., Alvaro, M., Nimis, P., & Nestola, F. (2014). Geobarometry from host-inclusion systems: The role of elastic relaxation. American Mineralogist, 99, 2146–2149. Cerca con Google

Angel, R. J., Nimis, P., Mazzucchelli, M. L., Alvaro, M., & Nestola, F. (2015). How large are departures from lithostatic pressure? Constraints from host–inclusion elasticity. Journal of Metamorphic Geology, 33, 801–813. Cerca con Google

Argles, T. W., Platt, J. P., & Waters, D. J. (1999). Attenuation and excision of a crustal section during extensional exhumation: the Carratraca Massif, Betic Cordillera, Southern Spain. Journal of the Geological Society of London, 156, 149–162. Cerca con Google

Ashley, K. T., Carlson, W. D., Law, R. D., & Tracy, R. J. (2014). Ti resetting in quartz during dynamic recrystallization: mechanism and significance. American Mineralogist, 99, 2025–2030. Cerca con Google

Ashley, K. T., Webb, L. E., Spear, F. S., & Thomas, J. B. (2013). P-T-D histories from quartz: a case study of the application of the TitaniQ thermobarometerto progressive fabric development in metapelites. Geochemistry, Geophysics, Geosystems, 14, 3821–3843. Cerca con Google

Azañon, J. M., & Crespo-Blanc, A. (2000). Continental collision, crustal thinning and nappe forming during the pre-Miocene evolution of the Alpujarride complex (Alboràn Domain, Betics). Tectonics, 19, 549–565. Cerca con Google

Balanyá, J. C., Azañon, J. M., Sánchez-Gómez, M., & García-Dueñas, V. (1993). Pervasive ductile extension, isothermal decompression, and thinning of the Jubrique unit in the Paleogene (Alpujárride Complex, western Betics, Spain). Comptes Rendus de l'Académie des Sciences de Paris: Série II, 316(11), 1595-1601. Cerca con Google

Balanyá, J. C., García-Dueñas, V., Azañon, J. M., & Sánchez-Gómez, M. (1997). Alternating contractional and extensional events in the Alpujárride nappes of the Alborán Domain (Betics, Gibraltar arc). Tectonics, 16(2), 226-238. Cerca con Google

Baldwin, J. A., & Brown, M. (2008). Age and duration of ultrahigh-temperature metamorphism in the Ana'polis-Itaucu Complex, Southern Brasilia Belt, central Brazil – constraints from U-Pb geochronology, mineral rare earth element chemistry and trace-element thermometry. Journal of Metamorphic Geology, 26, 213–233. Cerca con Google

Baldwin, J. A., Brown, M., & Schmitz, M. D. (2007). First application of titanium-in-zircon thermometry to ultrahigh-temperature metamorphism. Geology, 35, 295–298. Cerca con Google

Barich, A., Acosta-Vigil, A., Garrido, C. J., Cesare, B., Tajčmanová, L., & Bartoli, O. (2014). Microstructures and petrology of melt inclusions in the anatectic sequence of Jubrique (Betic Cordillera, S Spain): Implications for crustal anatexis. Lithos, 206-207, 303-320. Cerca con Google

Bartoli, O., Acosta-Vigil, A., Tajčmanová, L., Cesare, B., & Bodnar, R. J. (2016). Using nanogranitoids and phase equilibria modeling to unravel anatexis in the crustal footwall of the Ronda peridotites (Betic Cordillera, S Spain). Lithos, 256–257, 282–299. Cerca con Google

Bartoli, O., Tajcˇmanová, L., Cesare, B., & Acosta-Vigil, A. (2013). Phase equilibria constraints on melting of stromatic of stromatic migmatites from Ronda (S. Spain): insights on the formation of peritectic garnet. Journal of Metamorphic Geology, 31, 775–789. Cerca con Google

Bestmann, M., & Pennacchioni, G. (2015). Ti distribution in quartz across a heterogeneous shear zone within a granodiorite: The effect of deformation mechanism and strain on Ti resetting. Lithos, 227, 37–56. Cerca con Google

Carson, C. J., Ague, J. J., Grove, M., Coath, C. D., & Harrison, T. M. (2002). U–Pb isotopic behaviour of zircon during upper-amphibolite facies fluid infiltration in the Napier Complex, east Antarctica. Earth and Planetary Science Letters, 199, 287–310. Cerca con Google

Carson, C. J., Powell, R., & Clarke, G. L. (1999). Calculated mineral equilibria for eclogites in CaO-Na2O-FeO-MgO-Al2O3-SiO2-H2O: application to the Poue Abo Terrane, Pam Peninsula, New Caledonia. Journal of Metamorphic Geology, 17, 9–24. Cerca con Google

Cesare, B., Acosta-Vigil, A., Bartoli, O., & Ferrero, S. (2015). What can we learn from melt inclusions in migmatites and granulites? Lithos, 239, 186–216. Cerca con Google

Cesare, B., Gòmez-Pugnaire, M. T., & Rubatto, D. (2003). Residence time of S-type anatectic magmas beneath the Neogene Volcanic Province of SE Spain: a zircon and monazite SHRIMP study. Contributions to Mineralogy and Petrology, 146, 28–43. Cerca con Google

Cesare, B., Satish-Kumar, M., Cruciani, G., Pocker, S., & Nodari, L. (2008). Mineral chemistry of Ti-rich biotite from pegmatite and metapelitic granulites of the Kerala Khondalite Belt (southeast India): Petrology and further insight into titanium substitutions. American Mineralogist, 93, 327–338. Cerca con Google

Cherniak, D. J. (2000). Pb diffusion in rutile. Contributions to Mineralogy and Petrology, 139, 198–207. Cerca con Google

Cherniak, D. J., & Watson, E. B. (2007). Ti diffusion in zircon. Chemical Geology, 242(3-4), 473-483. Cerca con Google

Cherniak, D. J., Manchester, J., & Watson, E. B. (2007). Zr and Hf diffusion in rutile. Earth and Planetary Science Letters, 261(1–2), 267–279. Cerca con Google

Connolly, J. A., & Kerrick, D. M. (1987). An algorithm and computer program for calculating composition phase diagrams. Calphad, 11, 1–55. Cerca con Google

de Capitani, C., & Brown, T. H. (1987). The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochimica et Cosmochimica Acta, 51(10), 2639–2652. Cerca con Google

Degeling, H., Eggins, S., & Ellis, D. (2001). Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineralogical Magazine, 65, 749–758. Cerca con Google

Ewing, T. A., Hermann, J., & Rubatto, D. (2013). The robustness of the Zr-in-rutile and Tiin-zircon thermometers (Ivrea-Verbano Zone, northern Italy). Contributions to Mineralogy and Petrology, 165, 757–779. Cerca con Google

Ewing, T. A., Rubatto, D., Beltrando, M., & Hermann, J. (2015). Constraints on the thermal evolution of the Adriatic margin during Jurassic continental break-up: U–Pb dating of rutile from the Ivrea–Verbano Zone, Italy. Contributions to Mineralogy and Petrology, 169, 44. Cerca con Google

Ferry, J. M., & Spear, F. S. (1978). Experimental calibration of the partition of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology, 66, 113-117. Cerca con Google

Ferry, J. M., & Watson, E. B. (2007). New thermodynamic models and revised calibrations for Ti-in-zircon an Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429-427. Cerca con Google

Fraser, G., Ellis, D., & Eggins, S. (1997). Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology, 25, 607–610. Cerca con Google

García-Casco, A., & Torres-Roldán, R. L. (1996). Disequilibrium induced by fast decompression in St-Bt-Grt-Ky-sil-And metapelites from the Betic Belt (Southern Spain). Journal of Petrology, 37, 1207–1239. Cerca con Google

Ghent, E. D., & Stout, M. Z. (1984). TiO2 activity in metamorphosed pelitic and basic rocks: principles and applications to metamorphism in southeastern Canadian Cordillera. Contributions to Mineralogy and Petrology, 86, 248-255. Cerca con Google

Groppo, C., Rolfo, F., & Indares, A. (2012). Partial melting in the Higher Himalayan Crystallines of Eastern Nepal: the effect of decompression and implications for the "channel flow" model. Journal of Petrology, 53, 1057–1088. Cerca con Google

Haertel, M., Herwegh, M., & Pettke, T. (2013). Titanium-in-quartz thermometry on synkinematic quartz veins in a retrograde crustal-scale normal fault zone. Tectonophysics, 608, 468–481. Cerca con Google

Harley, S. L. (1998). On the occurrence and characterisation of ultrahigh-temperature (UHT) crustal metamorphism. In P. J. Treloar, & P. O'Brien (A cura di), What Controls Metamorphism and Metamorphic Reactions? (Vol. 138, p. 75–101). Special Publication Geological Society of London. Cerca con Google

Hidas, K., Booth-Rea, G., Garrido, C. J., Martínez-Martínez, J. M., Padrón-Navarta, J. A., Konc, Z., et al. (2013). Backarc basin inversion and subcontinental mantle emplacement in the crust: kilometre-scale folding and shearing at the base of the proto-Alborán lithosphericmantle (Betic Cordillera, southern Spain). Journal of the Geological Society, 170, 47–55. Cerca con Google

Holdaway, M. J., & Lee, S. M. (1977). Fe-Mg cordierite stability in high-grade pelitic rocksbased on experimental, theoretical and natural observations. Contributions to Mineralogy and Petrology, 63, 175–198. Cerca con Google

Holland, T. J., & Powell, R. (1998). An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–343. Cerca con Google

Holness, M. B., Cesare, B., & Sawyer, E. W. (2011). Melted rocks under the microscope: microstructures and their interpretation. Elements, 7(4), 247-252. Cerca con Google

Huang, R., & Audétat, A. (2012). The titanium-in-quartz (TitaniQ) thermobarometer: a critical examination and re-calibration. Geochimica et Cosmochimica Acta, 84, 75-89. Cerca con Google

Kawakami, T., Yamaguchi, I., Miyake, A., Shibata, T., Maki, K., Yokoyama, T. D., et al. (2013). Behavior of zircon in the upper-amphibolite to granulite facies schist/migmatite transition, Ryoke metamorphic belt, SW Japan: constraints from the melt inclusions in zircon. Contributions to Mineralogy and Petrology, 165, 576–591. Cerca con Google

Kohn, M. J. (2014). "Thermoba-Raman-try": Calibration of spectroscopic barometers and thermometers for mineral inclusions. Earth and Planetary Science Letters, 338, 187-196. Cerca con Google

Kohn, M. J. (2014). “Thermoba-Raman-try”: Calibration of spectroscopic barometers and thermometers for mineral inclusions. Earth and Planetary Science Letters, 388, 187–196. Cerca con Google

Kooijman, E., Mezger, K., & Berndt, J. (2010). Constraints on the U–Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth and Planetary Science Letters, 293(3–4), 321–330. Cerca con Google

Kooijman, E., Smit, M. A., Mezger, K., & Berndt, J. (2012). Trace element systematics in granulite facies rutile: implications for Zr geothermometry and provenance studies. Journal of Metamorphic Geology, 30(4), 397–412. Cerca con Google

Korhonen, F. J., Clark, C., Brown, M., & Taylor, R. J. (2014). Taking the temperature of Earth's hottest crust. Warth and Planetary Science, 408, 341–354. Cerca con Google

Landtwing, M. R., & Pettke, T. (2005). Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz. American Mineralogist, 90, 122–131. Cerca con Google

Liu, Y. C., Deng, L. P., Gu, X. F., Groppo, C., & Rolfo, F. (2015). Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain high-temperature metamorphism in eclogites from the Dabie orogen, central China. Gondwana Research, 27, 410–423. Cerca con Google

Loomis, T. P. (1972). Diapiric emplacement of the ronda high-temperature ultramafic intrusion, southern Spain. Geological Society of America Bulletin, 83, 2475-2496. Cerca con Google

Luvizotto, G. L., & Zack, T. (2009). Nb and Zr behavior in rutile during high-grade metamorphism and retrogression: an example from the Ivrea-Verbano Zone. Chemical Geology, 261(3–4), 303–317. Cerca con Google

Maas, A. T., & Henry, D. J. (2002). Heterogeneous growth and dissolution of sillimanite in migmatites: evidence from cathodoluminescence imaging. Denver. Cerca con Google

Martín-Algarra, A. (1987). Evolución geológica alpina del contacto entre las Zonas Internas y las Zonas Externas de la Cordillera Bética . (PhD Thesis) Universidad de Granada, 1171. Cerca con Google

Massonne, H. J. (2014). Wealth of P-T-t information in medium-high grade metapelites: example from the Jubrique Unit of the betic Cordillera, S Spain. Lithos, 208, 137–157. Cerca con Google

Mazzoli, S., & Martín-Algarra, A. (2011). Deformation partitioning during transpressional emplacement of a ‘mantle extrusion wedge’: the Ronda peridotites, western Betic Cordillera, Spain. Journal of the Geological Society of London, 168, 373–382. Cerca con Google

Meyer, M., John, T., Brandt, S., & Klemd, R. (2011). Trace element composition of rutile and the application of Zr-in-rutile thermometry to UHT metamorphism (Epupa Complex, NW Namibia). Lithos, 126(3–4), 388–401. Cerca con Google

Möller, A., O'Brien, P. J., Kennedy, A., & Kröner, A. (2003). Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In D. Vance, W. Müller, & I. M. Villa (A cura di), Geochronology: Linking the Isotopic Record with Petrology and Textures (Vol. 220, p. 65–81). Geological Society of London Special Publication. Cerca con Google

Obata, M. (1980). The Ronda peridotite: garnet, spinel and plagioclase lherzolite facies and the P-T trajectories of a high-temperature mantle intrusion. Journal of Petrology, 21, 533–572. Cerca con Google

Orozco, M., Alonso-Chaves, F. M., & Nieto, F. (1998). Development of large north-facing folds and theri relation to crustal extension in the Alborán Domain. Tectonophysics, 298, 271-95. Cerca con Google

Ostapenko, G. T., Gamarnik, M. Y., Gorogotskaya, L. I., Kuznetsov, G. V., Tarashchan, A. N., & Timishkova, L. P. (1987). Isomorphism of titanium substitution for silicon in quartz: experimental data. Mineral Zh, 9, 30-40. Cerca con Google

Ostapenko, G. T., Tarashchan, A. N., & Mitsyuk, B. M. (2007). Rutile-quartz geothermobarometer. Geochemistry International, 45, 506-550. Cerca con Google

Pape, J., Mezger, K., & Robyr, M. (2016). A systematic evaluation of the Zr-in-rutile thermometer in ultra-high temperature (UHT) rocks. Contributions to Mineralogy and Petrology, 171, 44. Cerca con Google

Pattison, D. R., Chacko, T., Farquhar, J., & McFarlane, C. R. (2003). Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology, 44, 867–900. Cerca con Google

Pearce, N. J., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., et al. (1997). A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards and Geoanalytical Research, 21(1), 115-144. Cerca con Google

Petrelli, M., Perugini, D., Alagna, E., Poli, G., & Peccerillo, A. (2008). Spatially resolved and bulk trace element analysis by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS). Periodico di Mineralogia, 77, 3-21. Cerca con Google

Platt, J. P., & Whitehouse, M. J. (1999). Early Miocene high-temperature metamorphism and rapid exhumation in the Betic Cordillera (Spain): evidence from U-Pb zircon ages. Earth and Planetary Science Letters, 171(4), 591-605. Cerca con Google

Platt, J. P., Argles, T. W., Carter, A., Kelley, S. P., Whitehouse, M. J., & Lonergan, L. (2003). Exhumation of the Ronda peridotite and its crustal envelope: constraints from thermal modelling of a P-T-time array. Journal of the Geological Society, 160, 655-676. Cerca con Google

Platt, J. P., Behr, W. M., Johansen, K., & Williams, J. R. (2013). The Betic-Rif arc and its orogenic hinterland: A review. Annual Review of Earth and Planetary Science, 41, 14.1-14.45. Cerca con Google

Powell, R., Holland, T. J., & Worley, B. (1998). Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16, 577–588. Cerca con Google

Roberts, M. P., & Finger, F. (1997). Do U–Pb zircon ages from granulites reflect peak metamorphic conditions? Geology, 25(4), 319-322. Cerca con Google

Ruiz Cruz, M. D., & Sanz de Galdeano, C. (2014). Garnet variety and zircon ages in UHP metasedimentary rocks from the Jubrique zone (Alpujárride Complex, Betic Cordillera, Spain): evidence for a pre-Alpine emplacement of the Ronda peridotite. International Geology Review, 56, 845-868. Cerca con Google

Sanz de Galdeano, C., & Andreo, B. (1995). Structure of Sierra Blanca (Alpujárride complex, west of the Betic Cordillera). Estudios Geológicos, 51, 43–55. Cerca con Google

Sawyer, E. W. (2008). Working with migmatites: nomenclature for the constituent parts. In Working with migmatites (p. 1-28). Mineralogical Association of Canada. Cerca con Google

Sawyer, E. W., Cesare, B., & Brown, M. (2011). When the continental crust melts. Elements, 7(4), 229-234. Cerca con Google

Soto, J. I., & Platt, J. P. (1999). Petrological and structural evolution of high-grade metamorphic rocks from the floor of the Albor´an Sea basin, western Mediterranean. Journal of Petrology, 40, 21–60. Cerca con Google

Štípská, P., Schulmann, K., & Powell, R. (2008). Contrasting metamorphic histories of lenses of high-pressure rocks and host migmatites with a flat orogenic fabric (Bohemian Massif, Czech Republic): a result of tectonic mixing within horizontal crustal flow? Journal of Metamorphic Geology, 26, 623–646. Cerca con Google

Taylor-Jones, K., & Powell, R. (2015). Interpreting zirconium-in-rutile thermometric results. Journal of Metamorphic Geology, 33, 115–122. Cerca con Google

Thomas, J. B., Watson, E. B., Spear, F. S., & Wark, D. A. (2015). TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations. Contributions to Mineralogy and Petrology, 169, 27. Cerca con Google

Thomas, J. B., Watson, E. B., Spear, F. S., Shemella, P. T., Nayak, S. K., & Lanzirotti, A. (2010). TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology, 160(5), 743-759. Cerca con Google

Thompson, A. B. (1976). Mineral reactions in pelitic rocks: II. Calculations of some P-T-X (Fe-Mg) phase relationships. American Journal of Science, 276, 425–454. Cerca con Google

Tomkins, H. S., Powell, R., & Ellis, D. J. (2007). The pressure dependence of zirconium-inrutile thermometer. Journal of Metamorphic Geology, 25(6), 703-713. Cerca con Google

Torre-Roldán, R. L. (1981). Plurifacial metamorphic evolution of the Sierra Barmeja peridotite aureole (Southern Spain). Estudios geológicos, 37, 115-134. Cerca con Google

Tubía, J. M., Cuevas, J., & Esteban, J. J. (2013). Localization of deformation and kinematics shift during the hot emplacement of the Ronda peridotites (Betic Cordilleras, southern Spain). Journal of Structural Geology, 50, 148–160. Cerca con Google

Vanderhaeghe, O. (2001). Melt segregation, pervasive melt migration and magma mobility in the continental crust: the structural record from pores to orogens. Physics and Chemistry of the Earth, 26, 213-223. Cerca con Google

Vavra, G., Schmid, R., & Gebauer, D. (1999). Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134, 380–404. Cerca con Google

Wark, D. A., & Watson, E. B. (2006). TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152(6), 743-754. Cerca con Google

Watson, E. B., Wark, D. A., & Thomas, J. B. (2006). Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413-433. Cerca con Google

White, R. W., Powell, R., & Holland, T. J. (2001). Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). Journal of Metamorphic Geology, 19, 139–154. Cerca con Google

White, R. W., Powell, R., & Holland, T. J. (2007). Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, 25, 511–527. Cerca con Google

White, R. W., Stevens, G., & Johnson, T. E. (2011). Is the crucible reproducible? Reconciling melting experimentswith thermodynamic calculations. Elements, 7, 241–246. Cerca con Google

Whitehouse, M. J., & Platt, J. P. (2003). Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology, 145, 61-74. Cerca con Google

Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187. Cerca con Google

Yakymchuk, C., Brown, M., Clark, C., Korhonen, F. J., Piccoli, P. M., Siddoway, C. S., et al. (2015). Decoding polyphase migmatites using geochronology and phase equilibria modeling. Journal of Metamorphic Geology, 33, 203–230. Cerca con Google

Zack, T., Moraes, R., & Kronz, A. (2004a). Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148, 471-488. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record