Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Andriolo, Enrico (2016) Contrazione di SU(2) sul Gruppo di Heisenberg. [Laurea triennale]

Full text disponibile come:

[img]
Preview
PDF
689Kb

Abstract

In this thesis we want to analyze the irreducible unitary representations of SU(2) and those of the Heisenberg group. The infinite-dimensional (irreducible unitary) representations of the Heisenberg group will be shown to be limits of finite (irreducible unitary) representations of SU(2). In order to define the notion of representations convergence, we have to study the Lie group contraction, a modern mathematical technique which is able to establish a local identification between two continuous connected groups of the same dimension. We will see that the contraction of the two groups also induces the contraction of their respective Lie algebras, so we can deal with the Heisenberg Lie algebra as it was the limit case of the Lie algebra of SU(2).

Item Type:Laurea triennale
Corsi di Laurea Triennale:Scuola di Scienze > Fisica
Uncontrolled Keywords:SU(2) representations, Weyl operators, Schrödinger representation, Bargmann transformation, Bargmann representation, Fock space, Lie group contractions, Lie algebra contractions.
Subjects:Area 02 - Scienze fisiche > FIS/02 Fisica teorica, modelli e metodi matematici
Codice ID:53387
Relatore:Lechner, Kurt
Correlatore:Ciatti, Paolo
Data della tesi:September 2016
Biblioteca:Polo di Scienze > Dip. Fisica e Astronomia "Galileo Galilei" - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:No

Solo per lo Staff dell Archivio: Modifica questo record