Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Marchetti, Francesco (2016) Spectral filtering for the resolution of the Gibbs phenomenon in MPI applications by Lissajous sampling. [Magistrali biennali]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2609Kb

Abstract

Polynomial interpolation and approximation methods on sampling points along Lissajous curves using Chebyshev series is an e-ffective way for a fast image reconstruc-tion in Magnetic Particle Imaging. Due to the nature of spectral methods, a Gibbs phenomenon occurs in the reconstructed image if the underlying function has discon-tinuities. A possible solution for this problem are spectral filtering methods acting on the coefficients of the approximating polynomial. In this work, after a description of the Gibbs phenomenon and classical filtering techniques in one and several dimensions, we present an adaptive spectral filtering process for the resolution of this phenomenon and for an improved approximation of the underlying function or image. In this adaptive filtering technique, the spectral filter depends on the distance of a spatial point to the nearest discontinuity. We show the e-ffectiveness of this filtering approach in theory, in numerical simulations as well as in the application in Magnetic Particle Imaging.

Tipologia del documento:Magistrali biennali
Parole chiave:Gibbs phenomenon, MPI, Lissajous sampling, Magnetic Particle Imaging
Settori scientifico-disciplinari del MIUR:Area 01 - Scienze matematiche e informatiche > MAT/08 Analisi numerica
Codice ID:54084
Relatore:De Marchi, Stefano
Data della tesi:14 Ottobre 2016
Biblioteca:Polo di Scienze > Biblioteca di Matematica
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

1] Ahlborg M., Dencker P., Erb W. and Kaethner C. Bivariate Lagrange interpolation at the node points of non-degenerate Lissajous nodes. Numerische Mathematik (2015). Cerca con Google

[2] Bogle M.G.V., Hearst J.E., Jones V.F.R. and Stoilov L. Lissajous knots. J. Knot Theory Ramifications 3 (1994), 121-140. Cerca con Google

[3] Bos M., De Marchi S. and Vianello M. Trivariate polynomial approximation on Lissajous curves. IMA J. Num. Anal. (2016). Cerca con Google

[4] Bos M., De Marchi S. and Vianello M. Polynomial approximation on Lissajous curves in the d-cube. Submitted (2016) online. Cerca con Google

[5] Bos L., Caliari M., De Marchi S., Vianello M. and Xu Y. Bivariate Lagrange interpolation at the Padua points: the generating curve approach. J. Approx. Theory 143 (2006), 15-25. Cerca con Google

[6] Burenkov V.I. Sobolev spaces on domains(1998). Cerca con Google

[7] Caliari M, De Marchi S. and Vianello M. Bivariate polynomial interpolation on the square at new nodal sets. Appl. Math. Comput. 165(2) (2005), 261-274 Cerca con Google

[8] De Marchi S. Lectures on multivariate polynomial interpolation. Cerca con Google

[9] Dencker P., and Erb W. Multivariate polynomial interpolation on Lissajous-Chebyshev nodes. arXiv:1511.04564 [math.NA] (2015). Cerca con Google

[10] Erb W., Kaethner C., Dencker P., and Ahlborg M. A survey on bivariate Lagrange interpolation on Lissajous nodes. Dolomites Res. Notes Approx. 8 (2015), 23-36. Cerca con Google

[11] C. Fefferman On the convergence of multiple Fourier series. Bull. AMS 5 (1971). Cerca con Google

[12] Gottlieb D. and Shu C. On the Gibbs phenomenon and its resolution. Society for Industrial and Applied Mathematics (1997), 644-668. Cerca con Google

[13] Kaethner C., Erb W., Ahlborg M., Szwargulski P., Knopp T. and Buzug T. M. Non-Equispaced System Matrix Acquisition for Magnetic Particle Imaging based on Lissajous Node Points. IEEE Trans. Med. Imag. (2016), in press. Cerca con Google

[14] Knopp T. and Buzug T. M. Magnetic Particle Imaging. Springer (2012). Cerca con Google

[15] Navarra A., Stern W.F. and Miyakoda K. Reduction of the Gibbs oscillations in spectral model simulations. Journal of Climate Vol. 7 (1994). Cerca con Google

[16] Rudin W. Real and complex analysis(1966). Cerca con Google

[17] Tadmor E. and Tanner J. Adaptive lters for piecewise smooth spectral data. Cerca con Google

IMA J. Num. Anal. (2005), 635-647. Cerca con Google

[18] Wang Z., Bovik A.C., Sheikh H.R. and Simoncelli E.P. Image Qualifty Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Med. Imag. Vol.13 Cerca con Google

Issue 4 (2004), 600-612. Cerca con Google

[19] Weisz F. Summability of multi-dimensional trigonometric Fourier series. Surveys in Approximation Theory (2012), 1-179. Cerca con Google

[20] Chebfun official website: http://www.chebfun.org Vai! Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record