Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Zass, Alexander (2017) Collective motion of living organisms: the Vicsek model. [Magistrali biennali]

Full text disponibile come:



The purpose of this work is to study the Vicsek model for self-driven articles, in particular its time-continuous version. We will study its mean-field limit, as well as the large-scale behaviour of the model. In particular, we find that the equilibrium distributions change according to whether the density is above or below a given threshold. Below this value, the only equilibrium distribution is isotropic in velocity direction and is stable; moreover, the convergence to this equilibrium is exponentially fast. When the density is above the threshold, we have a second class of anisotropic equilibria, formed by Von-Mises-Fischer distributions of arbitrary orientation. In this case, the isotropic equilibria become unstable and there is exponentially fast convergence to the anisotropic ones.

Item Type:Magistrali biennali
Subjects:Area 01 - Scienze matematiche e informatiche > MAT/06 Probabilità e statistica matematica
Codice ID:56242
Relatore:Dai Pra, Paolo
Data della tesi:07 July 2017
Biblioteca:Polo di Scienze > Biblioteca di Matematica


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

[1] P. Billingsley, Convergence of probability measures, John Wiley & Sons, New York (1968). Cerca con Google

[2] F. Bolley, J. A. Cañizo, J. A. Carrillo, Mean-field limit for the stochastic Vicsek model, Appl. Math. Lett., Vol. 25 (2012), pp.339-343. Cerca con Google

[3] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Transactions on automatic control, Vol. 52, Issue 5 (2007), pp.852-862. Cerca con Google

[4] P. Degond, S. Motsch, Continuum limit of self-driven particles with orientation interaction, Mathematical Models and Methods in Applied Sciences, Vol. 18, Issue supp01 (2008), pp.1193-1215. Cerca con Google

[5] P. Degond, A. Frouvelle, J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles, Journal of Nonlinear Science, Vol. 23, Issue 3 (2013), pp.427-456. Cerca con Google

[6] M. Doi, Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, J. Polym. Sci. Polym. Phys. Ed., Vol. 19, Issue 2 (1981), pp.229-243. Cerca con Google

[7] B. Ferdinandy, K. Ozogány, T. Vicsek, Collective motion of groups of self-propelled particles following interacting leaders, Physica A: Statistical Mechanics and its Applications, Vol. 479 (1 August 2017), pp.467-477. Cerca con Google

[8] A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters, Mathematical Models and Methods in Applied Sciences, Vol. 22, Issue 7 (2012), 1250011 (40 pages). Cerca con Google

[9] A. Frouvelle, J.-G. Liu, Dynamics in a kinetic model of oriented particles with phase transition, SIAM J. Math. Anal., Vol. 44, Issue 2 (2012), pp.791-826. Cerca con Google

[10] F. Golse, Journées Équations aux dérivées partielles, Forges-les-Eaux, 2-6 juin 2003, GDR 2434 (CNRS). Cerca con Google

[11] A. Jadbabaie, J. Lin, A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Transactions on automatic control, Vol. 48, Issue 6 (2003), pp.988-1001. Cerca con Google

[12] B. Øksendal, Stochastic differential equations: an introduction with applications, 6th edition, Springer-Verlag Berlin (2003). Cerca con Google

[13] J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., Vol. 68, Issue 3 (2008), pp. 694-719. Cerca con Google

[14] A.-S. Sznitman, Topics in propagation of chaos, in: Ecole d’Eté de Probabilités de Saint-Flour XIX, in: Lecture Notes in Math. 1464, Springer-Verlag, Berlin (1991), pp. 165-251. Cerca con Google

[15] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., Vol. 75 (1995), pp.1226-1229. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record