Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Flandoli, Ilaria (2017) logarithmic conformal field theories of type Bn; p = 2 and symplectic fermions. [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF
1333Kb

Abstract

In the first part, I present a well-known algebraic object, a *vertex operator algebra* (VOA) *V* associated to a given lattice. I describe its representation theory and define some maps acting on it, called *screening operators*. The established program by B. Feigin et. al. to which my master project contributes asks to consider a sub lattice VOA *W* of *V*, by taking the intersection of the kernels of some screenings. Many conjectures were made in the past years about this new object *W*. In particular it was conjectured that this is a *Logarithmic Conformal Field Theory* (LCFT), i.e. a VOA with a finite but non-semisimple representation theory. Not many LCFT are nowadays known, and the program outlined above has only been completed for rank 1 so far. My master project is to study and completely understand a new example of this construction, where the lattice is a Lie algebra root lattice of type B_n, rescaled by p=2. In the second part I indeed calculate and discuss the screening operators, the representations of *W*, their decomposition behaviour and their graded characters. In the third part I prove that *W* is isomorphic to a known LCFT, the *Symplectic Fermions* VOA. In particular this implies that our *W* is in this case a LCFT. This is hence the first higher rank example, where the program has been successfully completed.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Matematica
Subjects:Area 01 - Scienze matematiche e informatiche > MAT/02 Algebra
Codice ID:56264
Relatore:Carnovale, Giovanna and Lentner, Simon
Data della tesi:21 July 2017
Biblioteca:Polo di Scienze > Biblioteca di Matematica
Tipo di fruizione per il documento:on-line per i full-text

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

[AM08] D. Adamovi_c, A. Milas , On the triplet vertex algebra W(p), Advances in Mathematics, 217 (2008) 2664-2699 Cerca con Google

[DR16] A. Davydov, I. Runkel, Holomorphic Symplectic Fermions, (2016) Cerca con Google

arXiv:1601.06451v1 Cerca con Google

[EO03] P. Etingof, V. Ostrik Finite tensor categories (2003) Cerca con Google

arXiv:math/0301027 Cerca con Google

[FB68] E. Frenkel, D. Ben-Zvi Vertex Algebras and Algebraic Curves American Mathematical Society Cerca con Google

[FF88] B. L. Feigin, E. V. Frenkel: A family of representations of affine Lie al-gebras, Uspekhi Mat. Nauk, 43:5(263) (1988), 227-228. English Translation: Russian Mathematical Surveys(1988),43(5):221 Cerca con Google

[FFHST02] J. Fjelstad, J. Fuchs, S. Hwang, A.M. Semikhatov, I.Yu. Cerca con Google

Tipunin, Logarithmic conformal _eld theories via logarithmic deformations, Cerca con Google

Nucl.Phys. B633 (2002) 379-413 Cerca con Google

[FGST06a] B.L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Cerca con Google

Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT, Theor.Math.Phys. 148 (2006) 1210-1235; Teor.Mat.Fiz. 148 (2006) 398-427. Cerca con Google

[HW59] G. H. Hardy, E. M. Wright An Introduction to the Theory of Numbers Cerca con Google

(1959) Oxford: Clarendon Press Cerca con Google

[Kassel95] C. Kassel, Quantum Groups (1995) Graduate Texts in Mathematics, Springer-Verlag New York Cerca con Google

[Kausch95] H.G Kausch, Curiosities at c = -2, (1995) arXiv:hep-h/9510149 Cerca con Google

[Kausch00] H. G. Kausch, Symplectic Fermions (2000) Nucl. Phys. B 583 , p. 513-541. Cerca con Google

[Kob93] N. Koblitz, Introduction to Elliptic Curves and Modular Forms Grad- Cerca con Google

uate Texts in Mathematics 97 (1993), Springer-Verlag Cerca con Google

[Lent07] S. Lentner Vertex Algebras Constructed from Hopf Algebra Structures (2007) Diploma Thesis Cerca con Google

[Lent14] S. Lentner, A Frobenius homomorphism for Lusztig's quantum groups for arbitrary roots of unity., (2014) a Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record