Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Perin, Marco (2017) Modules which are invariant under automorphisms of their covers and envelopes. [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF
586Kb

Abstract

Projective and injective resolutions are well known tools in Algebra. It is natural to ask whether we can take other types of resolutions and how one cande fine a generalized concept of cover and envelope. We will present here an approach due to P. A. Guil Asensio, D. K. Tutuncu and A. K. Srivastava [12]. It consists in de fing a notion of chi-envelope where chi is a class of modules closed under isomorphisms. The central topic of this work is then to study the properties of modules which are invariant under automorphisms of their chi-envelopes and covers. We will then apply the results to the special cases in which the class chi is that of the injectives or the projectives.

Item Type:Magistrali biennali
Uncontrolled Keywords:automorphisms, envelopes, covers
Subjects:Area 01 - Scienze matematiche e informatiche > MAT/02 Algebra
Codice ID:56360
Relatore:Facchini, Alberto
Correlatore:Guil Asensio, Pedro Antonio
Data della tesi:21 July 2017
Biblioteca:Polo di Scienze > Biblioteca di Matematica
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:No

Solo per lo Staff dell Archivio: Modifica questo record