Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Cortese, Enrico (2017) Dynamic formulations of L1 optimal transport problems. [Magistrali biennali]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1696Kb

Abstract

The purpose of this work is to analyse the relationships between different formulations of the Monge-Kantorovich transport problem, in the case of L 1 cost. In particular, we focus on the famous Benamou and Brenier’s dynamical formulation, adapting it to our cost function. Helped by the solutions of the other formulations, we find a way to solve the dynamical problem, with L 1 cost, and we compare the solution to the one found by Benamou and Brenier, with L 2 cost. To this aim, we also analyse the intermediate cases of L p costs, with 1 < p < 2, and work out a solution procedure based on the nonlinear coupling of a Hamilton-Jacobi equation with a transport equation. We study the qualitative behavior of the solutions to the proposed formulations on simple test cases. When explicit solutions cannot be easily recovered, we use an original numerical approach based on the Finite Volume discretization of the Hamilton-Jacobi and the transport equation and solve the nonlinearities by an ad-hoc adaptation of Newton method.

Tipologia del documento:Magistrali biennali
Parole chiave:optimal transport
Settori scientifico-disciplinari del MIUR:Area 01 - Scienze matematiche e informatiche > MAT/08 Analisi numerica
Codice ID:56644
Relatore:Putti, Mario - Pavon, Michele
Correlatore:Facca, Enrico
Data della tesi:13 Ottobre 2017
Biblioteca:Polo di Scienze > Biblioteca di Matematica
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:No

Solo per lo Staff dell Archivio: Modifica questo record