Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Buffoli, Gabriele (2016) Argille e polimeri fluidificanti per i cementi: caratterizzazione degli effetti di interazione. [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF (Tesi)
2631Kb

Abstract

The adsorption of organic polymer on clay minerals contained as impurities in coarse and sand aggregates, poses a severe problem on the workability of concrete. In detail, polycarboxylate ether-based superplasticizers (PCEs) with polyethylene glycol (PEG) side chains have a poor clay tolerance due to their intercalation into swelling clay minerals (e.g. montmorillonite). Once intercalated, the PCE is immobilized by the clay and loses its efficiency in dispersing the other fine particles. This effect strongly deteriorates the fluidity of concrete with PCE superplasticizers. The aim of this study is to investigate the effects of PCE intercalation in between the layers of a Na-smectite (labelled Vincon clay). X-ray diffraction measurements have been performed on Vincon powder samples after contacting the clay with different superplasticizer chemical admixtures. Thereby, it has been possible monitoring the variations of (d001) interplanar distance of smectite at increasing concentrations of PCEs in the contacting solution. Diffraction measurements have also been conducted at high temperature (up to 400°C) in order to evaluate the thermal stability of the PCE-clay intercalated system. The actual presence of organic molecules into smectite has also been confirmed by infrared spectrometry measurements. The clay tolerance of the different PCEs has been evaluated by means of mini-slump tests on cement pastes “poisoned” by clays. Also kaolinite and sandy samples have been tested as terms of comparison to Vincon clay. The combined analysis of the results obtained by XRPD, adsorption measurements and slump tests, indicate that all the investigated PCEs are easily intercalated in between the smectite layers, whereas they exhibit different efficiency in increasing fluidity of cement-clay pastes. This suggests that PCE conformation and/or PCE hydrolysis properties can play an important role in determining the clay tolerance of polymers.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:Cementi, Argille, Superfluidificanti, Smectiti, Polimeri
Subjects:Area 04 - Scienze della terra > GEO/09 Georisorse minerarie e applicazioni mineralogico- petrografiche per l'ambiente ed i beni culturali
Area 04 - Scienze della terra > GEO/06 Mineralogia
Codice ID:56829
Relatore:Dalconi, Maria Chiara
Correlatore:Russo, Vincenzo
Data della tesi:14 October 2016
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Atarashi, e. a. (2015). Interaction between Montmorillonite and chemical admixture. Journal of Advanced Concrete Technology Vol.13, 325-331. Cerca con Google

Bouvet, & Ghorbel. (2010). The mini-conical slump flow test: Analysis and numerical study. Cement and Concrete Research, Vol.40, 1517-1513. Cerca con Google

Finocchio. (2011). Hybrid Organo-Inorganic Clay with Nonionic Interlayers. Mid- and Near-IR Spectroscopic Studies. The Journal of Physical Chemistry A, 7484-7493. Cerca con Google

Fiore, S. (2004). Struttura e proprietà dei minerali argillosi. In Argille e minerali delle argille (p. 311). Cerca con Google

Gay, & Rafael. (2001). Comb-like polymers inside nanoscale pores. Advances in Colloid and Interface Science, 94 (1-3), 229-236. Cerca con Google

Hillier. (2003). Quantitative analysis of clay and other minerlas in sandstones by X-ray powder diffraction (XRPD). International Association of Sedimentologists, Special Publication Numebr 34, 213-215. Cerca con Google

Lei, & Planck. (2014). A study on the impact of different clay minerals on the dispersing force of conventional and modified vinyl ether based polycarboxylate superplasticiers. Cement and Concret Research, 60, 1-10. Cerca con Google

Lewis. (1952). Ion exchange reactions of clays. Clays clay mineral, 1, 54- 69. Cerca con Google

Maes, S. C. (1979). Layer charge-cation-exchange capacity relationships in montmorillonite. Clays and Clay Minerals, Vol.27, No. 5, 387-392. Cerca con Google

Moore, & Reynolds. (1997). X-ray diffraction and the identification and the analysis of the clay minerals, 2nd edition. Oxford University Press. Cerca con Google

Geok, & Planck. (2012). Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticers. Cement and Concrete Reserarch 42, 847-854. Cerca con Google

Pecharskiy, & Zavalij. (2005). Fundamental of Powder Diffraction and Structural Characterization of Materials. Springer. Cerca con Google

Siobhan, & alii. (2006). Veryfing and quantifying carbon fixation in minerals from serpentine-riche mine tailings using the Rietveld method with X-ray powder diffraction data. American Mineralogist, Volume 91, 1331-1341. Cerca con Google

Srodon. (1980). Precise Identification of Illite/Smectite Interstratification by X-ray Powder Diffraction. Clays and Clay Mineral, n°6, 404-411. Cerca con Google

Stumm. (1992). Chemistry of solid-water interface. Process at the mineral-water and particle-water interface in natural system. In Stumm, Chemistry of solid-water interface. Process at the mineral-water and particle-water interface in natural system (p. 428pp). New York: John Wiley and Sons. Cerca con Google

Talibudeen, & Goulding. (1983). Charge heterogeneities in smctites. Clay and Clay Minerals, 31, 37-42. Cerca con Google

Tan, & Gu. (2016). Mechanism of intercalation of polycarboxylate superplasticizer into montmorillonite. Applied Clay Science, 129, 40-46. Cerca con Google

Velde. (1995). Origin and Minerology of Clays: Clay and the environment. Springer. Cerca con Google

Velde, & Meunier. (2008). Cation Exchange Capacity. In M. Velde, The origin of clay minerals in soil and weathered rocks (p. 406). Bayreuth: Springer-Verlag. Cerca con Google

Wu. (2015). Influence of interlayer cations on organic intercalation of montmorillonite. Journal of Colloid and Interface Science, 454, 1-7. Cerca con Google

Wu, & Lerner. (1993). Structural, Thermal, and Electrical Charcterization of Layered Nanocomposites Derived from Na-Montmorillonite and Polyethers. Chem. Mater. 5, 835-838. Cerca con Google

Wu, & Liao. (2015). Influence of interlayer cations on organic intercalation of montmorillonite. Journal of Colloid and Interface Science, 454, 1-7. Cerca con Google

Zampori, & alii. (2012). Thermal characterization of a montmorillonite, modified with polyethylene glycols (PEG1500 and PEG4000), by in situ HT-XRD: Formation of a high-temperature phase. Applied Clay Science, 59-60, 140-147. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record