Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Simion, Stefania (2016) Multiscale petrophysical and thermal properties analysis of rocks. [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF (Tesi)
11Mb

Abstract

Data on thermal properties of rocks such as thermal conductivity (λ), thermal diffusivity (α), specific heat capacity (cp) are necessary for many aspects of exploration and exploitation of geothermal fields (Popov et al., 2012), in both high-low enthalpy and geo-exchange systems. However, there are still several difficulties in characterize geological materials, because their thermal properties are extremely dependent on scale of measurement. From a micro- and mesoscale point of view, porosity (in sedimentary and volcanic rocks), the dominant mineral phase (in metamorphic and plutonic rocks), and anisotropy (in sedimentary and metamorphic rocks) are important controlling factors on thermal conductivity. Texture have been scarcely investigated. Anyway, thermal conductivity as a tensor depends not only on the volume fraction and thermal conductivity of rock components, but also on their distribution, on geometry and internal structure, and on the heat transfer conditions at the contacts between them (Schön, 2011). Thus, understanding the influence on thermal properties of the texture is a present-day challenge whose results could provide a huge contribution to the scientific community now involved in geothermal energy topics. The main goal of the present project is to provide an example of a new approach that could take into account the thermo-physical properties of rocks at the microscale as well as those at meso- and macroscale. Some techniques have been tested on two different lithologies, dolomites on one hand and trachytes on the other, and results have been discussed separately. μ-XRF seems to be the “turning point” technique for analyses of petro-physical properties on effusive rocks as trachytes since the image analysis on the elemental X-ray maps provides reliable quantitative information on texture and rock-forming minerals in relatively short analysis times. In the same way, a good applicability of the technique is assumed on intrusive rocks. Conversely, the micro-XRF doesn’t provide the expected results for dolomites. Among those tested, the He pycnometer technique remains the most accurate one for measuring porosity. In addition, a search on literature was made to understand how thermal properties of rock-forming minerals were and can be measured; an overview on the models for the computation of thermal conductivity of rocks starting from rock-forming minerals values is provided. A continuation of this study is necessary in order to (1) test the validity of the proposed methods on other lithologies, (2) deepen the study of texture influences on thermal conductivity, (3) contribute to the compilation of rock thermal properties database collected by several authors, (4) apply the acquired information for numerical modelling purposes.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:Thermal Characterization
Subjects:Area 04 - Scienze della terra > GEO/05 Geologia applicata
Codice ID:56887
Relatore:Galgaro , Antonio
Correlatore:Cultrera, Matteo and Secco, Michele
Data della tesi:02 December 2016
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Andrés, C., Álvarez, R., and Ordóñez, A. (2016). Estimation of thermal Cerca con Google

conductivity of rocks from their mineralogical composition (Asturian Coal Cerca con Google

Basin, NW Spain) for modelling purposes. Environ. Earth Sci. 75. Cerca con Google

Anovitz, L.M., and Cole, D.R. (2015). Characterization and Analysis of Cerca con Google

Porosity and Pore Structures. Rev. Mineral. Geochem. 80, 61–164. Cerca con Google

Bartoli, O., Meli, S., Sassi, R., and Magaraci, D. (2013). Amphiboles and Cerca con Google

clinopyroxenes from Euganean (NE Italy) cumulus enclaves: evidence of Cerca con Google

subduction-related melts below Adria microplate. Rendiconti Lincei 24, 151–161. Cerca con Google

Beck, A. (1957). A steady state method for the rapid measurement of the Cerca con Google

thermal conductivity of rocks. J. Sci. Instrum. 34, 186. Cerca con Google

Bertermann, D., Müller, J., Galgaro, A., Cultrera, M., Bernardi, A., and Di Cerca con Google

Sipio, E. (2016). Cheap-GSHPs, an European project aiming cost-reducing Cerca con Google

innovations for shallow geothermal installations.-Geological data Cerca con Google

reinterpretation. In EGU General Assembly Conference Abstracts, p. 13086. Cerca con Google

Birch, F., and Clark, H. (1940). The Thermal Conductivity of rocks and its Cerca con Google

dependence upon temperature and composition. Am. J. Sci. 238, 529–558. Cerca con Google

Buggiarin, S. (2014). Thermophysical properties of Euganean Hills lithologies (Padua, North-Eastern Italy) related to underground thermal storage feasibility. Cerca con Google

Università degli studi di Padova. Cerca con Google

Capedri, S., Venturelli, G., and Grandi, R. (2000). Euganean trachytes: Cerca con Google

discrimination of quarried sites by petrographic and chemical parameters and by magnetic susceptibility and its bearing on the provenance of stones of ancient artefacts. J. Cult. Herit. 1, 341–364. Cerca con Google

Clauser, C. (2011). Thermal Storage and Transport Properties of Rocks, II: Thermal Conductivity and Diffusivity. In Encyclopedia of Solid Earth Cerca con Google

Geophysics, H.K. Gupta, ed. (Springer Netherlands), pp. 1431–1448. Cerca con Google

Clauser, C., and Huenges, E. (1995). Thermal conductivity of Rocks and Cerca con Google

Minerals. Am. Geophys. Union. Cerca con Google

Cruciani, G. (2006). Introduction to powder diffraction. p. 114 Cerca con Google

De Lullo, A. (2016). Caratterizzazione termofisica del magazzino ipogeo per la frigoconservazione di Rio Maggiore (Val di Non - TN). Università degli studi di Padova. Cerca con Google

Di Sipio, E., Chiesa, S., Destro, E., Galgaro, A., Giaretta, A., Gola, G., and Cerca con Google

Manzella, A. (2013). Rock Thermal Conductivity as Key Parameter for Cerca con Google

Geothermal Numerical Models. Energy Procedia 40, 87–94. Cerca con Google

Diment, W., and Pratt, H. (1988). Thermal conductivity of some rock-forming minerals: a tabulation (United State Department of the Interior Geological Survey). Cerca con Google

Dove, M.T. (2011). Introduction to the theory of lattice dynamics. Éc. Cerca con Google

Thématique Société Fr. Neutron. 12, 123–159. Cerca con Google

Eppelbaum, L., Kutasov, I., and Pilchin, A. (2014). Thermal Properties of Cerca con Google

Rocks and Density of Fluids. In Applied Geothermics, (Berlin, Heidelberg: Cerca con Google

Springer Berlin Heidelberg), pp. 99–149. Cerca con Google

Fuganti, A., Odorizzi, S., and Franzinelli, A. (2013). La miniera di Dolomia Cerca con Google

Rio Maggiore Val di Non (Trento). Cerca con Google

Germinario, L., Cossio, R., Maritan, L., Borghi, A., and Mazzoli, C. (2016). Cerca con Google

Textural and Mineralogical Analysis of volcanic Rocks by μ-XRF Mapping. Cerca con Google

Microsc. Microanal. Cerca con Google

Giesting, P.A., and Hofmeister, A.M. (2002). Thermal conductivity of Cerca con Google

disordered garnets from infrared spectroscopy. Phys. Rev. B 65. Cerca con Google

Gong, G. (2005). Physical properties of alpine rocks: a laboratory Cerca con Google

investigation. University of Geneva. Cerca con Google

Gregg, J.M., Bish, D.L., Kaczmarek, S.E., and Machel, H.G. (2015). Cerca con Google

Mineralogy, nucleation and growth of dolomite in the laboratory and Cerca con Google

sedimentary environment: A review. Sedimentology 62, 1749–1769. Cerca con Google

Gustafsson, S.E. (1991). Transient plane source techniques for thermal Cerca con Google

conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62, 797. Cerca con Google

Höfer, M., and Schilling, F.R. (2002). Heat transfer in quartz, orthoclase, and sanidine at elevated temperature. Phys. Chem. Miner. 29, 571–584. Cerca con Google

Hofmeister, A.M. (2001). Thermal conductivity of spinels and olivines from Cerca con Google

vibrational spectroscopy: Ambient conditions. Am. Mineral. 86, 1188–1208. Cerca con Google

Hofmeister, A.M. (2006). Thermal diffusivity of garnets at high temperature. Phys. Chem. Miner. 33, 45–62. Cerca con Google

Hofmeister, A.M. (2014). Thermal diffusivity and thermal conductivity of Cerca con Google

single-crystal MgO and Al2O3 and related compounds as a function of Cerca con Google

temperature. Phys. Chem. Miner. 41, 361–371. Cerca con Google

Hofmeister, A.M., and Pertermann, M. (2008). Thermal diffusivity of Cerca con Google

clinopyroxenes at elevated temperature. Eur. J. Mineral. 20, 537–549. Cerca con Google

Horai, K.-I. (1971). Thermal Conductivity of Rock-Forming Minerals. J. Cerca con Google

Geophys. Res. 76. Cerca con Google

Maritan, L., Mazzoli, C., Sassi, R., Speranza, F., Zanco, A., and Zanovello, P. (2013). Trachyte from the Roman aqueducts of Padua and Este (north-east Italy): a provenance study based on petrography, chemistry and magnetic susceptibility. Eur. J. Mineral. 25, 415–427. Cerca con Google

Mathis, N. (2000). Transient thermal conductivity measurements: comparison of destructive and nondestructive techniques. High Temp.-High Press. 32, 321–327. Cerca con Google

Min, S., Blumm, J., and Lindemann, A. (2007). A new laser flash system for Cerca con Google

measurement of the thermophysical properties. Thermochim. Acta 455, 46–49. Cerca con Google

Pasquale, V., Verdoya, M., and Chiozzi, P. (2014). Geothermics. Heat Flow in the Lithosphere (Springer). Cerca con Google

Popov, Y., Bayuk, I., Parshin, A., Miklashevskiy, D., Novikov, S., and Cerca con Google

Chekhonin, E. (2012). New methods and instruments for determination of Cerca con Google

reservoir thermal properties. In Proceedings, Thirty-Seventh Workshop on Cerca con Google

Geothermal Reservoir Engineering Stanford University, Stanford, California Cerca con Google

Popov, Y.A., Pribnow, D.F.C., Sass, J.H., Williams, C.F., and Burkhardt, H. Cerca con Google

(1999). Characterization of thermal properties by high-resolution optical Cerca con Google

scanning. Geothermics 28, 253–276. Cerca con Google

Quaschning, V. (2005). Understanding renewable energy systems (London Sterling, VA: Earthscan). Cerca con Google

Robertson, E.C. (1988). Thermal Properties of Rocks (Reston: U.S. Geol. Cerca con Google

Survey). Cerca con Google

Rollinson, H. (1993). Using Geochemical Data: Evaluation, Presentation, Cerca con Google

Interpretation. Cerca con Google

Sass, J.H. (1965). The thermal conductivity of fifteen feldspar specimens. J. Geophys. Res. 70. Cerca con Google

Sassi, R. (2004). Towards a Better Understanding of the Fibrolite Problem: the Effect of Reaction Overstepping and Surface Energy Anisotropy. J. Petrol. 45, 1467–1479. Cerca con Google

Schön, J. (2011). Physical properties of rocks: a workbook (Amsterdam ; Cerca con Google

Boston: Elsevier). Cerca con Google

Somerton, W.H. (1992). Thermal Properties and Temperature-Related Cerca con Google

Behavior of Rock/Fluid Systems (Elsevier). Cerca con Google

Vaggelli, G., and Cossio, R. (2012). μ-XRF analysis of glasses: a nondestructive utility for cultural heritage applications. The Analyst 137, 662–667. Cerca con Google

Von Herzen, R., and Maxwell, A.E. (1959). The Measurement of Thermal Cerca con Google

Conductivity of Deep-Sea Sediments by a Needle-Probe Method. J. Geophys. Res. 64. Cerca con Google

Whitney, and Evans (2010). Abbreviations for names of rock-forming Cerca con Google

minerals. Am. Mineral. 95, 185–187. Cerca con Google

AccuPyc 1330 Pycnometer Operator’s Manual Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record