Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | AccessibilitĂ 

logo del sistema bibliotecario dell'ateneo di padova

Borriello, Anna (2017) Verifica della qualitĂ  dei dati di tomografia elettrica e relative influenze sui risultati d'inversione. [Magistrali biennali]

Full text disponibile come:

Documento PDF (Tesi)


It is well established that applied geophysics provides effective support to more traditional direct investigation methods, which typically supply only punctual and often incomplete information. Among the many geophysical techniques available, electrical resistivity tomography (ERT) is one of the most used for both geological and hydrogeological characterization of the subsurface. Nevertheless, a careful data analysis and a correct interpretation of the ERT data are mandatory, in order to obtain reliable information regarding the investigated domain. Traditionally, the ERT data are acquired by investigating each electrode quadrupole only one time (so-called “direct measurement”) and the data thus obtained are directly processed by means of geophysical inversion software. This procedure, however, may provide wrong inversion results, which in turn could lead to a misinterpretation of the actual resistivity distribution. This is mainly due to the lack of a proper data error estimation. To overcome this issue, it is possible to add to the acquisition scheme the so-called “reciprocal measurements”, where the current electrodes and the potential electrodes of the same quadrupole are switched. As a consequence, for each quadrupole two transfer resistance values are available. Moreover, these values should be identical, according to reciprocity effect. Any inconsistency can be considered an estimation of the measurement error, therefore this acquisition type allows filtering the available data, rejecting those measurement couples with an error greater than a fixed threshold. In this work, based on data analysis and inversion, we compare the results obtained with traditional ERT acquisitions, i.e. using only direct measurements, with the acquisition of both direct and reciprocal values. The main aim is to check the quality of the ERT data acquired following the two approaches described above. This is achieved by means of appropriate processing and data inversion software, in combination with graphical representation tools. The analyzed data come from two different field sites: the construction site of the new high-speed trains. Railway station in Bologna and the reconstructed embankment of the Frassine river in Megliadino San Fidenzio (PD). The main results show that acquiring both direct and reciprocal measurements gives more effective and reliable results with respect to the dataset made up of only direct measurements.

Tipologia del documento:Magistrali biennali
Codice ID:56890
Relatore:Cassiani, Giorgio
Correlatore:Boaga, Jacopo
Data della tesi:10 Marzo 2017
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Sì


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

[1] AA.VV., Wikipedia, l'enciclopedia libera. URL Vai! Cerca con Google

[2] Binley, A., Lancaster University. (2016) ProfileR, URL Vai! Cerca con Google

[3] Binley, A., Cassiani, G., Deiana, R., (2010) Hydrogeophysics: Opportunuities and Challenges. Bollettino di Geofisica teorica e applicata, 51(4), 267-284. Cerca con Google

[4] Binley, A., Cassiani, G., Middleton, R., & Winship, P. (2002). Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. Journal of Hydrology, 267(3), 147-159. Cerca con Google

[5] Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., & Slater, L. D. (2015). The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water resources research, 51(6), 3837-3866. Cerca con Google

[6] Binley, A., Kemna, A., (2005) DC resistivity and induced polarization methods. Spinger Science & Business Media, First Edition. Hydrogeophysic, Volume 50 of the series Water Science and Technology Library, 129-156. Cerca con Google

[7] Binley, A., Ramirez, A., Daily, W., (1995) Regularised image reconstruction of noisy electrical resistance tomography data. Process Tomography (1995) Beck MS et al (Eds). Proceedings of the 4th Workshop of the European Concerted Action of Process Tomography, Bergen. 401-410. Cerca con Google

[8] Boaga, J., Il dato e l’interpretazione: il problema mal posto. Dipartimento di Geoscienze, Università degli Studi di Padova. Cerca con Google

[9] Busato, L., Non-invasive methodologies for the caracterization of the Earth’s critical zone. Tesi di dottorato. Dipartimento di Geoscienze, Università degli Studi di Padova. Cerca con Google

[10] Busato, L.,Boaga, J., Peruzzo, L., Himi, M., Cola, S., Bersan, S., Cassiani, G. (2016) Combined geophysical surveys for the characterization of a reconstructed river embankment. Engineering Geology, 211, 74-84. Cerca con Google

[11] Caforio, A., Ferilli, A. (2004) Physica 2000. Le Monnier. Cerca con Google

[12] Cassiani, G., (A.A. 2010/11) Materiale fornito durante le lezioni di Geofisica Applicata 1. Dipartimento di Geoscienze, UniversitĂ  degli Studi di Padova. Cerca con Google

[13] Cassiani, G., Bruno, V., Villa, A., Fusi, N., & Binley, A. M. (2006). A saline trace test monitored via time-lapse surface electrical resistivity tomography. Journal of Applied Geophysics, 59(3), 244-259. Cerca con Google

[14] Constable, S.C., Parker, R.L, Constable, C.G. (1987) Occam’s inversion: A pratical algorithm for generating smooth models from electromagnetic sounding data. Geophisics, 52(3), 289-300. Cerca con Google

[15] Corrao, M., Coco, G., (2009) Geofisica applicata, con particolare riferimento alle prospezioni sismiche, elettriche, elettromagnetiche e geotermiche, II Edizione. Dario Flaccovio Editore. Cerca con Google

[16] Cosenza, P., Marmet, E., Rejiba, F., Cui, Y. J., Tabbagh, A., & Charlery, Y. (2006). Correlations between geotechnical and electrical data: A case study at Garchy in France. Journal of Applied Geophysics, 60(3), 165-178. Cerca con Google

[17] Daily, W., Ramirez, A., Binley, A., (2004) Remote Monitoring of Leaks in Storage Tanks using Electrical Resistance Tomography: Application at the Hanford Site. Journal of Environmental and Engineering Geophysics, 9(1), 11-24. Cerca con Google

[18] Daily, W., Ramirez, A., LaBrecque, D., & Nitao, J. (1992). Electrical resistivity tomography of vadose water movement. Water Resources Research, 28(5), 1429-1442. Cerca con Google

[19] D’Alpaos, A., (A.A. 2011/12) Materiale fornito durante le lezioni. Dipartimento di Geoscienze, Università degli Studi di Padova. Cerca con Google

[20] Deiana, R., (A.A. 2010/11) Materiale fornito durante le lezioni. Dipartimento di Geoscienze, UniversitĂ  degli Studi di Padova. Cerca con Google

[21] Godio, A., Strobbia, C., & De Bacco, G. (2006). Geophysical characterisation of a rockslide in an alpine region. Engineering Geology, 83(1), 273-286. Cerca con Google

[22] Kemna, A., (2000) Tomographic inversion of complex resistivity: theory and application. Der Andere Verlag. Berichte des Institutes für Geophysik der Ruhr-Universität Bochum, Institut für Geophysik, Edizione 56. Cerca con Google

[23] Kemna, A., Vanderborght, J., Kulessa, B., & Vereecken, H. (2002). Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology, 267(3), 125-146. Cerca con Google

[24] LeBrecque, D.J., Mietto, M., Daily, W., Ramirez, A., Owen, E., (1996) The effect of noise on Occam’s inversion of resistivity tomography data. Geophisics, 61(2), 538-548. Cerca con Google

[25] Loke, M.H., (2002) Tutorial: 2D and 3D electrical imaging surveys. Cerca con Google

[26] National Research Council. (2001). Basic research opportunities in Earth Science. National Academies Press. Cerca con Google

[27] Oldenborger, G. A., Routh, P. S., & Knoll, M. D. (2005). Sensitivity of electrical resistivity tomography data to electrode position errors. Geophysical Journal International, 163(1), 1-9. Cerca con Google

[28] Parker, R.L., (1994) Geophysical Inverse Theory. Priceton University Press. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record