Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Grosso, Gaia (2017) Deep Learning techniques to search for New Physics at LHC. [Laurea triennale]

Full text disponibile come:

[img]
Preview
PDF
5Mb

Abstract

The purpose of this thesis is to apply more recent machine learning algorithms based on neural network architectures in order to discriminate signal from background processes in particle collisions experiments which take place at LHC, in Geneva. First part of this work concerns with neural network architecture and learning algorithm brief description. Then we outline LHC experiments and analysis tools. Finally we introduce our work focusing on the physics of signal process used for our tests and we show our principal results. In particular, we shall confirm that complex neural architectures, namely deep networks, trained on raw kinematics features of particles produced in the process are able to equal or even surpass performances of simpler neural architectures, namely shallow networks, trained on few non linear variables derived from kinematic ones to reduce phase space. This result has a great impact on particle physics research carried on at LHC since it gives a valid alternative analysis tool to classify signals of new physics, especially when non linear features of interest will be yet unknown.

Item Type:Laurea triennale
Corsi di Laurea Triennale:Scuola di Scienze > Fisica
Uncontrolled Keywords:deep networks, machine learning, LHC
Subjects:Area 02 - Scienze fisiche > FIS/01 Fisica sperimentale
Codice ID:56952
Relatore:Zanetti, Marco
Data della tesi:September 2017
Biblioteca:Polo di Scienze > Dip. Fisica e Astronomia "Galileo Galilei" - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Solo per lo Staff dell Archivio: Modifica questo record