Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Gonzo, Riccardo (2017) The infinite-spin representations of the Poincaré group. [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF
1068Kb

Abstract

All particles inside the Standard Model fall inside some of these representations, which are labelled by the value of a continuous parameter called mass m and by the value of the spin s in the massive case or by the value of the helicity h in the massless case. But the most general type of massless particles allowed included the so-called infinite-spin representations which are characterized by a dimensionful scale K and reduce to familiar helicity particles only in the limit K -> 0. These particles are also called continuous spin particles (CSP). The scope of the thesis is to study the general form of quantum (free) fields for CSP, particularly focusing on the structure of the intertwiners (the coefficients of the annihilation and creation operators in the mode expansion of the fields). I will first establish, parametrizing directly the orbits of the little group for massless particles E(2), a new way to find the "smooth" and "singular" solutions of Schuster and Toro papers. Then I will make a deep connection between the general structure of Mund-Schroer-Yngvason intertwiners with Schuster-Toro smooth wavefunctions via Gaussian integration. Moreover I will emphasize the role of localization for infinite-spin intertwiners, considering both Mund-Schroer-Yngvas on and Schuster and Toro's works from different perspectives. The Mund-Schroer-Yngvason bound regards the admissible class of infinite-spin intertwiners. We will give an estimate about a special type of intertwiner, showing that it will fulfill the Mund-Schroer-Yngvason bound if it is multiplied by a suitable factor. Finally I will discuss the properties of the 2-point function using the general structure of infinite-spin intertwiners.

Item Type:Magistrali biennali
Uncontrolled Keywords:infinite-spin, continuous-spin, CSP
Subjects:Area 02 - Scienze fisiche > FIS/02 Fisica teorica, modelli e metodi matematici
Codice ID:57463
Relatore:Marchetti, Pieralberto
Data della tesi:October 2017
Biblioteca:Polo di Scienze > Dip. Fisica e Astronomia "Galileo Galilei" - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Solo per lo Staff dell Archivio: Modifica questo record