Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Dal Paos, Luca (2017) Produzione di una carta geologica dell'area del Manaslu, attraverso il telerilevamento, l'analisi petrografica e spettrofotometrica. [Magistrali biennali]

Full text disponibile come:

[img]PDF (Tesi magistrale)
Tesi non accessibile fino a 12 April 2021 per motivi correlati alla proprietà intellettuale. Visibile a: Repository staff only

[img]PDF (Carta geologica)
Tesi non accessibile fino a 12 April 2021 per motivi correlati alla proprietà intellettuale. Visibile a: Repository staff only



Remote sensing in the Himalayan belt is an increasingly powerful tools for glacial and geo-morphological mapping purposes (Quinceya et al.,2007). Rock composition analysis is also possible by studying the signal emitted from the surface and captured by the remote sensors. The remote sensing allow to obtain a global cognition of structures and of the main litologies are present in the selected areas. However, during this type of analyses many difficulties could be met: cloudy cover, snow, glaciers, vegetation and steep topography are among the major problems to be solved when processing data. The examined area is located in the Gandaki region between the Budhi Gandaki and the Marshyangdi valleys which delimit the Manaslu massif (Pecher & Guillot, 2011) in Central Nepal (Central Himalaya). This work aims to apply the remote sensing tecniques in order to investigate the possible structural and lithological correlations among the valleys cited above and other nearby structural transects within the Greater Himalayan Sequence, the metamorphic core of the Himalaya, where the occurrences of hightemperature shear zones have been previously reported (Montomoli et al., 2013, 2015). The final goal will be an updated geological map of Manaslu area as much detailed as possible, considering the difficulties due to altitude and limited accessibility. Moreover, as rock type discrimination, we use also lichens as proxy for different kinds of lithology (Bertoldi et al., 2011). The multispectral analysis has been applied on a ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) image which include 9 bands in the VNIR (Visible and Near Infrared) and SWIR (Shortwave Infrared) fields. Vegetation, snow and ice were masked to isolate and filter rocky pixels and to focus the image only on its potential geological aspects. The interpretation of false color composed on Principal Components on masked images were particularly useful as a guidance during detailed field work. Indeed, field work confirms the successful in discrimating the various lithologies of the study-area. A further improvement of the geological map will be provided by bands ratios and from supervised classification based on spectra obtained from ROI (Region Of Interest) and from collected samples. We show, how according this procedure, an accurate geological map could be obtained, with the aim to investigate lateral continuity of geological units and of tectonic discontinuities along the between the Budhi Gandaki and the Marshyangdi valleys and to investigate relationship between plutons and low-angle-normal-fauls

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:Himalaya orogen, Remote sensing, Geologia himalayana, Petrografia himalayana
Subjects:Area 04 - Scienze della terra > GEO/07 Petrologia e petrografia
Codice ID:59592
Relatore:Visonà, Dario
Correlatore:Massironi, Matteo
Data della tesi:01 December 2017
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

ARGAND, E. (1924). La tectonique de l’Asie Congrès Géologique International, Belgique, Comptes Redunes de la 13ème Session, en Belgique 1922. H.Vaillant-Carmanne, Liège, pp 171-372 Cerca con Google

ANNEN, C., SCAILLET, B., & SPARKS, R. S. J., (2006). Thermal Constraints on the Emplacement Rate of a Large Intrusive Complex: The Manaslu Leucogranite, Nepal Himalaya. Journal of Petrology, 47, 1, 71–95 Cerca con Google

BARBEY, P.; BROUAND, M.; LEFORT, P.; AND PECHER, A. (1996). Granite-migmatite genetic link: the example of the Manaslu granite and Tibetan slab migmatites in central Nepal. Lithos 38:63–79. Cerca con Google

BEAUMONT, C., JAMIESON, R.A., NGUYEN, M.H., LEE, B., (2001). Himalayan tectonics explained by extrusion of a low‐viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–742. Cerca con Google

BERTOLDI, L. (2010). Telerilevamento di rocce granitoidi: elaborazione immagine e spettroscopia in ambiente desertico (Anti-Atlante orientale, Marocco) ed alpino (Himalaya, Nepal occidentale). Tesi dottorato, scuola di dottorato di ricerca in scienze della terra, Padova, ciclo XXIII, 2008-2009 Cerca con Google

BERTOLDI, L., MASSIRONI, M., VISONÀ D., CAROSI, R., MONTOMOLI, C., NALETTO, G., PELIZZO, M. G. (2011). Mapping the Buraburi granite in the Himalaya of Western Nepal: remote sensing analysis in a collisional belt with vegetation cover and extreme variation of topography. Remote Sensing of Environments, 115(5), 1129–1144. Cerca con Google

BHAMBRI, R., BOLCH, T., CHAUJAR, R. K., KULSHRESHTHA, S. C., (2011). Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology, 57, 203. Cerca con Google

BOLASCO S., (1999). Analisi multidimensionale dei dati. Metodi, strategie e criteri d'interpretazione, Roma, Carocci. Cerca con Google

BOLLINGER, L., JANOTS, E., (2006). Evidence for Mio-Pliocene retrograde monazite in the Lesser Himalaya, far western Nepal. Eur J Mineral, 18, 289-297. Cerca con Google

BURCHFIEL, C. B., CHEN, Z., HODGES, K. V., LIU, Y., ROYDEN, L. H., DENG, C., & XU, J., (1992). The south Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of America Special Paper, 269 41 pp. Cerca con Google

BURG, J.P., & CHEN, G.M., (1984). Tectonics and structural zonation of southern Tibet, China. Nature, 311, 219-223. Cerca con Google

CAMPBELL, J. B. & WYNNE R. H., (2011). Introduction to Remote Sensing. Fifth Edition Cerca con Google

CAROSI, R., LOMBARDO, B., MOLLI, G., MUSUMECI, G., & PERTUSATI, P. C. (1998). The south Tibetan detachment system in the Rongbuk valley, Everest region. Deformation and geological implications. Journal of Asian Earth Sciences, 16, 299−311. Cerca con Google

CAROSI, R., MONTOMOLI, C., & VISONÀ, D. (2007). A structural transect in the Lower Dolpo: Insights on the tectonic evolution of Western Nepal. Journal of Asian Earth Sciences, 29, 407−423. Cerca con Google

CAROSI, R., MONTOMOLI, C., RUBATTO, D., & VISONÀ, D. (2010). Late Oligocene hightemperature shear zones in the core of the Higher Himalayan Crystallines (Lower Dolpo, western Nepal). Tectonics, 29. Cerca con Google

CHAKRABARTI, B.K. (2016). Geology of the Himalayan Belt: Deformation, Metamorphism, Stratigraphy. Elsevier, Geologoical Survey of India, 50-51pp. Cerca con Google

COLCHEN, M., LE FORT, P., & PÊCHER, A. (1986). Annapurna– Manaslu–Ganesh Himal. Paris: Centre National de la Recherche Scientifique, 136 pp. Cerca con Google

COPELAND, P., HARRISON, T. M. & LE FORT, P. (1990). Age and cooling history of the Manaslu granite: implications for Himalayan tectonics. Journal of Volcanology and Geothermal Research 44, 33–50. Cerca con Google

DECELLES, P.G., GEHRELS, G.E., QUADE, J., LAREAU, B. & SPURLIN, M., (2000). Tectonic implication of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 288, 497-499. Cerca con Google

DENIEL, C., VIDAL P., FERNANDEZ, A., LE FORT, P. & PEUCAT, J. J. (1987). Isotopic study of the Manaslu granite (Himalaya, Nepal): inferences on the age and source of Himalayan leucogranites. Contributions to Mineralogy and Petrology 96, 78–92. Cerca con Google

DÈZES, P., (1999). Under the Title "Tectonic and metamorphic Evolution of the Central Himalayan Domain in Southeast Zanskar (Kashmir, India). Mémoires de Géologie (Lausanne), 32. Cerca con Google

DHITAL, M.R., (2015). Geology of the Nepal Himalaya. Regional Geology Reviews, Springer International Publishing Switzerland. Cerca con Google

ENGLAND, P., LE FORT, P., MOLNAR, P. & PÊCHER, A. (1992). Heatsource for Tertiary metamorphism and anatexis in the Annapurna–Manaslu region, Central Nepal. Journal of Geophysical Research 97, 2107–2128. Cerca con Google

FRANCE-LANORD, C., SHEPPAR, S. M. F. & LEFORT, P. (1988). Hydrogenand oxygen isotope variations in the High Himalaya Peraluminous Manaslu Leucogranite: evidence for heterogeneous sedimentarysource. Geochimica et Cosmochimica Acta 52, 513–526. Cerca con Google

FUCHS, G., & POUDEL, L.P., (1998). Note on the Tethyan sedimentary series of the Manaslu region (northern Nepal). Jahrbuch der Geologischen Bundesanstalt, 141, 45-50. Cerca con Google

GARZANTI, E., (1999). Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. Journal of Asian Earth Science, 17, 805– 827. Cerca con Google

GEIGER, C.A., (2004). An introduction to spectroscopic methods in the mineral science and geochemistry. In: Beran A., and Libowitzky E. (eds.) Spectroscopic methods in mineralogy, V. 6, EMU notes in mineralogy Eotvos University Press, 1-42. Cerca con Google

GODIN, L. (1999). Tectonic evolution of the Tethyan sedimentary sequence in the Annapurna area, central Nepal Himalaya. Ph.D. thesis, Carleton University, Ottawa, 219. Cerca con Google

GOMARASCA, M.A., (2004). Elementi di geomatica: con elementi di: geodesia e cartografia, fotogrammetria, telerilevamento, informatica, sistemi di ripresa, sistemi di posizionamento satellitare, elaborazione digitale. Associazione geologica di italiana di rilevamento. 640pp. Cerca con Google

GROPPO, C., ROLFO, F., CASTELLI, D. & CONNOLY, J.A.D. (2013b). Metamorphic CO2 production from calcsilicate rocks via garnet forming reactions in the CFAS-H2O-CO2 System. Comntribution to Mineralogy and Petrology 166, 165-1675. Cerca con Google

GRUJIC, D., CASEY, M., DAVIDSON, C., HOLLISTER, S.L., KÜNDIG, R., PAVLIS, T., SCHMID, S., (1996). Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics 260, 21–43. Cerca con Google

GUILLOT, S. & LE FORT, P. (1995). Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos 35, 221–234. Cerca con Google

GUILLOT, S., HODGES, K. V., LE FORT, P. & PÊCHER, A. (1994). Newconstraints on the age of the Manaslu leucogranite: evidence for episodic tectonic denudation in the central Himalayas. Geology 22,559–562. Cerca con Google

GUILLOT, S., PÊCHER, A., ROCHETTE, P. & LE FORT, P. (1993). Theemplacement of the Manaslu granite of central Nepal: field andmagnetic susceptibility constraints. In: Treloar, P. J. & Searle, M. P.(eds) Himalayan Tectonics. Geological Society, London, Special Publications 74, 413–428. Cerca con Google

GUILLOT, S., LE FORT, P., PEˆCHER, A., ROY BARMAN, M. & APRAHAMIAN, J. (1995a). Contact metamorphism and depth of emplacement of the Manaslu granite (central Nepal): implications for Himalayan orogenesis. Tectonophysics 241, 99–119. Cerca con Google

HARRISON, T. M., GROVE, M., LOVERA, O. M., CATLOS, E. J., D’ANDREA, J. (1999). The origin of Himalayan anatexis and inverted metamorphism: model and constraints. J. Asian Earth Sci 17, 775-772. Cerca con Google

HARRISON, T. M., GROVE, M., MCKEEGAN, K., COATH, C. D., LOVERA, O. M. & LE FORT, P. (1999b). Origin and episodic emplacement of the Manaslu Intrusive Complex, Central Himalaya. Journal of Petrology 40, 3–19. Cerca con Google

HEIM, A., GANSSER, A., (1939). Cerntral Himalaya: geological observations of the Swiss expedition 1936. Denkschriften der schweizerischen Naturforschenden Gesellschaft. Band LXXIII, Abh. 1, 245. Cerca con Google

HODGES, K.V., PARRISH, R.R., HOUSH, T.B., LUX, D.R., BURCHFIEL, B.C., ROYDEN, L.H., CHEN, Z., (1992). Simultaneous Miocene extension and shortening in the Himalayan Orogen. Science 258, 1466–1470. Cerca con Google

HODGES, K.V., PARRISH, R.R., SEARLE, M.P., (1996). Tectonics of teh Himalaya and southern Tibet from two perspectives. Geol. Soc. Am. Bull. 112, 324-350 Cerca con Google

HODGES, K. V.; BOWRING, S.; DAVIDEK, K.; HAWKINS, D. & KROL, M. (1998). Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges. Geology 26:483–486. Cerca con Google

IMAYAMA, T., AND ARITA, K., (2008). Nd isotopic data reveal the material and tectonic nature of the Main Central Thrust zone in Nepal Himalaya. Tectonophysics, v. 451, p. 265-281. Cerca con Google

KHANAL, S., ROBINSON, D. M., MANDAL, S., & SIMKHADA, P., (2015). Structural, geochroological and geochemical evidence for two thrust sheets in the MCTzone, the MCT and Ramghar-Munsiari thrust: implication for Cerca con Google

upper crustal shortening in central Nepal. Tectonics of the Himalaya, Geol Soc. London 412, 221-245. Cerca con Google

KRUSE, F. A., LEFKOFF, A. B., BOARDMAN, J. B., HEIDEBRECHT, K. B., SHAPIRO, A. T., BARLOON, P. J. & GOETZ, A. F. H., (1993). The Spectral Image Processing System (SIPS) – Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment, Special issue on AVIRIS, 44,145-163. LAW, R. D., SEARLE, M. P. & GODIN, L. (2006). Channel flow, ductile extrusion and exhumation in continental collision zones. Geological Society London, Special Publications, 268. Cerca con Google

LE FORT, P. (1975). Himalaya: the collided range. American Journal of Science, 275(A), 1-44. Cerca con Google

LE FORT P. (1981). Manaslu leucogranite: a collision signatureof the Himalaya model for its genesis and emplacement. Journal of Geophysical Research 86, 10545-10568. Cerca con Google

LIU, G., & EINSELE, G., (1994). Sedimentary history of the Tethyan basin in the Tibetan Himalaya. Geologischen Rundschau, 83, 32-61. Cerca con Google

MASSIRONI, M., BERTOLDI, L., CALAFA, P., VISONÀ, D., BISTACCHI, A., GIARDINO, C., & SCHIAVO, A. (2008). Interpretation and processing of ASTER data for geological mapping and granitoids detection in the Saghro massif (eastern Anti-Atlas, Morocco). Geosphere, 4, 736−759. Cerca con Google

MATHER, P.M. & KOCH, M., (2011). Computer Processing of Remotely-Sensed Images: An Introduction, Wiley-Blackwell, 4°ed. Cerca con Google

MILTON, E.J., (2001). Review of Mather, P.M., 1999: Computer processing of remotely-sensed images. An introduction. Chichester: Wiley. Progress in Physical Geography, 25, (1), pp. 145-146. Cerca con Google

MOLNAR, P. & TAPPONNIER, P. (1975). Cenozioc tectonics of Asia: effects of a continental collision. Science 189, 419-426. Cerca con Google

MONTEMAGNI, C.; FULIGNATI, P.; IACCARINO, S.; MARIANELLI, P.; MONTOMOLI, C.; SBRANA, A. (2016). Deformation and fluid flow in the Munsiari thrust (nw India): a preliminary fluid inclusion study. 10.2424/ASTSN.M.2016.22. Cerca con Google

PARRISH, R.R. & HODGES, K.V. (1996). Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan Sequences, Nepalese Himalaya. Geol. Soc. Am. Bull. 108, 904-911. Cerca con Google

PARSONS, A. J., LAW, R. D., SEARLE, M. P., PHILLIPS R. J. &. LLOYD G.E. (2014) Geology of the Dhaulagiri-Annapurna-Manaslu Himalaya, Western Region, Nepal. 1:200,000. Journal of Maps Vol. 12 , Iss. 1,2016. Cerca con Google

PASSCHIER, C.W., (1995). Microtectonics. Cerca con Google

PÊCHER, A., GUILLOT, S., FORT, M. (2011). Geologie autour du Manaslu. Guide book, 111 pp. Cerca con Google

PÊCHER, A., (1997). Geology of the Nepal Himalaya: deformation and petrography in the Main Central Thrust zone. Colloques internationaux du C.N.R.S. No. 268, Écologie et Gèologie de l’Himalaya, Paris, 301-318. Cerca con Google

POWELL, C., MCA, CONAGHAN, P.J., (1973). Plate tectonics and the Himalayas. Earth Planet Sci Lett. 20, 1-12. Cerca con Google

RICHARDS, A., ARGLES, T., HARRIS, N., PARRISH, R., AHMAD, T., DARBYSHIRE, F. & DRAGANITS, E. (2005). Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci. Lett. 236, 773-796. Cerca con Google

SEARLE, M.P., ELLIOTT, J.R., PHILLIPS, R.J. & CHUNG, S.L., (2010). Crustal-lithospheric structure and continental extrusion of Tibet. Journal of thr Geological Soc. London 168, 633-672. Cerca con Google

SEARLE, M. P. & GODIN, L. (2003). The South Tibetan Detachment and the Manaslu Leucogranite: a structural reinterpretation and restoration of the Annapurna–Manaslu Himalaya, Nepal. Journal of Geology 111, 505–523. Cerca con Google

SHRESTHA, S.B., WAKE, C.P., DIBBA, J.E., MAYEWSKIA P.A., (2000). Precipitation fluctuations in the nepal himalaya andits vicinity and relationship with some large scale climatological parameter. international journal of climatology, 20, 317–327. Cerca con Google

TARTAGLIA, G., CAROSI, R., IACCARINO, S., (2017) (INEDITO). La Higher Himalayan Discontinuity nelle valli del Marshandi e Biri Gandaki (M. Manaslu, Nepal centrale): analisi strutturale e dataxione geocronoliogica, tesi magistrale Universitàdegli studi di Torino. Cerca con Google

TODESCHINI R., (2003) Introduzione alla chemiometria, Esides 1°ed. Napoli. Cerca con Google

UPRETI. B.N., (1999). An overview of the stratigraphy and tectonics of the Nepal Himalaya. J. Asian Earth Sci., 17, 577–606. Cerca con Google

VAN DER MEER, F.D., VAN DER WERFF, H.M.A., VAN RUITENBEEK, F.J.A., HECKER, C.A., BAKKER, W.H., NOOMEN, M., VAN DER MEIJDE, M., CARRANZA, E.J.M., DE SMETH, J.B., WOLDAI, T., (2012). Multi- and hyperspectral geologic remote sensing: a review. International Journal of Applied Earth Observation and Geoinformation, 14(I), 112-128. Cerca con Google

VANNAY, J.C., GRASEMANN, B., (2001). Himalayan inverted metamorphism and synconvergence extension as a consequence of a general shear extrusion. Geological Magazine 138, 253–276. Cerca con Google

VIDAL, P., COCHERIE, A. & LE FORT, P. (1982). Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya, Nepal). Geochimica et Cosmochimica Acta 46, 2279–2292. Cerca con Google

VISONÀ, D., & LOMBARDO, B., (2002). Two-mica and tourmaline leucogranites from the Everest–Makalu region (Nepal–Tibet). Himalayan leucogranite genesis by isobaric heating?. Lithos, 62, 125–150. Cerca con Google

ZHU, B., KIDD, W.S.F., ROWLEY, D.B., CURRIE, B.S., SHAFIQUE, N., (2005). Age of initiation of the India-Asia Collision in the East-Central Himalaya. J. Geol. 113, 265-285. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record