Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Boccaletto, Eleonora (2017) Characterization of a Synechocystis sp. PCC 6803 strain expressing an algal Baeyer-Villiger monooxygenase. [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF
2867Kb

Abstract

In this work, a Synechocystis sp. PCC 6803 strain, expressing the Baeyer-Villiger monooxygenase from Cyanidioschyzon merolae, (CmBVMO) was characterized. The first step was the confirmation of CmBVMO expression inside the cells, together with the evidence that the produced enzyme was catalytically active. This new strain, called Syn_zia_BVMO, exhibited an unexpected prolonged-growth phenotype when cultured in standard mixotrophic and autotrophic conditions. Some results, like the oxygen evolution rate and the PHB (polyhydroxybutirate) quantification, gave a hint about a possible increased NADPH-consumption activity of the cells. This capability would lead the strain to a higher photosynthetic efficiency and to an extra biomass production. Moreover, we identified a possible in vivo substrate for the activity of the heterologous enzyme: a Synechocystis strain expressing CmBVMO and unable to synthetize hexadecanal, like the knockout mutant SynΔsll0209, did not show a prolonged growth. It’s possible that the in vivo substrate of CmBVMO is hexadecanal, an intermediate of the alkane biosynthetic pathway. However, more evidences must be collected to support these hypothesis, f.i. using direct NADPH quantification methods and performing GC-MS analysis. Nel presente lavoro è stato caratterizzato un ceppo di Synechocystis sp. PCC 6803 esprimente la Baeyer-Villiger monoossigenasi di Cyanidioschyzon merolae (CmBVMO). Il primo passo è stata la conferma dell’espressione della proteina CmBVMO nelle cellule e la prova che l’enzima prodotto è attivo cataliticamente. Questo nuovo ceppo, chiamato Syn_zia_BVMO, ha mostrato un inaspettato fenotipo di crescita prolungata quando messo in coltura in condizioni standard sia di mixotrofia che di autotrofia. Alcuni risultati, come la velocità di evoluzione di ossigeno e la quantificazione dei PHB (poliidrossibutirrati), hanno suggerito un possibile aumento nel consumo di NADPH nelle cellule. Questo aumenterebbe l’efficienza fotosintetica e la produzione di biomassa del ceppo. Inoltre, abbiamo identificato un possibile substrato per l’enzima in vivo: un ceppo di Synechocystis esprimente la proteina CmBVMO e incapace di produrre esadecanale, come il mutante knock-out SynΔsll0209, non ha mostrato la crescita prolungata. È possibile dunque che il substrato per CmBVMO in vivo sia l’esadecanale, un intermedio della via di biosintesi degli alcani. Tuttavia, dovranno essere raccolte ulteriori prove a sostegno di queste ipotesi, per esempio usando metodi di quantificazione diretta del NADPH ed eseguendo analisi GC-MS.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Biotecnologie industriali
Uncontrolled Keywords:Synechocystis, BVMO, Monooxygenase, Baeyer-Villiger, Cyanidioschyzon merolae
Subjects:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Codice ID:59750
Relatore:Bergantino, Elisabetta
Correlatore:Niero, Mattia
Data della tesi:2017
Biblioteca:Polo di Scienze > CIS "A. Vallisneri" - Biblioteca Biologico Medica
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Ainas, M. et al. (2017) ‘Hydrogen production with the cyanobacterium Spirulina platensis’, International Journal of Hydrogen Energy. Pergamon, 42(8), pp. 4902–4907. doi: 10.1016/j.ijhydene.2016.12.056. Cerca con Google

Angermayr, S. A. and Hellingwerf, K. J. (2013) ‘On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories’, Journal of Physical Chemistry B. American Chemical Society, 117(38), pp. 11169–11175. doi: 10.1021/jp4013152. Cerca con Google

Aoki, S., Kondo, T. and Ishiura, M. (1995) ‘Circadian expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803’, Journal of Bacteriology. American Society for Microbiology, 177(19), pp. 5606–5611. doi: 10.1128/jb.177.19.5606-5611.1995. Cerca con Google

Balcerzak, L. et al. (2014) ‘Biotransformations of monoterpenes by photoautotrophic micro-organisms’, Journal of Applied Microbiology, pp. 1523–1536. doi: 10.1111/jam.12632. Cerca con Google

Baldwin, C. V. F., Wohlgemuth, R. and Woodley, J. M. (2008) ‘The first 200-L scale asymmetric Baeyer-Villiger oxidation using a whole-cell biocatalyst’, Organic Process Research and Development, 12(4), pp. 660–665. doi: 10.1021/op800046t. Cerca con Google

Bartsch, M. et al. (2015) ‘Photosynthetic production of enantioselective biocatalysts.’, Microbial cell factories. BioMed Central, 14(1), p. 53. doi: 10.1186/s12934-015-0233-5. Cerca con Google

Beneventi, E. et al. (2013) ‘Discovery of Baeyer-Villiger monooxygenases from photosynthetic eukaryotes’, Journal of Molecular Catalysis B: Enzymatic, 98, pp. 145–154. doi: 10.1016/j.molcatb.2013.10.006. Cerca con Google

Bentley, F. K., Zurbriggen, A. and Melis, A. (2014) ‘Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene’, Molecular Plant, 7(1), pp. 71–86. doi: 10.1093/mp/sst134. Cerca con Google

Bhati, R. and Mallick, N. (2015) ‘Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: Process optimization and polymer characterization’, Algal Research. Elsevier, 7, pp. 78–85. doi: 10.1016/j.algal.2014.12.003. Cerca con Google

Bisagni, S. et al. (2014) ‘Exploring the substrate specificity and enantioselectivity of a baeyer-villiger monooxygenase from dietzia sp. D5: Oxidation of sulfides and aldehydes’, Topics in Catalysis, 57(5), pp. 366–375. doi: 10.1007/s11244-013-0192-1. Cerca con Google

Blasi, B. et al. (2012) ‘Characterization of stress responses of heavy metal and metalloid inducible promoters in synechocystis PCC6803’, Journal of Microbiology and Biotechnology, 22(2), pp. 166–169. doi: 10.4014/jmb.1106.06050. Cerca con Google

Bode, H. B. et al. (2002) ‘Big effects from small changes: Possible ways to explore nature’s chemical diversity’, ChemBioChem. WILEY‐VCH Verlag GmbH, pp. 619–58 Cerca con Google

627. doi: 10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9. Cerca con Google

Böhmer, S. et al. (2017) ‘Enzymatic Oxyfunctionalization Driven by Photosynthetic Water-Splitting in the Cyanobacterium Synechocystis sp. PCC 6803’, Catalysts. Multidisciplinary Digital Publishing Institute, 7(8), p. 240. doi: 10.3390/catal7080240. Cerca con Google

Bordewick, S. et al. (2017) ‘Baeyer-Villiger Monooxygenases from Yarrowia lipolytica Catalyze Preferentially Sulfoxidations Baeyer-Villiger Monooxygenases from Yarrowia lipolytica Catalyze Preferentially Sulfoxidations’, Enzyme and Microbial Technology. Elsevier. doi: 10.1016/j.enzmictec.2017.09.008. Cerca con Google

Bučko, M. et al. (2016) ‘Baeyer-Villiger oxidations: biotechnological approach’, Applied Microbiology and Biotechnology. Springer Berlin Heidelberg, pp. 6585–6599. doi: 10.1007/s00253-016-7670-x. Cerca con Google

Busenlehner, L. S., Pennella, M. A. and Giedroc, D. P. (2003) ‘The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance’, FEMS Microbiology Reviews, pp. 131–143. doi: 10.1016/S0168-6445(03)00054-8. Cerca con Google

Butinar, L. et al. (2015) ‘Prevalence and specificity of Baeyer-Villiger monooxygenases in fungi’, Phytochemistry. Pergamon, 117, pp. 144–153. doi: 10.1016/j.phytochem.2015.06.009. Cerca con Google

Carpine, R. et al. (2017) ‘Genetic engineering of Synechocystis sp. PCC6803 for poly-β-hydroxybutyrate overproduction’, Algal Research. Elsevier, 25, pp. 117–127. doi: 10.1016/j.algal.2017.05.013. Cerca con Google

de Carvalho, C. C. C. R. (2017) ‘Whole cell biocatalysts: essential workers from Nature to the industry’, Microbial Biotechnology, pp. 250–263. doi: 10.1111/1751-7915.12363. Cerca con Google

Chaves, J. E. et al. (2017) ‘Engineering Isoprene Synthase Expression and Activity in Cyanobacteria’, ACS Synthetic Biology, p. acssynbio.7b00214. doi: 10.1021/acssynbio.7b00214. Cerca con Google

Choi, S. Y. et al. (2016) ‘Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria’, Biotechnology for Biofuels, 9(1), p. 202. doi: 10.1186/s13068-016-0617-8. Cerca con Google

Ciniglia, C. et al. (2004) ‘Hidden biodiversity of the extremophilic Cyanidiales red algae’, Molecular Ecology. Blackwell Science Ltd, 13(7), pp. 1827–1838. doi: 10.1111/j.1365-294X.2004.02180.x. Cerca con Google

Collier, J. L. and Grossman, A. R. (1994) ‘A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria.’, The EMBO journal. European Molecular Biology Organization, 13(5), pp. 1039–1047. Cerca con Google

Davies, F. K. et al. (2014) ‘Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002’, 59 Cerca con Google

Frontiers in Bioengineering and Biotechnology. Frontiers, 2, p. 21. doi: 10.3389/fbioe.2014.00021. Cerca con Google

Deng, M. De and Coleman, J. R. (1999) ‘Ethanol synthesis by genetic engineering in cyanobacteria’, Applied and Environmental Microbiology. American Society for Microbiology, 65(2), pp. 523–528. Cerca con Google

Dismukes, G. C. et al. (2008) ‘Aquatic phototrophs: efficient alternatives to land-based crops for biofuels’, Current Opinion in Biotechnology. Elsevier Current Trends, pp. 235–240. doi: 10.1016/j.copbio.2008.05.007. Cerca con Google

Donoghue, N. A., Norris, D. B. and Trudgill, P. W. (1976) ‘The Purification and Properties of Cyclohexanone Oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871’, European Journal of Biochemistry, 63(1), pp. 175–192. doi: 10.1111/j.1432-1033.1976.tb10220.x. Cerca con Google

Ferroni, F. M. et al. (2017) ‘Alkyl Formate Ester Synthesis by a Fungal Baeyer–Villiger Monooxygenase’, ChemBioChem, 18(6), pp. 515–517. doi: 10.1002/cbic.201600684. Cerca con Google

Field, L. M. et al. (2017) ‘A comparison of protein extraction methods optimizing high protein yields from marine algae and cyanobacteria’, Journal of Applied Phycology, 29(3), pp. 1271–1278. doi: 10.1007/s10811-016-1027-9. Cerca con Google

Flores, F. G. (2008) The cyanobacteria: molecular biology, genomics, and evolution. Horizon Scientific Press. Cerca con Google

Formighieri, C. and Melis, A. (2016) ‘Sustainable heterologous production of terpene hydrocarbons in cyanobacteria’, Photosynthesis Research, 130(1–3), pp. 123–135. doi: 10.1007/s11120-016-0233-2. Cerca con Google

Fraaije, M. W. et al. (2002) ‘Identification of a Baeyer-Villiger monooxygenase sequence motif’, FEBS Letters. No longer published by Elsevier, 518(1–3), pp. 43–47. doi: 10.1016/S0014-5793(02)02623-6. Cerca con Google

Fürst, M. J. L. J. et al. (2017) ‘Polycyclic ketone monooxygenase from the thermophilic fungus Thermothelomyces thermophila: A structurally distinct biocatalyst for bulky substrates’, Journal of the American Chemical Society. American Chemical Society, 139(2), pp. 627–630. doi: 10.1021/jacs.6b12246. Cerca con Google

Geitner, K. et al. (2010) ‘Scale-up of Baeyer-Villiger monooxygenase-catalyzed synthesis of enantiopure compounds’, Applied Microbiology and Biotechnology. Springer-Verlag, 88(5), pp. 1087–1093. doi: 10.1007/s00253-010-2724-y. Cerca con Google

Genty, B., Briantais, J. M. and Baker, N. R. (1989) ‘The relatioship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence’, Biochimica et Biophysica Acta, 990, pp. 87–92. Cerca con Google

Golden, S. S., Brusslan, J. and Haselkorn, R. (1987) ‘Genetic Engineering of the Cyanobacterial Chromosome’, Methods in Enzymology. Academic Press, 153(C), pp. 215–231. doi: 10.1016/0076-6879(87)53055-5. Cerca con Google

Górak, M. and Żymańczyk-Duda, E. (2015) ‘Application of cyanobacteria for 60 Cerca con Google

chiral phosphonate synthesis’, Green Chem. The Royal Society of Chemistry, 17(9), pp. 4570–4578. doi: 10.1039/C5GC01195G. Cerca con Google

Griese, M., Lange, C. and Soppa, J. (2011) ‘Ploidy in cyanobacteria’, FEMS Microbiology Letters, 323(2), pp. 124–131. doi: 10.1111/j.1574-6968.2011.02368.x. Cerca con Google

Hauf, W. et al. (2013) ‘Metabolic changes in Synechocystis PCC6803 upon nitrogen-starvation: Excess NADPH sustains polyhydroxybutyrate accumulation’, Metabolites, 3(1), pp. 101–118. doi: 10.3390/metabo3010101. Cerca con Google

Havel, J. and Weuster-Botz, D. (2006) ‘Comparative study of cyanobacteria as biocatalysts for the asymmetric synthesis of chiral building blocks’, Engineering in Life Sciences. WILEY‐VCH Verlag, 6(2), pp. 175–179. doi: 10.1002/elsc.200620909. Cerca con Google

Ikeuchi, M. and Tabata, S. (2001) ‘Synechocystis sp. PCC 6803 - a useful tool in the study of the genetics of cyanobacteria.’, Photosynthesis research, 70(1), pp. 73–83. doi: 10.1023/A:1013887908680. Cerca con Google

Kamerbeek, N. M. et al. (2001) ‘4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB’, European Journal of Biochemistry, 268(9), pp. 2547–2557. doi: 10.1046/j.1432-1327.2001.02137.x. Cerca con Google

Kamerbeek, N. M. et al. (2003) ‘Substrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase’, Applied and Environmental Microbiology, 69(1), pp. 419–426. doi: 10.1128/AEM.69.1.419-426.2003. Cerca con Google

Kaneko, T. et al. (1996) ‘Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding Regions’, DNA Research, 3(3), pp. 109–136. doi: 10.1093/dnares/3.3.109. Cerca con Google

Koeller, K. M. and Wong, C. H. (2001) ‘Enzymes for chemical synthesis.’, Nature. Nature Publishing Group, 409(6817), pp. 232–240. doi: 10.1038/35051706. Cerca con Google

Kosourov, S., Murukesan, G. and Allahverdiyeva, Y. (2017) ‘Evaluation of light energy to H2 energy conversion efficiencies in immobilized cyanobacteria and green algae under autotrophic conditions’, Algal Research. Elsevier, p. submitted. doi: 10.1016/j.algal.2017.09.027. Cerca con Google

Kramer, D. M. and Evans, J. R. (2011) ‘The Importance of Energy Balance in Improving Photosynthetic Productivity’, PLANT PHYSIOLOGY. American Society of Plant Biologists, 155(1), pp. 70–78. doi: 10.1104/pp.110.166652. Cerca con Google

Kucho, K. et al. (2005) ‘Improvement of the bioluminescence reporter system for real-time monitoring of circadian rhythms in the cyanobacterium Synechocystis sp. strain PCC 6803’, Genes & Genetic Systems. The Genetics Society of Japan, 80(1), pp. 19–23. doi: 10.1266/ggs.80.19. Cerca con Google

Kyte, B. G. et al. (2004) ‘Assessing the Substrate Selectivities and Enantioselectivities of Eight Novel Baeyer-Villiger Monooxygenases toward Alkyl-Substituted Cyclohexanones’, Journal of Organic Chemistry, 69(1), pp. 12–17. doi: 10.1021/jo030253l. 61 Cerca con Google

Leipold, F., Wardenga, R. and Bornscheuer, U. T. (2012) ‘Cloning, expression and characterization of a eukaryotic cycloalkanone monooxygenase from Cylindrocarpon radicicola ATCC 11011’, Applied Microbiology and Biotechnology. Springer-Verlag, 94(3), pp. 705–717. doi: 10.1007/s00253-011-3670-z. Cerca con Google

Li, X., Shen, C. R. and Liao, J. C. (2014) ‘Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942’, Photosynthesis Research. Springer Netherlands, 120(3), pp. 301–310. doi: 10.1007/s11120-014-9987-6. Cerca con Google

Lin, B. and Tao, Y. (2017) ‘Whole-cell biocatalysts by design’, Microbial Cell Factories, 16(1), p. 106. doi: 10.1186/s12934-017-0724-7. Cerca con Google

Liu, X., Sheng, J. and Curtiss III, R. (2011) ‘Fatty acid production in genetically modified cyanobacteria’, Proceedings of the National Academy of Sciences, 108(17), pp. 6899–6904. doi: 10.1073/pnas.1103014108. Cerca con Google

Luan, G. et al. (2015) ‘Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories’, Biotechnology for Biofuels. BioMed Central, 8(1), p. 184. doi: 10.1186/s13068-015-0367-z. Cerca con Google

Malito, E. et al. (2004) ‘Crystal structure of a Baeyer-Villiger monooxygenase.’, Proceedings of the National Academy of Sciences of the United States of America, 101(36), pp. 13157–62. doi: 10.1073/pnas.0404538101. Cerca con Google

Manivannan, P., Muralitharan, G. and Balaji, N. P. (2017) ‘Prediction aided in vitro analysis of octa-decanoic acid from Cyanobacterium Lyngbya sp. as a pro- apoptotic factor in eliciting anti-inflammatory properties’. Cerca con Google

Marcus, Y. et al. (2011) ‘Rubisco mutagenesis provides new insight into limitations on photosynthesis and growth in Synechocystis PCC6803’, Journal of Experimental Botany. Oxford University Press, 62(12), pp. 4173–4182. doi: 10.1093/jxb/err116. Cerca con Google

Mascotti, M. et al. (2013) ‘Cloning, overexpression and biocatalytic exploration of a novel Baeyer-Villiger monooxygenase from Aspergillus fumigatus Af293’, AMB Express. Springer Berlin Heidelberg, 3(1), p. 33. doi: 10.1186/2191-0855-3-33. Cerca con Google

Moonen, M. J. H. et al. (2005) ‘Enzymatic Baeyer-Villiger oxidation of benzaldehydes’, Advanced Synthesis and Catalysis, 347(7–8), pp. 1027–1034. doi: 10.1002/adsc.200404307. Cerca con Google

Morii, S. et al. (1999) ‘Steroid Monooxygenase of Rhodococcus rhodochrous: Sequencing of the Grenomic DNA, and Hyperexpression, Purification, and Characterization of the Recombinant Enzyme’, Journal of Biochemistry. Oxford University Press, 126(3), pp. 624–631. doi: 10.1093/oxfordjournals.jbchem.a022494. Cerca con Google

Nakamura, K. et al. (2000) ‘Cyanobacterium-catalyzed asymmetric reduction of ketones’, Tetrahedron Letters. Pergamon, 41(35), pp. 6799–6802. doi: 10.1016/S0040-4039(00)01132-1. Cerca con Google

Ochoa de Alda, J. A. G. et al. (2014) ‘The plastid ancestor originated among one of the major cyanobacterial lineages’, Nature Communications. Nature Publishing 62 Cerca con Google

Group, 5, p. 4937. doi: 10.1038/ncomms5937. Cerca con Google

Pade, N. et al. (2016) ‘Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803’, Biotechnology for Biofuels, 9(1), p. 89. doi: 10.1186/s13068-016-0503-4. Cerca con Google

Panda, B. et al. (2006) ‘Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803’, Bioresource Technology. Elsevier, 97(11), pp. 1296–1301. doi: 10.1016/j.biortech.2005.05.013. Cerca con Google

Panda, B. and Mallick, N. (2007) ‘Enhanced poly-β-hydroxybutyrate accumulation in a unicellular cyanobacterium, Synechocystis sp. PCC 6803’, Letters in Applied Microbiology, 44(2), pp. 194–198. doi: 10.1111/j.1472-765X.2006.02048.x. Cerca con Google

Park, J. and Choi, Y. (2017) ‘Cofactor engineering in cyanobacteria to overcome imbalance between NADPH and NADH: A mini review’, Frontiers of Chemical Science and Engineering, 11(1), pp. 66–71. doi: 10.1007/s11705-016-1591-1. Cerca con Google

Rahman, D. Y. et al. (2017) ‘Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant’, Journal of Applied Phycology. Springer Netherlands, 29(3), pp. 1233–1239. doi: 10.1007/s10811-016-1007-0. Cerca con Google

Rippka, R. et al. (1979) ‘Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria’, Microbiology. Microbiology Society, 111(1), pp. 1–61. doi: 10.1099/00221287-111-1-1. Cerca con Google

Romero, E. et al. (2016) ‘Characterization and Crystal Structure of a Robust Cyclohexanone Monooxygenase’, Angewandte Chemie - International Edition, 55(51), pp. 15852–15855. doi: 10.1002/anie.201608951. Cerca con Google

Ruffing, A. M. (2014) ‘Improved Free Fatty Acid Production in Cyanobacteria with Synechococcus sp. PCC 7002 as Host’, Frontiers in Bioengineering and Biotechnology, 2. doi: 10.3389/fbioe.2014.00017. Cerca con Google

Samantaray, S. and Mallick, N. (2012) ‘Production and characterization of poly-β-hydroxybutyrate (PHB) polymer from Aulosira fertilissima’, Journal of Applied Phycology. Springer Netherlands, 24(4), pp. 803–814. doi: 10.1007/s10811-011-9699-7. Cerca con Google

Sheldon, R. A. and Woodley, J. M. (2017) ‘Role of Biocatalysis in Sustainable Chemistry’, Chemical Reviews. American Chemical Society, p. acs.chemrev.7b00203. doi: 10.1021/acs.chemrev.7b00203. Cerca con Google

Simmons, T. L. et al. (2005) ‘Marine natural products as anticancer drugs’, Molecular Cancer Therapeutics. American Association for Cancer Research, 4(February), pp. 333–342. Cerca con Google

Singh, A. K. et al. (2008) ‘Integration of Carbon and Nitrogen Metabolism with Energy Production Is Crucial to Light Acclimation in the Cyanobacterium Synechocystis’, PLANT PHYSIOLOGY, 148(1), pp. 467–478. doi: 63 10.1104/pp.108.123489. Cerca con Google

Singh, A. K. et al. (2017) Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria, Journal of Applied Phycology. doi: 10.1007/s10811-016-1006-1. Cerca con Google

Singh, R. S. et al. (2017) ‘Cyanobacterial lectins characteristics and their role as antiviral agents’, International Journal of Biological Macromolecules. Elsevier, pp. 475–496. doi: 10.1016/j.ijbiomac.2017.04.041. Cerca con Google

Stephen, A. J. et al. (2017) ‘Advances and bottlenecks in microbial hydrogen production’, Microbial Biotechnology, 10(5), pp. 1120–1127. doi: 10.1111/1751-7915.12790. Cerca con Google

Swain, S. S., Paidesetty, S. K. and Padhy, R. N. (2017) ‘Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria’, Biomedicine and Pharmacotherapy. Elsevier Masson, pp. 760–776. doi: 10.1016/j.biopha.2017.04.030. Cerca con Google

Tang, X. S. and Diner, B. A. (1994) ‘Biochemical and spectroscopic characterization of a new oxygen-evolving photosystem II core complex from the cyanobacterium Synechocystis PCC 6803.’, Biochemistry, 33(15), pp. 4594–4603. Cerca con Google

Torres Pazmiño, D. E. et al. (2008) ‘Kinetic mechanism of phenylacetone monooxygenase from Thermobifida fusca’, Biochemistry. American Chemical Society, 47(13), pp. 4082–4093. doi: 10.1021/bi702296k. Cerca con Google

Tsujimoto, R., Kamiya, N. and Fujita, Y. (2016) ‘Identification of a cis-acting element in nitrogen fixation genes recognized by CnfR in the nonheterocystous nitrogen-fixing cyanobacterium Leptolyngbya boryana’, Molecular Microbiology, 101(3), pp. 411–424. doi: 10.1111/mmi.13402. Cerca con Google

Wang, C., Kim, J.-H. and Kim, S.-W. (2014) ‘Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects’, Marine Drugs, 12(9), pp. 4810–4832. doi: 10.3390/md12094810. Cerca con Google

Wang, M. et al. (2017) ‘Cofactor engineering for more efficient production of chemicals and biofuels’, Biotechnology Advances. Elsevier. doi: 10.1016/j.biotechadv.2017.09.008. Cerca con Google

Wang, X. et al. (2017) ‘Cofactor NAD(P)H Regeneration Inspired by Heterogeneous Pathways’, Chem. Cell Press, pp. 621–654. doi: 10.1016/j.chempr.2017.04.009. Cerca con Google

Wang, Y. et al. (2016) ‘Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803’, Metabolic Engineering. Academic Press, 34, pp. 60–70. doi: 10.1016/j.ymben.2015.10.008. Cerca con Google

Willetts, A. (1997) ‘Structural studies and synthetic applications of Baeyer-Villiger monooxygenases’, Trends in Biotechnology. Elsevier Current Trends, pp. 55–62. doi: 10.1016/S0167-7799(97)84204-7. Cerca con Google

Work, V. H. et al. (2015) ‘Lauric Acid Production in a Glycogen-Less Strain of 64 Cerca con Google

Synechococcus sp. PCC 7002’, Frontiers in Bioengineering and Biotechnology, 3. doi: 10.3389/fbioe.2015.00048. Cerca con Google

Yao, L. et al. (2014) ‘Improved production of fatty alcohols in cyanobacteria by metabolic engineering’, Biotechnology for Biofuels, 7(1), p. 94. doi: 10.1186/1754-6834-7-94. Cerca con Google

Yoshino, T. et al. (2014) ‘Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway’, Applied Microbiology and Biotechnology. Springer Berlin Heidelberg, 99(3), pp. 1521–1529. doi: 10.1007/s00253-014-6286-2. Cerca con Google

Zhou, J. et al. (2015) ‘Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria’, Scientific Reports. Nature Publishing Group, 4(1), p. 4500. doi: 10.1038/srep04500. Cerca con Google

Zhou, J. et al. (2016) ‘Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria’, Metabolic Engineering. Academic Press, 38, pp. 217–227. doi: 10.1016/j.ymben.2016.08.002. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record