Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Vedovato, Mattia (2018) Quantitative estimates for the singular strata of minimizing Harmonic maps. [Magistrali biennali]

Full text disponibile come:



Regularity properties for minimizing harmonic maps between Riemannian manifolds have been known since the classical work of Schoen and Uhlenbeck (1982); in that context, an estimate on the Hausdorff dimension of the singular set S(u) is given. In particular, it is shown that dim(S(u)) is atmost n-3, where n is the dimension of the domain manifold. Simple examples show that this inequality can actually be an equality. In my thesis work, developed at the University of Zürich under the supervision of Prof. Camillo de Lellis and Dr. Daniele Valtorta, I am looking deeper into some more recent quantitative results, which describe precisely the structure of the singular set: firstly, the work of Cheeger and Naber (2013) permits to obtain an estimate of the Minkowski dimension of S(u); secondly, we follow the techniques of Naber and Valtorta (2017) to gain an upper bound on the Minkowski content and some information on the rectifiability of S(u).

Item Type:Magistrali biennali
Uncontrolled Keywords:harmonic maps, Cheegec-Naber
Subjects:Area 01 - Scienze matematiche e informatiche > MAT/05 Analisi matematica
Codice ID:60817
Relatore: Monti, Roberto
Correlatore:De Lellis, Camillo and Valtorta, Daniele
Data della tesi:20 July 2018
Biblioteca:Polo di Scienze > Biblioteca di Matematica
Tipo di fruizione per il documento:on-line per i full-text

Solo per lo Staff dell Archivio: Modifica questo record