Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Dutto, Agostino (2018) Comparison between TRT field tool and laboratory analisys for ground thermal parameters evaluation. [Magistrali biennali]

Per questo documento il full-text online non disponibile.

Abstract

Nowadays, the thermal response test (TRT) field test is considered one of the most powerful method to evaluate the ground thermal properties. With the purpose to demonstrate the efficacy of the TRT and its reliability, and to improve the employment of the information the test gives at a global scale, we designed a geodatabase. Through the evaluation of 140 TRT results and via the comparison between the measured ground thermal conductivity (?) and the calculated ground thermal conductivity by mean of tabled value and the comparison between the undisturbed ground temperature with the annual average air temperature we could understand that: i) the TRT test remain the most powerful method to estimate the ground thermal conductivity, ii) in TRT results for both ? and undisturbed ground temperature are probably affected by a ? 15 % instrumental error, iii) the ? is affected by the presence of a groundwater flow, by different lithotypes and mineralization, and by the variation in permeability, iv) the annual average temperature well approximates the undisturbed ground temperature, v) the borehole thermal resistance is strongly affected by both lithologic differences and by the presence of a groundwater flow.

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:Database, TRT, GRT, Ground thermal properties, Ground responce tes, Thermal responce test
Subjects:Area 04 - Scienze della terra > GEO/05 Geologia applicata
Area 04 - Scienze della terra > GEO/02 Geologia stratigrafica e sedimentologica
Codice ID:60848
Relatore:Galgaro, Antonio
Correlatore:Dalla Santa, Giorgia
Data della tesi:28 June 2018
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Note per la fruizione:Tesi consultabile dal 02/06/2020
Tipo di fruizione per il documento:solo consultazione
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Ahrens, T.J. (Ed.), 1995, Rock physics & phase relations: a handbook of physical constants: Washington, DC, American Geophysical Union, AGU reference shelf 3, 236 p. Cerca con Google

ASHRAE, H.A.S.H., 2011, HVAC Applications Handbook: IP Edition. Cerca con Google

ASHRAE, 2002, Research Summary ASHRAE 1118-TRP Methods for Determining Soil and Rock Formation Thermal Properties from Field Tests. Cerca con Google

Atzeni, P., Ceri, S., Paraboschi, S., and Torlone, R., 2006, Basi di dati. Modelli e linguaggi di interrogazione: McGraw-Hill Companies, 395 p. Cerca con Google

Austin, W.A., 1998, Development of an in situ system for measuring ground thermal properties. Cerca con Google

Austin, W.A., Yavuzturk, C., and Spitler, J.D., 2000, Development of an in-situ system for measuring ground thermal properties: ASHRAE Transactions, v. 106, p. 365–379. Cerca con Google

Banks, D., 2008, An Introduction to Thermogeology: Ground Source Heating and Cooling: Blackwell Publishing, Ltd. Cerca con Google

Banks, D., 2012, An Introduction to Thermogeology: Ground Source Heating and Cooling: Wiley-Blackwell. Cerca con Google

Beier, R.A., and Smith, M.D., 2003, Minimum duration of in-situ tests on vertical boreholes, in v. 109 PART 2, p. 475–486. Cerca con Google

Beretta, G.P., 2017, Groundwater recharge through wells in open loop geothermal system: problems and solutions - part 1: Acque Sotterranee - Italian Journal of Groundwater, v. 6. Cerca con Google

Blum, P., Campillo, G., Münch, W., and Kölbel, T., 2010, CO2 savings of ground source heat pump systems – A regional analysis: Renewable Energy, v. 35, p. 122–127. Cerca con Google

Bose, J.E., 1989, Soil and rock classification for design of ground-coupled heat pump systems-field manual: Electric Power Research Institute. Cerca con Google

Boukli Hacene, M.A., Amara, S., and Chabane Sari, N.E., 2012, Analysis of the first thermal response test in Algeria: Journal of Thermal Analysis and Calorimetry, v. 107, p. 1363–1369. Cerca con Google

Bujok, P., Grycz, D., Klempa, M., Kunz, A., Porzer, M., Pytlik, A., Rozehnal, Z., and Vojčinák, P., 2014, Assessment of the influence of shortening the duration of TRT (thermal response test) on the precision of measured values: Energy, v. 64, p. 120–129. Cerca con Google

Busso, A., Georgiev, A., and Roth, P., 2003, Underground Thermal Energy Storage - First Thermal Response Test in South America. Cerca con Google

Capozza, A., De Carli, M., Galgaro, A., and Zarrella, A., 2012, Linee Guida per la progettazione dei campi geotermici per pompe di calore: Cerca con Google

Carslaw, H.S., and Jaeger, J.C., 1959, Conduction of heat in solids: Oxford: Clarendon Press, 1959, 2nd ed. Cerca con Google

Chiasson, A.D., 2016, Geothermal heat pump and heat engine systems: Theory and practice: John Wiley & Sons. Cerca con Google

Claesson, J., and Eskilson, P., 1988, Conductive heat extraction to a deep borehole: Thermal analyses and dimensioning rules: Energy, v. 13, p. 509–527. Cerca con Google

Claps, P., Giordano, P., and Laguardia, G., 2003, Analisi quantitativa della distribuzione spaziale delle temperature medie in Italia: Rapporto, rapporto del progetto:“Progettazione di un database nazionale dei dati idrologici e climatologici” GNDCI, v. 22. Cerca con Google

Colucci, F., and Moia, F., 2014, Thermal Response Tests and effects of geological heterogeneity: Rendiconti online della Società Geologica Italiana, v. 32, p. 7–14, doi: 10.3301/ROL.2014.142. Cerca con Google

Cruickshanks, F., Bardsley, J., and Williams, H.R., 2000, In-situ measurement of thermal properties of cunard formation in a borehole, Halifax, Nova Scotia: Proc. Terrastock 2000, p. 171–175. Cerca con Google

Deerman, J.D., and Kavanaugh, S.P., 1991, Simulation of Vertical U-tube Ground-coupled Heat Pump Systems using the Cylindrical Heat Source Solution: ASHRAE Transactions, v. 97, p. 287–295. Cerca con Google

Eklöf, C., and Gehlin, S., 1996, TED - a mobile equipment for thermal response test : testing and evaluation. Cerca con Google

Ervine, C., 2015, Directive 2004/39/Ec of the European Parliament and of the Council of 21 April 2004, in Core Statutes on Company Law, London, Macmillan Education UK, p. 757–759. Cerca con Google

Esen, H., and Inalli, M., 2009, In-situ thermal response test for ground source heat pump system in Elazığ, Turkey: Energy and Buildings, v. 41, p. 395–401. Cerca con Google

Esen, H., Inalli, M., and Esen, M., 2006, Technoeconomic appraisal of a ground source heat pump system for a heating season in eastern Turkey: Energy Conversion and Management, v. 47, p. 1281–1297. Cerca con Google

Eskilson, P., Hellström, G., and W\a anggren, B., 1987, Response test for a heat store with 25 Boreholes: Department of Building Technology and Mathematical Physics, Lund Institute of Technology, Sweden. Cerca con Google

Fabbri, P., 2001, Probabilistic Assessment of Temperature in the Euganean Geothermal Area (Veneto Region, NE Italy): Mathematical Geology, v. 33, p. 745–760. Cerca con Google

Florides, G., and Kalogirou, S., 2007, Ground heat exchangers—A review of systems, models and applications: Renewable Energy, v. 32, p. 2461–2478. Cerca con Google

Fujii, H., Okubo, H., Nishi, K., Itoi, R., Ohyama, K., and Shibata, K., 2009, An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers: Geothermics, v. 38, p. 399–406. Cerca con Google

Gehlin, S., 1998, Thermal response test: in situ measurements of thermal properties in hard rock: DIVA. Cerca con Google

Gehlin, S., 2002, Thermal response test: method development and evaluation: DIVA, http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18433. Vai! Cerca con Google

Gehlin, S., 1997, Thermal Response Test-Mobile Equipment for Determining the Thermal Resistance of Boreholes: Proc. 7th International Conference on Thermal Energy Storage. Megastock’97. Sapporo. Cerca con Google

Gehlin, S., and Hellström, G., 2003, Comparison of four models for thermal response test evaluation: ASHRAE Transactions, v. 109, p. 135–146. Cerca con Google

Gehlin, S., and Nordell, B., 2003, Determining undisturbed ground temperature for thermal response test: ASHRAE Transactions, v. 109, p. 151–156. Cerca con Google

Healy, P.F., and Ugursal, V.I. Performance and economic feasibility of ground source heat pumps in cold climate: International Journal of Energy Research, v. 21, p. 857–870. Cerca con Google

Heap, R.D., 1979, Heat pumps. London, E. & F. N. Spon, Ltd.; New York Halsted Press. 164 p. Cerca con Google

Ingersoll, L.R., and Plass, H.J., 1948, Theory of the ground pipe source for the heat pump: ASHVE Trans, v. 54, p. 339–348. Cerca con Google

Ingersoll, L.R., Zabel, O.J., and Ingersoll, A.C., 1954, Heat conduction with engineering, geological, and other applications: Cerca con Google

Kavanaugh, S.P., and Rafferty, K., 1997, Ground-source heat pumps: design of geothermal systems for commercial and institutional buildings: American Society of Heating, Refrigerating and Air-Conditioning Engineers. Cerca con Google

Lee, C., Park, M., Min, S., Kang, S.-H., Sohn, B., and Choi, H., 2011, Comparison of effective thermal conductivity in closed-loop vertical ground heat exchangers: Applied Thermal Engineering, v. 31, p. 3669–3676. Cerca con Google

Legates, D.R., and Willmott, C.J., 1990, Mean seasonal and spatial variability in global surface air temperature: Theoretical and Applied Climatology, v. 41, p. 11–21. Cerca con Google

Lehr, C., 2015, Characterization of Geologic and Geophysical Environments Using GRT Data. Scope of Enhanced Data Interpretation, p. 7. Cerca con Google

Lhendup, T., Aye, L., and Fuller, R.J., 2014, In-situ measurement of borehole thermal properties in Melbourne: Applied Thermal Engineering, v. 73, p. 287–295. Cerca con Google

Loveridge, F., Powrie, W., and Nicholson, D., 2014, Comparison of two different models for pile thermal response test interpretation: Acta Geotechnica, v. 9, p. 367–384. Cerca con Google

Mogensen, P., 1983, Fluid to duct wall heat transfer in duct system heat storages: Document-Swedish Council for Building Research, p. 652–657. Cerca con Google

Mogensen, P., 1985, Fullskaleförsök med berg som värmekälla för värmepump i Järfälla: mätning och utvärdering: Statens r\a ad för byggnadsforskning. Cerca con Google

Mustafa Omer, A., 2008, Ground-source heat pumps systems and applications: Renewable and Sustainable Energy Reviews, v. 12, p. 344–371. Cerca con Google

Nordell, B., 1999, IEA Energy Conservation through Energy Storage Implementing Agreement: Annex 8 - Implementing Underground Thermal Energy Storage, in DIVA. Cerca con Google

Pasquier, P., 2018, Interpretation of the first hours of a thermal response test using the time derivative of the temperature: Applied Energy, v. 213, p. 56–75. Cerca con Google

Rambaut, A.A., A, M., and Sc, D., 1900, VI. Underground temperature at Oxford in the Year 1899, as determined by five platinum-resistance thermometers: Phil. Trans. R. Soc. Lond. A, v. 195, p. 235–258. Cerca con Google

Rolland, C., 2003, Spatial and Seasonal Variations of Air Temperature Lapse Rates in Alpine Regions: Journal of Climate, v. 16, p. 1032–1046. Cerca con Google

Rosén, B., Gabrielsson, A., Fallsvik, J., Hellström, G., and Nilsson, G., 2001, System för värme och kyla ur mark: en nulägesbeskrivning: Statens geotekniska institut (SGI). Cerca con Google

Roth, P., Georgiev, A., Busso, A., and Barraza, E., 2004, First in situ determination of ground and borehole thermal properties in Latin America: Renewable Energy, v. 29, p. 1947–1963. Cerca con Google

Sanner, B., 2001, Shallow Geothermal Energy: GHC Bulletin, p. 19–25. Cerca con Google

Sanner, B., Hellström, G., Spitler, J., and Gehlin, S., 2005, Thermal response test—current status and world-wide application, in Proceedings world geothermal congress, International Geothermal Association, p. 24–29. Cerca con Google

Sanner, B., Mands, E., Sauer, M., and Grundmann, E., 2007, Technology, development status, and routine application of Thermal Response Test: p. 6. Cerca con Google

Sanner, B., Mands, E., Sauer, M.K., and Grundmann, E., 2008, Thermal response test: A routine method to determine thermal ground properties for GSHP design, in Proceedings 9th International Energy Agency Heat Pump Conference, p. 20–22. Cerca con Google

Sanner, B., Reuss, M., Mands, E., and Müller, J., 2000, Thermal response test-experiences in Germany, in Proc. Terrastock, p. 177–182. Cerca con Google

Sarbu, I., and Sebarchievici, C., 2014, General review of ground-source heat pump systems for heating and cooling of buildings: Energy and Buildings, v. 70, p. 441–454. Cerca con Google

Schön, J.H., 2011, Physical Properties of Rocks: A Workbook: Elsevier, 494 p. Cerca con Google

Self, S.J., Reddy, B.V., and Rosen, M.A., 2013, Geothermal heat pump systems: Status review and comparison with other heating options: Applied Energy, v. 101, p. 341–348. Cerca con Google

Serway, R.A., and Jewett, J.W., 2015, Principi di fisica: Napoli, EdiSES. Cerca con Google

Shonder, J.A., 2000, A New Method to Determine the Thermal Properties of Soil Formations from In Situ Field Tests: ORNL Oak Ridge National Laboratory (US) ORNL/TM-2000/97. Cerca con Google

Shonder, J.A., and Beck, J.V., 2000, A New Method to Determine the Thermal Properties of Soil. Cerca con Google

Signorelli, S., 2004, Geoscientific investigations for the use of shallow low-enthalpy systems: ETH Zurich. Cerca con Google

Signorelli, S., Bassetti, S., Pahud, D., and Kohl, T., 2007, Numerical evaluation of thermal response tests: Geothermics, v. 36, p. 141–166. Cerca con Google

Soldo, V., Borović, S., Lepoša, L., and Boban, L., 2016, Comparison of different methods for ground thermal properties determination in a clastic sedimentary environment: Geothermics, v. 61, p. 1–11. Cerca con Google

Spitler, J.D., and Gehlin, S.E.A., 2015, Thermal response testing for ground source heat pump systems—An historical review: Renewable and Sustainable Energy Reviews, v. 50, p. 1125–1137. Cerca con Google

Sundberg, J., 1986, Värmeöverförande egenskaper i svenska jordarter: värmekonduktivitet, specifik värmekapacitet och latent värme: Stockholm, Rapport / Byggforskningsr°adet 1986,104, 108 p. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record