Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Da Sois, Luca (2018) Qual è il ruolo dell'anatomia dello xilema nei processi di embolizzazione e ripristino della conducibilità idraulica degli elementi vascolari? Any role of xylem anatomy in hydraulic vulnerability and recovery? [Laurea specialistica biennale]

Full text disponibile come:

[img]
Preview
PDF
5Mb

Abstract

In the xylem, water is transported in a metastable state under tension. During drought, this tension increases causing embolism formation and reducing plant productivity. Hypothetically, as embolism reversal mechanism may rely upon the sugars provided by parenchyma cells, vulnerable species should have a high parenchyma amount providing an efficient refilling mechanism to recover from embolism formation. We measured total parenchyma amount (PAtot), fibres area (FA), volume of wood occupied by vessels (VA), mean conduit area (MCA), conduit density (CD), theoretical hydraulic conductivity (KS), hydraulic vulnerability to embolism (P50), and other qualitative traits. Published anatomical and hydraulic data were also used. Angiosperm species more vulnerable to cavitation (i.e. less negative P50) have higher PAtot that is inversely related with FA and a higher MCA that is inversely related with CD. These relations were not significant in gymnosperms. P50 is strongly related with conduits properties as wider and therefore less dense vessels determine a higher vulnerability to embolism. Angiosperms therefore tend to produce a greater amount of PAtot allowing to both storage and utilize more efficiently a greater sugars amount throughout the xylem, relying on more efficient refilling mechanism to compensate for the low safety of the water transport system.

Item Type:Laurea specialistica biennale
Corsi di Laurea specialistica biennale:Facoltà di Scienze MM. FF. NN. > Scienze della natura
Uncontrolled Keywords:Xylem anatomy, Parenchyma, Embolism, Refilling, Hydraulic failure, Tree mortality
Subjects:Area 05 - Scienze biologiche > BIO/04 Fisiologia vegetale
Codice ID:61107
Relatore:La Rocca, Nicoletta
Correlatore:Petit, Giai and Nardini, Andrea
Data della tesi:2018
Biblioteca:Polo di Scienze > CIS "A. Vallisneri" - Biblioteca Biologico Medica
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Adams, H. D., Zeppel, M. J. B., Anderegg, W. R. L., Hartmann, H., Landhäusser, S. M., Tissue, D. T., … McDowell, N. G. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 1(9), 1285–1291. https://doi.org/10.1038/s41559-017-0248-x Vai! Cerca con Google

Akkemik, U., & Yaman, B. (2012). Wood anatomy of Eastern Mediterranean species. Kessel. Cerca con Google

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., … Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 Vai! Cerca con Google

Almeida-Rodriguez, A. M., Cooke, J. E. K., Yeh, F., & Zwiazek, J. J. (2010). Functional characterization of drought-responsive aquaporins in Populus balsamifera and Populus simonii×balsamifera clones with different drought resistance strategies. Physiologia Plantarum, 140(4), 321–333. https://doi.org/10.1111/j.1399-3054.2010.01405.x Vai! Cerca con Google

Anderegg, W. R. L. (2015). Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytologist, 205(3), 1008–1014. https://doi.org/10.1111/nph.12907 Vai! Cerca con Google

Anderegg, W. R. L., Kane, J. M., & Anderegg, L. D. L. (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3(1), 30–36. https://doi.org/10.1038/nclimate1635 Vai! Cerca con Google

Anfodillo, T., Petit, G., & Crivellaro, A. (2013). Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA Journal, 34(4), 352–364. https://doi.org/10.1163/22941932-00000030 Vai! Cerca con Google

Angyalossy, V., Pace, M. R., Evert, R. F., Marcati, C. R., Oskolski, A. A., Terrazas, T., … Baas, P. (2016). IAWA List of Microscopic Bark Features. IAWA Journal, 37(4), 517–615. https://doi.org/10.1163/22941932-20160151 Vai! Cerca con Google

Arend, M., & Fromm, J. (2007). Seasonal change in the drought response of wood cell development in poplar. Tree Physiology, 27(7), 985–992. https://doi.org/10.1093/treephys/27.7.985 Vai! Cerca con Google

Attia, Z., Domec, J., Oren, R., Way, D. A., & Moshelion, M. (2015). Growth and physiological responses of isohydric and anisohydric poplars to drought. Journal of Experimental Botany, 66(14), 4373–4381. https://doi.org/10.1093/jxb/erv195 Vai! Cerca con Google

Becker, P., Gribben, R. J., & Lim, C. M. (2000). Tapered conduits can buffer hydraulic conductance from path-length effects. Tree Physiology, 20(14), 965–967. https://doi.org/10.1093/treephys/20.14.965 Vai! Cerca con Google

Bennett, A. C., McDowell, N. G., Allen, C. D., & Anderson-Teixeira, K. J. (2015). Larger trees suffer most during drought in forests worldwide. Nature Plants, 1(10), 15139. https://doi.org/10.1038/nplants.2015.139 Vai! Cerca con Google

Bettiati, D., Petit, G., & Anfodillo, T. (2012). Testing the equi-resistance principle of the xylem transport system in a small ash tree: empirical support from anatomical analyses. Tree Physiology, 32(2), 171–177. https://doi.org/10.1093/treephys/tpr137 Vai! Cerca con Google

Bhaskar, R., Valiente-Banuet, A., & Ackerly, D. D. (2007). Evolution of hydraulic traits in closely related species pairs from mediterranean and nonmediterranean environments of North America. New Phytologist, 176(3), 718–726. https://doi.org/10.1111/j.1469-8137.2007.02208.x Vai! Cerca con Google

Birdsey, R., & Pan, Y. (2011). Drought and dead trees. Nature Climate Change, 1(9), 444–445. https://doi.org/10.1038/nclimate1298 Vai! Cerca con Google

Boisvenue, C., & Running, S. W. (2006). Impacts of climate change on natural forest productivity - evidence since the middle of the 20th century. Global Change Biology, 12(5), 862–882. https://doi.org/10.1111/j.1365-2486.2006.01134.x Vai! Cerca con Google

Bonan, G. B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320(5882), 1444–1449. https://doi.org/10.1126/science.1155121 Vai! Cerca con Google

Brienen, R. J. W., Lebrija-Trejos, E., Zuidema, P. A., & Martìnez-Ramos, M. (2010). Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Global Change Biology, 16(7), 2001–2012. https://doi.org/10.1111/j.1365-2486.2009.02059.x Vai! Cerca con Google

Brodersen, C. R., & McElrone, A. J. (2013). Maintenance of xylem Network Transport Capacity: A Review of Embolism Repair in Vascular Plants. Frontiers in Plant Science, 4(April), 1–11. https://doi.org/10.3389/fpls.2013.00108 Vai! Cerca con Google

Brodersen, C. R., McElrone, A. J., Choat, B., Matthews, M. A., & Shackel, K. A. (2010). The Dynamics of Embolism Repair in Xylem: In Vivo Visualizations Using High-Resolution Computed Tomography. Plant Physiology, 154(3), 1088–1095. https://doi.org/10.1104/pp.110.162396 Vai! Cerca con Google

Brodribb, T. J. (2009). Xylem hydraulic physiology: The functional backbone of terrestrial plant productivity. Plant Science, 177(4), 245–251. https://doi.org/10.1016/j.plantsci.2009.06.001 Vai! Cerca con Google

Brodribb, T. J., Bowman, D. J. M. S., Nichols, S., Delzon, S., & Burlett, R. (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytologist, 188(2), 533–542. https://doi.org/10.1111/j.1469-8137.2010.03393.x Vai! Cerca con Google

Bryden, H. L., King, B. A., McCarthy, G. D., & McDonagh, E. L. (2014). Impact of a 30% reduction in Atlantic meridional overturning during 2009–2010. Ocean Science, 10(4), 683–691. https://doi.org/10.5194/os-10-683-2014 Vai! Cerca con Google

Bryden, H. L., Longworth, H. R., & Cunningham, S. A. (2005). Slowing of the Atlantic meridional overturning circulation at 25° N. Nature, 438(7068), 655–657. https://doi.org/10.1038/nature04385 Vai! Cerca con Google

Canny, M. (1995). A New Theory for the Ascent of Sap—Cohesion Supported by Tissue Pressure. Annals of Botany, 75(4), 343–357. https://doi.org/10.1006/anbo.1995.1032 Vai! Cerca con Google

Carrer, M., von Arx, G., Castagneri, D., & Petit, G. (2015). Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture. Tree Physiology, 35(1), 27–33. https://doi.org/10.1093/treephys/tpu108 Vai! Cerca con Google

Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., … Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752–755. https://doi.org/10.1038/nature11688 Vai! Cerca con Google

Christman, M. A., Sperry, J. S., & Smith, D. D. (2012). Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytologist, 193(3), 713–720. https://doi.org/10.1111/j.1469-8137.2011.03984.x Vai! Cerca con Google

Clearwater, M. J., & Clark, C. J. (2003). In vivo magnetic resonance imaging of xylem vessel contents in woody lianas. Plant, Cell and Environment, 26(8), 1205–1214. https://doi.org/10.1046/j.1365-3040.2003.01042.x Vai! Cerca con Google

Cochard, H., Badel, E., Herbette, S., Delzon, S., Choat, B., & Jansen, S. (2013). Methods for measuring plant vulnerability to cavitation: a critical review. Journal of Experimental Botany, 64(15), 4779–4791. https://doi.org/10.1093/jxb/ert193 Vai! Cerca con Google

Cochard, H., & Tyree, M. T. (1990). Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiology, 6(4), 393–407. https://doi.org/10.1093/treephys/6.4.393 Vai! Cerca con Google

Crivellaro, A., & Schweingruber, F. (2015). Stem anatomical features of Dicotyledons. Kessel, Norbert. Cerca con Google

Cunningham, S. a, Kanzow, T., Rayner, D., Baringer, M. O., Johns, W. E., Marotzke, J., … Bryden, H. L. (2007). Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5 N. Science, 317(5840), 935–938. https://doi.org/10.1126/science.1141304 Vai! Cerca con Google

Davis, S. D., Sperry, J. S., & Hacke, U. G. (1999). The Relationship between Xylem Conduit Diameter and Cavitation Caused by Freezing. American Journal of Botany, 86(10), 1367. https://doi.org/10.2307/2656919 Vai! Cerca con Google

De Baerdemaeker, N. J. F., Salomón, R. L., De Roo, L., & Steppe, K. (2017). Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation. New Phytologist, 216(3), 720–727. https://doi.org/10.1111/nph.14787 Vai! Cerca con Google

De Micco, V., & Aronne, G. (2012). Morpho-anatomical traits for plant adaptation to drought. In Plant responses to drought stress (pp. 37-61). Springer, Berlin, Heidelberg. Cerca con Google

Delzon, S., Douthe, C., Sala, A., & Cochard, H. (2010). Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant, Cell & Environment, 33(12), 2101–2111. https://doi.org/10.1111/j.1365-3040.2010.02208.x Vai! Cerca con Google

Dixon, H. H., & Joly, J. (1894). On the ascent of sap. Proceedings of the Royal Society of London, 57, 3-5. Cerca con Google

Domec, J.-C., Scholz, F. G., Bucci, S. J., Meinzer, F. C., Goldstein, G., & Villalobos-Vega, R. (2006). Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status. Plant, Cell and Environment, 29(1), 26–35. https://doi.org/10.1111/j.1365-3040.2005.01397.x Vai! Cerca con Google

Duursma, R., & Choat, B. (2017). fitplc - an R package to fit hydraulic vulnerability curves. Journal of Plant Hydraulics, 4, 2. https://doi.org/10.20870/jph.2017.e002 Vai! Cerca con Google

Ennajeh, M., Nouiri, M., Khemira, H., & Cochard, H. (2011b). Improvement to the air-injection technique to estimate xylem vulnerability to cavitation. Trees, 25(4), 705–710. https://doi.org/10.1007/s00468-011-0548-8 Vai! Cerca con Google

Ennajeh, M., Simões, F., Khemira, H., & Cochard, H. (2011a). How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms? Physiologia Plantarum, 142(3), 205–210. https://doi.org/10.1111/j.1399-3054.2011.01470.x Vai! Cerca con Google

Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J., Steltzer, H., & Wallenstein, M. D. (2014). Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology, 20(10), 3256–3269. https://doi.org/10.1111/gcb.12568 Vai! Cerca con Google

Fitter, A. H., & Hay, R. K. (2012). Environmental physiology of plants. Academic press. Cerca con Google

Franks, P. J., Dracke, P. L., & Froend, R. H. (2007). Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant, Cell and Environment, 30(1), 19–30. https://doi.org/10.1111/j.1365-3040.2006.01600.x Vai! Cerca con Google

Friedrichs, D. A., Buntgen, U., Frank, D. C., Esper, J., Neuwirth, B., & Loffler, J. (2008). Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiology, 29(1), 39–51. https://doi.org/10.1093/treephys/tpn003 Vai! Cerca con Google

Gleason, S. M., Westoby, M., Jansen, S., Choat, B., Hacke, U. G., Pratt, R. B., … Zanne, A. E. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209(1), 123–136. https://doi.org/10.1111/nph.13646 Vai! Cerca con Google

Hacke, U. G., & Sperry, J. S. (2001). Functional and ecological xylem anatomy. Perspectives in Plant Ecology, Evolution and Systematics, 4(2), 97–115. https://doi.org/10.1078/1433-8319-00017 Vai! Cerca con Google

Hacke, U. G., & Sperry, J. S. (2003). Limits to xylem refilling under negative pressure in Laurus nobilis and Acer negundo. Plant, Cell and Environment, 26(2), 303–311. https://doi.org/10.1046/j.1365-3040.2003.00962.x Vai! Cerca con Google

Hacke, U. G., Sperry, J. S., Wheeler, J. K., & Castro, L. (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26(6), 689–701. https://doi.org/10.1093/treephys/26.6.689 Vai! Cerca con Google

Hacke, U. G., Spicer, R., Schreiber, S. G., & Plavcová, L. (2017). An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment, 40(6), 831–845. https://doi.org/10.1111/pce.12777 Vai! Cerca con Google

Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., & Zimmermann, N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3(3), 203–207. https://doi.org/10.1038/nclimate1687 Vai! Cerca con Google

Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global Surface Temperature Change. Reviews of Geophysics, 48(4), RG4004. https://doi.org/10.1029/2010RG000345 Vai! Cerca con Google

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., … Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693 Vai! Cerca con Google

Hemp, A., Zimmermann, R., Remmele, S., Pommer, U., Berauer, B., Hemp, C., & Fischer, M. (2017). Africa’s highest mountain harbours Africa’s tallest trees. Biodiversity and Conservation, 26(1), 103–113. https://doi.org/10.1007/s10531-016-1226-3 Vai! Cerca con Google

Hilaire, E., Young, S. a, Willard, L. H., McGee, J. D., Sweat, T., Chittoor, J. M., … Leach, J. E. (2001). Vascular Defense Responses in Rice: Peroxidase Accumulation in Xylem Parenchyma Cells and Xylem Wall Thickening. Molecular Plant-Microbe Interactions, 14(12), 1411–1419. https://doi.org/10.1094/MPMI.2001.14.12.1411 Vai! Cerca con Google

IPCC (2014). Climate change 2014—impacts, adaptation, and vulnerability: regional aspects. Cambridge University Press, Cambridge. Cerca con Google

Jacobsen, A. L., Ewers, F. W., Pratt, R. B., Paddock III, W. A., & Davis, S. D. (2005). Do Xylem Fibers Affect Vessel Cavitation Resistance? Plant Physiology, 139(1), 546–556. https://doi.org/10.1104/pp.104.058404 Vai! Cerca con Google

Jacobsen, A. L., Pratt, R. B., Tobin, M. F., Hacke, U. G., Ewers, W., Plants, W., … Ewers, F. W. (2012). A global analysis of xylem vessel length in woody plants, 99(10), 1583–1591. https://doi.org/10.3732/ajb.l200140 Vai! Cerca con Google

Jacobsen, A. L., Rodriguez-Zaccaro, F. D., Lee, T. F., Valdovinos, J., Toschi, H. S., Martinez, J. A., & Pratt, R. B. (2015). Grapevine Xylem Development, Architecture, and Function. In U. Hacke (Ed.), Functional and Ecological Xylem Anatomy (pp. 133–162). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-15783-2_5 Vai! Cerca con Google

Johnson, D. M., Domec, J.-C., Woodruff, D. R., McCulloh, K. A., & Meinzer, F. C. (2013). Contrasting hydraulic strategies in two tropical lianas and their host trees. American Journal of Botany, 100(2), 374–383. https://doi.org/10.3732/ajb.1200590 Vai! Cerca con Google

Johnson, D. M., McCulloh, K. A., Woodruff, D. R., & Meinzer, F. C. (2012). Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Science, 195, 48–53. https://doi.org/10.1016/j.plantsci.2012.06.010 Vai! Cerca con Google

Jump, A. S., & Penuelas, J. (2005). Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Letters, 8(9), 1010–1020. https://doi.org/10.1111/j.1461-0248.2005.00796.x Vai! Cerca con Google

Kiorapostolou, N., Galiano-Pérez, L., von Arx, G., Gessler, A., & Petit, G. (2018). Structural and anatomical responses of Pinus sylvestris and Tilia platyphyllos seedlings exposed to water shortage. Trees, 0(0), 0. https://doi.org/10.1007/s00468-018-1703-2 Vai! Cerca con Google

Klein, T. (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28(6), 1313–1320. https://doi.org/10.1111/1365-2435.12289 Vai! Cerca con Google

Koch, G. W., Sillett, S. C., Jennings, G. M., & Davis, S. D. (2004a). The limits to tree height. Nature, 428(6985), 851–854. https://doi.org/10.1038/nature02417 Vai! Cerca con Google

Kozlowski, T. T., Kramer, P. J., Pallardy, S.G. (1991). The physiological ecology of woody plants. Academic press. 24-28 Oval Road, London. Cerca con Google

Kumagai, T., & Porporato, A. (2012). Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric? Plant, Cell & Environment, 35(1), 61–71. https://doi.org/10.1111/j.1365-3040.2011.02428.x Vai! Cerca con Google

Lachenbruch, B., & McCulloh, K. A. (2014). Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytologist, 204(4), 747–764. https://doi.org/10.1111/nph.13035 Vai! Cerca con Google

Lack, A. J., & Evans, D. E. (2001). Plant biology. Instant notes. Cerca con Google

Larcher, W. (1983). Physiological plant ecology. Springer-Verlag. Cerca con Google

Larter, M., Pfautsch, S., Domec, J., Trueba, S., Nagalingum, N., & Delzon, S. (2017). Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. New Phytologist, 215(1), 97–112. https://doi.org/10.1111/nph.14545 Vai! Cerca con Google

Lens, F., Tixier, A., Cochard, H., Sperry, J. S., Jansen, S., & Herbette, S. (2013). Embolism resistance as a key mechanism to understand adaptive plant strategies. Current Opinion in Plant Biology, 16(3), 287–292. https://doi.org/10.1016/j.pbi.2013.02.005 Vai! Cerca con Google

Maherali, H., Moura, C. F., Caldeira, M. C., Willson, C. J., & Jackson, R. B. (2006). Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant, Cell and Environment, 29(4), 571–583. https://doi.org/10.1111/j.1365-3040.2005.01433.x Vai! Cerca con Google

Maherali, H., Pockman, W. T., & Jackson, R. B. (2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85(8), 2184–2199. https://doi.org/10.1890/02-0538 Vai! Cerca con Google

Martinez-Cabrera, H. I., Jones, C. S., Espino, S., & Schenk, H. J. (2009). Wood anatomy and wood density in shrubs: Responses to varying aridity along transcontinental transects. American Journal of Botany, 96(8), 1388–1398. https://doi.org/10.3732/ajb.0800237 Vai! Cerca con Google

Martinez-Cabrera, H. I., Schenk, H. J., Cevallos-Ferriz, S. R. S., & Jones, C. S. (2011). Integration of vessel traits, wood density, and height in angiosperm shrubs and trees. American Journal of Botany, 98(5), 915–922. Cerca con Google

https://doi.org/10.3732/ajb.1000335 Vai! Cerca con Google

Martínez-Vilalta, J., & Garcia-Forner, N. (2017). Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant, Cell & Environment, 40(6), 962–976. https://doi.org/10.1111/pce.12846 Vai! Cerca con Google

Martinez-Vilalta, J., Mencuccini, M., Alvarez, X., Camacho, J., Loepfe, L., & Pinol, J. (2012). Spatial distribution and packing of xylem conduits. American Journal of Botany, 99(7), 1189–1196. https://doi.org/10.3732/ajb.1100384 Vai! Cerca con Google

Martínez-Vilalta, J., Poyatos, R., Aguadé, D., Retana, J., & Mencuccini, M. (2014). A new look at water transport regulation in plants. New Phytologist, 204(1), 105–115. https://doi.org/10.1111/nph.12912 Vai! Cerca con Google

Mauseth, J. D., Aducci, P., Della Mea, M., & Fracassini, D. S. (2006). Botanica: parte generale. Idelson-Gnocchi. Cerca con Google

McCulloh, K. A., Johnson, D. M., Meinzer, F. C., Voelker, S. L., Lachenbruch, B., & Domec, J.-C. (2012). Hydraulic architecture of two species differing in wood density: opposing strategies in co-occurring tropical pioneer trees. Plant, Cell & Environment, 35(1), 116–125. https://doi.org/10.1111/j.1365-3040.2011.02421.x Vai! Cerca con Google

McDowell, N. G. (2011). Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality. Plant Physiology, 155(3), 1051–1059. https://doi.org/10.1104/pp.110.170704 Vai! Cerca con Google

McDowell, N. G., Fisher, R. A., Xu, C., Domec, J. C., Hölttä, T., Mackay, D. S., … Pockman, W. T. (2013). Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytologist, 200(2), 304–321. https://doi.org/10.1111/nph.12465 Vai! Cerca con Google

McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., … Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x Vai! Cerca con Google

Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A., & Woodruff, D. R. (2009). Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology, 23(5), 922–930. https://doi.org/10.1111/j.1365-2435.2009.01577.x Vai! Cerca con Google

Melcher, P. J., Michele Holbrook, N., Burns, M. J., Zwieniecki, M. A., Cobb, A. R., Brodribb, T. J., … Sack, L. (2012). Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods in Ecology and Evolution, 3(4), 685–694. https://doi.org/10.1111/j.2041-210X.2012.00204.x Vai! Cerca con Google

Mencuccini, M. (2014). Temporal scales for the coordination of tree carbon and water economies during droughts. Tree Physiology, 34(5), 439–442. https://doi.org/10.1093/treephys/tpu029 Vai! Cerca con Google

Mencuccini, M., & Comstock, J. (1997). Vulnerability to cavitation in populations of two desert species, Hymenoclea salsola and Ambrosia dumosa , from different climatic regions. Journal of Experimental Botany, 48(6), 1323–1334. Cerca con Google

https://doi.org/10.1093/jxb/48.6.1323 Vai! Cerca con Google

Mencuccini, M., & Comstock, J. (1999). Variability in hydraulic architecture and gas exchange of common bean (Phaseolus vulgaris) cultivars under well-watered conditions: interactions with leaf size. Australian Journal of Plant Physiology, 26(2), 115. https://doi.org/10.1071/PP98137 Vai! Cerca con Google

Menzel, A., & Fabian, P. (1999). Growing season extended in Europe. Nature, 397(6721), 659–659. https://doi.org/10.1038/17709 Vai! Cerca con Google

Mitchell, P. J., O’Grady, A. P., Tissue, D. T., White, D. A., Ottenschlaeger, M. L., & Pinkard, E. A. (2013). Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist, 197(3), 862–872. https://doi.org/10.1111/nph.12064 Vai! Cerca con Google

Mitchell, P. J., O’Grady, A. P., Tissue, D. T., Worledge, D., & Pinkard, E. A. (2014). Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies. Tree Physiology, 34(5), 443–458. https://doi.org/10.1093/treephys/tpu014 Vai! Cerca con Google

Morris, H., Plavcová, L., Cvecko, P., Fichtler, E., Gillingham, M. A. F., Martínez-Cabrera, H. I., … Jansen, S. (2016). A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, 209(4), 1553–1565. https://doi.org/10.1111/nph.13737 Vai! Cerca con Google

Nardini, A., Battistuzzo, M., & Savi, T. (2013). Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytologist, 200(2), 322–329. https://doi.org/10.1111/nph.12288 Vai! Cerca con Google

Nardini, A., Casolo, V., Dal Borgo, A., Savi, T., Stenni, B., Bertoncin, P., … McDowell, N. G. (2016). Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant, Cell & Environment, 39(3), 618–627. https://doi.org/10.1111/pce.12646 Vai! Cerca con Google

Nardini, A., Lo Gullo, M. A., & Salleo, S. (2011). Refilling embolized xylem conduits: Is it a matter of phloem unloading? Plant Science, 180(4), 604–611. https://doi.org/10.1016/j.plantsci.2010.12.011 Vai! Cerca con Google

Nardini, A., & Luglio, J. (2014). Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes. Functional Ecology, 28(4), 810–818. https://doi.org/10.1111/1365-2435.12246 Vai! Cerca con Google

Nardini, A., Pedà, G., & Rocca, N. La. (2012). Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences. New Phytologist, 196(3), 788–798. https://doi.org/10.1111/j.1469-8137.2012.04294.x Vai! Cerca con Google

Nardini, A., Savi, T., Losso, A., Petit, G., Pacilè, S., Tromba, G., … Salleo, S. (2017a). X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance. New Phytologist, 213(3), 1068–1075. https://doi.org/10.1111/nph.14245 Vai! Cerca con Google

Nardini, A., Savi, T., Trifilò, P., & Lo Gullo, M. A. (2017b). Drought Stress and the Recovery from Xylem Embolism in Woody Plants (pp. 197–231). https://doi.org/10.1007/124_2017_11 Vai! Cerca con Google

O’Brien, M. J., Engelbrecht, B. M. J., Joswig, J., Pereyra, G., Schuldt, B., Jansen, S., … Macinnis-Ng, C. (2017). A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. Journal of Applied Ecology, 54(6), 1669–1686. https://doi.org/10.1111/1365-2664.12874 Vai! Cerca con Google

Pellizzari, E., Camarero, J. J., Gazol, A., Sangüesa-Barreda, G., & Carrer, M. (2016). Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback. Global Change Biology, 22(6), 2125–2137. https://doi.org/10.1111/gcb.13227 Vai! Cerca con Google

Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., … Zhou, X. (2011). A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 1(9), 467–471. https://doi.org/10.1038/nclimate1293 Vai! Cerca con Google

Petit, G., & Anfodillo, T. (2009). Plant physiology in theory and practice: An analysis of the WBE model for vascular plants. Journal of Theoretical Biology, 259(1), 1–4. https://doi.org/10.1016/j.jtbi.2009.03.007 Vai! Cerca con Google

Petit, G., Anfodillo, T., Carraro, V., Grani, F., & Carrer, M. (2011). Hydraulic constraints limit height growth in trees at high altitude. New Phytologist, 189(1), 241–252. https://doi.org/10.1111/j.1469-8137.2010.03455.x Vai! Cerca con Google

Petit, G., Pfautsch, S., Anfodillo, T., & Adams, M. A. (2010). The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance. New Phytologist, 187(4), 1146–1153. https://doi.org/10.1111/j.1469-8137.2010.03304.x Vai! Cerca con Google

Petit, G., Savi, T., Consolini, M., Anfodillo, T., & Nardini, A. (2016). Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees. Tree Physiology, 1–10. https://doi.org/10.1093/treephys/tpw069 Vai! Cerca con Google

Petit, G., von Arx, G., Kiorapostolou, N., Lechthaler, S., Prendin, A. L., Anfodillo, T., … Sterck, F. (2018). Tree differences in primary and secondary growth drive convergent scaling in leaf area to sapwood area across Europe. New Phytologist, 218(4), 1383–1392. https://doi.org/10.1111/nph.15118 Vai! Cerca con Google

Pfautsch, S., Harbusch, M., Wesolowski, A., Smith, R., Macfarlane, C., Tjoelker, M. G., … Adams, M. A. (2016). Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecology Letters, 19(3), 240–248. https://doi.org/10.1111/ele.12559 Vai! Cerca con Google

Plavcová, L., Hoch, G., Morris, H., Ghiasi, S., & Jansen, S. (2016). The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. American Journal of Botany, 103(4), 603–612. https://doi.org/10.3732/ajb.1500489 Vai! Cerca con Google

Plavcová, L., & Jansen, S. (2015). The Role of Xylem Parenchyma in the Storage and Utilization of Nonstructural Carbohydrates. In U. Hacke (Ed.), Functional and Ecological Xylem Anatomy (pp. 209–234). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-15783-2_8 Vai! Cerca con Google

Pockman, W. T., & Sperry, J. S. (2000). Vulnerability to Xylem Cavitation and the Distribution of Sonoran Desert Vegetation. American Journal of Botany, 87(9), 1287. https://doi.org/10.2307/2656722 Vai! Cerca con Google

Pratt, R. B., & Jacobsen, A. L. (2017). Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40(6), 897–913. https://doi.org/10.1111/pce.12862 Vai! Cerca con Google

Prendin, A. L., Mayr, S., Beikircher, B., von Arx, G., & Petit, G. (2018b). Xylem anatomical adjustments prioritize hydraulic efficiency over safety as Norway spruce trees grow taller. Tree Physiology, (June). https://doi.org/10.1093/treephys/tpy065 Vai! Cerca con Google

Prendin, A. L., Petit, G., Fonti, P., Rixen, C., Dawes, M. A., & von Arx, G. (2018a). Axial xylem architecture of Larix decidua exposed to CO 2 enrichment and soil warming at the tree line. Functional Ecology, 32(2), 273–287. https://doi.org/10.1111/1365-2435.12986 Vai! Cerca con Google

Price, C. A., Wright, I. J., Ackerly, D. D., Niinemets, Ü., Reich, P. B., & Veneklaas, E. J. (2014). Are leaf functional traits “invariant” with plant size and what is “invariance” anyway? Functional Ecology, 28(6), 1330–1343. https://doi.org/10.1111/1365-2435.12298 Vai! Cerca con Google

Rascio N., Carfagna S., Esposito S., La Rocca N., Lo Gullo M. A., Trost P., Vona V. (2012). Elementi di fisiologia vegetale. I edizione. EdiSES, Napoli. Cerca con Google

Rascio N., Carfagna S., Esposito S., La Rocca N., Lo Gullo M. A., Trost P., Vona V. (2017). Elementi di fisiologia vegetale. II edizione. EdiSES, Napoli. Cerca con Google

Rece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R.B. (2014). Campbell biology. Pearson. Cerca con Google

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., … Wattenbach, M. (2013). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. https://doi.org/10.1038/nature12350 Vai! Cerca con Google

Rosell, J. A., Olson, M. E., & Anfodillo, T. (2017). Scaling of Xylem Vessel Diameter with Plant Size: Causes, Predictions, and Outstanding Questions. Current Forestry Reports, 3(1), 46–59. https://doi.org/10.1007/s40725-017-0049-0 Vai! Cerca con Google

Rosner, S. (2017). Wood density as a proxy for vulnerability to cavitation: Size matters. Journal of Plant Hydraulics, 4, 1. https://doi.org/10.20870/jph.2017.e001 Vai! Cerca con Google

Sade, N., Gebremedhin, A., & Moshelion, M. (2012). Risk-taking plants. Plant Signaling & Behavior, 7(7), 767–770. https://doi.org/10.4161/psb.20505 Vai! Cerca con Google

Salleo, S., Lo Gullo, M. A., Trifilò, P., & Nardini, A. (2004). New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant, Cell and Environment, 27(8), 1065–1076. https://doi.org/10.1111/j.1365-3040.2004.01211.x Vai! Cerca con Google

Salter, M. G., Franklin, K. A., & Whitelam, G. C. (2003). Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature, 426(6967), 680–683. https://doi.org/10.1038/nature02174 Vai! Cerca con Google

Salzmann, N., Huggel, C., Rohrer, M., & Stoffel, M. (2014). Data and knowledge gaps in glacier, snow and related runoff research – A climate change adaptation perspective. Journal of Hydrology, 518(PB), 225–234. https://doi.org/10.1016/j.jhydrol.2014.05.058 Vai! Cerca con Google

Savi, T., Love, V. L., Dal Borgo, A., Martellos, S., & Nardini, A. (2017). Morpho-anatomical and physiological traits in saplings of drought-tolerant Mediterranean woody species. Trees, 31(4), 1137–1148. https://doi.org/10.1007/s00468-017-1533-7 Vai! Cerca con Google

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 Vai! Cerca con Google

Secchi, F., Pagliarani, C., & Zwieniecki, M. A. (2017). The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant, Cell & Environment, 40(6), 858–871. https://doi.org/10.1111/pce.12831 Vai! Cerca con Google

Secchi, F., & Zwieniecki, M. A. (2011). Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant, Cell & Environment, 34(3), 514–524. https://doi.org/10.1111/j.1365-3040.2010.02259.x Vai! Cerca con Google

Slatyer, R. (1958). The Measurement of Diffusion Pressure Deficit in Plants by a Method of Vapour Equilibration. Australian Journal of Biological Sciences, 11(3), 349. https://doi.org/10.1071/BI9580349 Vai! Cerca con Google

Slik, J. W. F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., … Zweifel, N. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22(12), 1261–1271. https://doi.org/10.1111/geb.12092 Vai! Cerca con Google

Speranza, A., & Calzoni, G. L. (1996). Struttura delle piante in immagini. Zanichelli Editore SpA, Bologna. Cerca con Google

Sperry, J. (2013). Cutting-edge research or cutting-edge artefact? An overdue control experiment complicates the xylem refilling story. Plant, Cell & Environment, 36(11), n/a-n/a. https://doi.org/10.1111/pce.12148 Vai! Cerca con Google

Sperry, J. S., & Tyree, M. T. (1988). Mechanism of Water Stress-Induced Xylem Embolism. Plant Physiology, 88(3), 581–587. https://doi.org/10.1104/pp.88.3.581 Vai! Cerca con Google

Sterck, F., & Zweifel, R. (2016). Trees maintain a similar conductance per leaf area through integrated responses in growth, allocation, architecture and anatomy. Tree Physiology, (June), 1307–1309. https://doi.org/10.1093/treephys/tpw100 Vai! Cerca con Google

Steudle, E. (2001). The Cohesion-Tension Mechanism and the Acquisition of Water by Plant Roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 847–875. https://doi.org/10.1146/annurev.arplant.52.1.847 Vai! Cerca con Google

Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J. F., Schlosser, P., … Bonani, G. (1995). Cooling of Tropical Brazil (5 C) During the Last Glacial Maximum. Science, 269(5222), 379–383. https://doi.org/10.1126/science.269.5222.379 Vai! Cerca con Google

Taiz, L., & Zeiger, E. (2006). Plant physiology. 4th. Sinauer Associate, Sunderland, Mass., EUA Cerca con Google

Torres-Ruiz, J. M., Cochard, H., Fonseca, E., Badel, E., Gazarini, L., & Vaz, M. (2017). Differences in functional and xylem anatomical features allow Cistus species to co-occur and cope differently with drought in the Mediterranean region. Tree Physiology, 37(6), 755–766. https://doi.org/10.1093/treephys/tpx013 Vai! Cerca con Google

Trifilò, P., Raimondo, F., Lo Gullo, M. A., Barbera, P. M., Salleo, S., & Nardini, A. (2014). Relax and refill: xylem rehydration prior to hydraulic measurements favours embolism repair in stems and generates artificially low PLC values. Plant, Cell & Environment, 37(11), 2491–2499. https://doi.org/10.1111/pce.12313 Vai! Cerca con Google

Trueba, S., Pouteau, R., Lens, F., Feild, T. S., Isnard, S., Olson, M. E., & Delzon, S. (2017). Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant, Cell & Environment, 40(2), 277–289. https://doi.org/10.1111/pce.12859 Vai! Cerca con Google

Tyree, M. T. (1997). The Cohesion-Tension theory of sap ascent: current controversies. Journal of Experimental Botany, 48(10), 1753–1765. https://doi.org/10.1093/jxb/48.10.1753 Vai! Cerca con Google

Tyree, M. T., & Ewers, F. W. (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119(3), 345–360. https://doi.org/10.1111/j.1469-8137.1991.tb00035.x Vai! Cerca con Google

Tyree, M. T., & Sperry, J. S. (1989). Vulnerability of Xylem to Cavitation and Embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1), 19–36. https://doi.org/10.1146/annurev.pp.40.060189.000315 Vai! Cerca con Google

Venturas, M. D., Sperry, J. S., & Hacke, U. G. (2017). Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology, 59(6), 356–389. https://doi.org/10.1111/jipb.12534 Vai! Cerca con Google

Vilagrosa, A., Chirino, E., Peguero-Pina, J. J., Barigah, T. S., Cochard, H., & Gil-Pelegrín, E. (2012). Xylem Cavitation and Embolism in Plants Living in Water-Limited Ecosystems. In R. Aroca (Ed.), Plant Responses to Drought Stress (pp. 63–109). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_3 Vai! Cerca con Google

von Arx, G., Archer, S. R., & Hughes, M. K. (2012). Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Annals of Botany, 109(6), 1091–1100. https://doi.org/10.1093/aob/mcs030 Vai! Cerca con Google

von Arx, G., & Carrer, M. (2014). ROXAS – A new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia, 32(3), 290–293. https://doi.org/10.1016/j.dendro.2013.12.001 Vai! Cerca con Google

Wang, R., Zhang, L., Zhang, S., Cai, J., & Tyree, M. T. (2014). Water relations of R obinia pseudoacacia L.: do vessels cavitate and refill diurnally or are R-shaped curves invalid in R obinia ? Plant, Cell & Environment, 37(12), 2667–2678. https://doi.org/10.1111/pce.12315 Vai! Cerca con Google

Wheeler, J. K., Sperry, J. S., Hacke, U. G., & Hoang, N. (2005). Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell and Environment, 28(6), 800–812. https://doi.org/10.1111/j.1365-3040.2005.01330.x Vai! Cerca con Google

Wheeler, T. D., & Stroock, A. D. (2008). The transpiration of water at negative pressures in a synthetic tree. Nature, 455(7210), 208–212. https://doi.org/10.1038/nature07226 Vai! Cerca con Google

Wiedenhoeft, A. (2012). Structure and Function of Wood. In Handbook of Wood Chemistry and Wood Composites, Second Edition (pp. 9–32). CRC Press. https://doi.org/10.1201/b12487-4 Vai! Cerca con Google

Yadeta, K. A., & J. Thomma, B. P. H. (2013). The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in Plant Science, 4(April), 1–12. https://doi.org/10.3389/fpls.2013.00097 Vai! Cerca con Google

Yang, S., & Tyree, M. T. (1993). Hydraulic resistance in Acer saccharum shoots and its influence on leaf water potential and transpiration. Tree Physiology, 12(3), 231–242. https://doi.org/10.1093/treephys/12.3.231 Vai! Cerca con Google

Zar, J. H. (1999). Biostatistical analysis. Pearson Education India. Cerca con Google

Ziemińska, K., Westoby, M., & Wright, I. J. (2015). Broad Anatomical Variation within a Narrow Wood Density Range—A Study of Twig Wood across 69 Australian Angiosperms. PLOS ONE, 10(4), e0124892. https://doi.org/10.1371/journal.pone.0124892 Vai! Cerca con Google

Zimmermann, M. H. (1983). Xylem structure and the ascent of sap, Springer-V. Cerca con Google

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1(1), 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x Vai! Cerca con Google

Zwieniecki, M. a., & Holbrook, N. M. (1998). Diurnal variation in xylem hydraulic conductivity in white ash (Fraxinus americana L.), red maple (Acer rubrum L.) and red spruce (Picea rubens Sarg.). Plant, Cell and Environment, 21(11), 1173–1180. https://doi.org/10.1046/j.1365-3040.1998.00342.x Vai! Cerca con Google

Zwieniecki, M. A., & Holbrook, N. M. (2009). Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends in Plant Science, 14(10), 530–534. https://doi.org/10.1016/j.tplants.2009.07.002 Vai! Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record