Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Beccaro, Lisa (2018) Monitoraggio del vulcano attivo Sakurajima (Giappone) con dati SAR satellitari: dalla misura degli spostamenti alla modellazione e previsione dell'evoluzione. [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF (Tesi Magistrale)
8Mb

Abstract

The aim of this study is to validate the suitability of SAR Interferometric Time Series analysis based on several sensors and datasets for the monitoring of Sakurajima volcanic activity and the potential of defining adequate geophysical modelling leading to an operational forecasting tool. Sakurajima volcano is located inside Kagoshima Bay, Japan, on the southern rim of the Aira caldera. The volcano is known for its irregular explosions, typically 12 a day, of Strombolian or Vulcanian type which often produce very high eruptive columns (over 4 km). Studies on the supply of the system and its behavior observations indicate the presence of a large magma chamber under the Aira caldera at an approximate depth of 10 km. Additionally, a more superficial reservoir would be located under the central cone of the volcano. The recent activity of Sakurajima is particularly prominent. Several eruptions were registered in the last years, for example in 2016 a powerful eruption occurred on July 25th and in 2015 a rapid dike intrusion occurred on August 15th which generated strong deformations. In this study the activity of Sakurajima volcano is defined through interferometric analysis of SAR data (ALOS Palsar-2, COSMO-SkyMed and Sentinel-1) to obtain the caldera displacement over the observed period, between November 2014 and March 2018. Displacement evolution is derived to investigate its correlation with eruptions and diking. The Time Series, calibrated through Global Navigation Satellite System (GNSS) measurements, are used to identify the most dramatic events affecting Sakurajima area since 2015. Moreover, modeling of the rapid intrusion occurred in August 2015 and the eruption in July 2016 through Okada (1985) and Mogi (1958) models are presented

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Codice ID:61163
Relatore:Floris, Mario
Correlatore:Marzoli, Andrea and Tessari, Giulia
Data della tesi:27 September 2018
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Aoki, Y. and Scholz, C. H. (2003). Vertical deformation of the Japanese islands, 1996 - 1999. Journal of geophysical research. Vol. 108. No. B5. 2257. Cerca con Google

Atzori, S. and Salvi, S. (2014). SAR Data Analysis in Solid Earth Geophysics: From Science to Risk Management. Land applications of RADAR remote sensing. InTech. Chapter 9. Cerca con Google

Berardino, P., Fornaro, G., Lanari, R. and Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential interferograms. IEEE Transactions on Geoscience and Remote Sensing. Vol. 40, No. 11. Cerca con Google

Biass, S. et al. (2017). Potential impacts of tephra fallout from a large-scale explosive eruption at Sakurajima volcano. Japan. Bull Volcanol. 79:73. Cerca con Google

Biggs, J. and Pritchard, M. E. (2017). Global Volcano Monitoring: What Does It Mean When Volcanoes Deform? Elements. Vol. 13. pp. 17 - 22. Cerca con Google

Biggs, J. et al. (2014). Global link between deformation and volcanic eruption quantified by satellite imagery. Nature Communications. 5:3471. Cerca con Google

Cashman, K. V. et al. (2017). Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science 355. Cerca con Google

Dzurisin, D. (2006). Volcano Deformation. Geodetic Monitoring Techniques. Springer Praxis Books. 469 pp. Cerca con Google

Ferretti, A., Prati, C. and Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing. V. 39, pp. 8 - 20. Cerca con Google

Gudmundsson, A. (2012). Magma chambers: Formation, local stresses, excess pressures, and compartments. Journal of Volcanology and Geothermal Research 237 - 238. pp. 19 - 41. Cerca con Google

Hickey, J., Gottsmann, J., Nakamichi, H. and Iguchi, M. (2016). Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan. Nature, Scientific Reports. 6:32691. Cerca con Google

Hidayati, S. et al. (2007). Volcano - tectonic Earthquakes during the Stage of Magma Accumulation at the Aira Caldera, Southern Kyushu, Japan. Bull. Volcanol. Soc. Japan. Vol. 52, No. 6, pp. 289 - 309. Cerca con Google

Hotta, K. et al. (2016). Multiple-pressure-source model for ground inflation during the period of high explosivity at Sakurajima volcano, Japan. Combination analysis of continuous GNSS, tilt and strain data. Journal of Volcanology and Geothermal Research 310. pp. 12 - 25. Cerca con Google

Hotta, K., Iguchi, M. and Tameguri, T. (2016). Rapid dike intrusion into Sakurajima volcano on August 15, 2015, as detected by multi‑parameter ground deformation observations. Earth, Planets and Space. 68: 68. Cerca con Google

Kurniawan, I. A. et al. (2017). Petrological studies of volcanic ash from Sakurajima volcano in 2013, Southern Kyushu, Japan. IOP Conf. Series: E. Envir. Science 71. Cerca con Google

Iguchi, M. (2013). Magma Movement from the Deep to Shallow Sakurajima Volcano as Revealed by Geophysical Observations. Bull. Volcanol. Soc. Japan. Vol. 58, No. 1, pp. 1 - 18. Cerca con Google

Iguchi, M. et al. (2008). Mechanism of explosive eruption revealed by geophysical observations at the Sakurajima, Suwanosejima and Semeru volcanoes. Journal of Volcanology and Geothermal Research 178. pp. 1 - 9. Cerca con Google

Miyazaki, S. (2001). Crustal velocity field of southwest Japan: Subduction and arcarc collision. Journal of geophysical research. Vol. 106. No. B3. pp. 4305 - 4326. Cerca con Google

Mogi, K. (1958). Relations between the eruptions of various volcanoes and the deformation of the ground surface around them. Bull. Earthquake Res. Inst. Vol. 36, pp. 99-134. Cerca con Google

Morishita, Y., Kobayashi, T. and Yarai, H. (2016). Three-dimensional deformation mapping of a dike intrusion event in Sakurajima in 2015 by exploiting the rightand left-looking ALOS-2 InSAR. Geophysical Research Letters 43. pp. 4197 - 4204. Cerca con Google

Moro, M., Chini, M., Saroli, M., Atzori, S., Stramondo, S. and Salvi, S. (2011). Analysis of large, seismically induced, gravitational deformations imaged by highresolution COSMO-SkyMed synthetic aperture RADAR. Geology 39:527–530. Cerca con Google

Nakamura, M. et al. (2003). Three-dimensional P- and S-wave velocity structures beneath the Ryukyu arc. Tectonophysics 369. pp. 121 - 143. Cerca con Google

Okada, Y. (1985). Surface deformation due to shear and tensile faults in a halfspace. Bulletin of the Seismological Society of America. Vol. 75, No. 4, pp. 1135 1154. Cerca con Google

Pasquali, P., Cantone, A., Riccardi, P., Defilippi, M., Ogushi, F., Gagliano, S. and Tamura, M. (2014). Mapping of ground deformations with interferometric stacking tecniques. Land applications of RADAR remote sensing. InTech. Chapter 8. Cerca con Google

Remy, D. et al. (2003). Accurate measurements of tropospheric effects in volcanic areas from SAR interferometry data: application to Sakurajima volcano (Japan). Earth and Planetary Science Letters 213. pp. 299 - 310. Cerca con Google

Rott, H. (2009). Advances in interferometric synthetic aperture radar (InSAR) in earth system science. Progress in Physical Geography 33(6) pp. 769 - 791. Cerca con Google

Sagiya, T. (2004). A decade of GEONET: 1994 – 2003. The continuous GPS observation in Japan and its impact on earthquake studies. Earth Planets Space, 56. Cerca con Google

SAR-guidebook (2009). Synthetic Aperture RADAR and SARscape. Sarmap (Svizzera), 274 pp. Cerca con Google

Takayama, H. and Yoshida, A. (2007). Crustal deformation in Kyushu derived from GEONET data. Journal of geophysical research. Vol. 112. Cerca con Google

Takla, E. M. et al. (2013). The signature of the 2011 Tohoku mega earthquake on the geomagnetic field measurements in Japan. NRIAG Journal of Astronomy and Geophysics Volume 2, Issue 2, pp. 185-195. Cerca con Google

Tessari, G. Caratterizzazione e modellazione di fenomeni geologici di instabilità attraverso tecniche di telerilevamento satellitare e simulazioni numeriche. Tesi di Dottorato. A.A. 2013-2014. Università degli studi di Padova. 227 pp. Cerca con Google

Tessari, G. et al. (2017). Monitoring of sinkholes and subsidence affecting the Jordanian coast of the Dead Sea through Synthetic Aperture Radar data and last generation Sentinel-1 data. Geophysical Research Abstracts Vol. 19, 2017 EGU. Cerca con Google

Todde, A., Cioni, R., Pistolesi, M., Geshi, N. and Bonadonna, C. (2017). The 1914 Taisho eruption of Sakurajima volcano: stratigraphy and dynamics of the largest explosive event in Japan during the twentieth century. Bull. Volcanol. 79: 72. Cerca con Google

Xie, M., Huang, J., Wang, L., Huang, J. and Wang, Z. (2016). Early landslide detection based on D-InSAR technique at the Wudongde hydropower reservoir. Environ. Earth Science 75:717. Cerca con Google

Yamamoto, K. et al. (2013). Vertical Ground Deformation Associated with the Volcanic Activity of Sakurajima Volcano, Japan during 1996-2010 as Revealed by Repeated Precise Leveling Surveys. Bull. Volcanol. Soc. Japan. Vol. 58. No. 1. pp. 137-151. Cerca con Google

Sitografia Cerca con Google

Agenzia Spaziale Europea; http://www.esa.int/ESA Vai! Cerca con Google

Agenzia Spaziale Italiana; https://www.asi.it/ Vai! Cerca con Google

Agenzia Spaziale Giapponese; http://global.jaxa.jp/ Vai! Cerca con Google

Earthquake Hazards Program; https://earthquake.usgs.gov/ Vai! Cerca con Google

Geological Survey of Japan; https://www.gsj.jp/ Vai! Cerca con Google

Geoportale Nazionale; http://www.pcn.minambiente.it/ Vai! Cerca con Google

Global Volcanism Program; http://volcano.si.edu/ Vai! Cerca con Google

Nuclear Waste Management Organization of Japan; https://www.numo.or.jp/en/ Vai! Cerca con Google

Sarmap SA; http://www.sarmap.ch/wp/ Vai! Cerca con Google

Volcanic Ash Advisory Centre; https://ds.data.jma.go.jp/svd/vaac/data/index.html Vai! Cerca con Google

Volcano Discovery; https://www.volcanodiscovery.com/ Vai! Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record