The purpose of this work is to study the Hopfield model for neuronal interaction and memory storage, in particular the convergence to the stored patterns. Since the hypothesis of symmetric synapses is not true for the brain, we will study how we can extend it to the case of asymmetric synapses using a probabilistic approach. We then focus on the description of another feature of the memory process and brain: oscillations. Using the Kuramoto model we will be able to describe them completely, gaining the presence of synchronization between neurons. Our aim is therefore to understand how and why neurons can be seen as oscillators and to establish a strong link between this model and the Hopfield approach.

Towards a continuous dynamic model of the Hopfield theory on neuronal interaction and memory storage

Meneghetti, Laura
2018/2019

Abstract

The purpose of this work is to study the Hopfield model for neuronal interaction and memory storage, in particular the convergence to the stored patterns. Since the hypothesis of symmetric synapses is not true for the brain, we will study how we can extend it to the case of asymmetric synapses using a probabilistic approach. We then focus on the description of another feature of the memory process and brain: oscillations. Using the Kuramoto model we will be able to describe them completely, gaining the presence of synchronization between neurons. Our aim is therefore to understand how and why neurons can be seen as oscillators and to establish a strong link between this model and the Hopfield approach.
2018-10-12
146
Hopfield model, memory storage
File in questo prodotto:
File Dimensione Formato  
tesi_MeneghettiDef..pdf

accesso aperto

Dimensione 3.59 MB
Formato Adobe PDF
3.59 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/23592