Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Runci, Antonino (2018) Formulazione di leganti ad attivazione alcalina a base di loppa di altoforno: analisi dei sistemi a base di silicati e a base di alluminati. Valutazione delle reazioni di idratazione e delle proprietà applicative. [Magistrali biennali]

Full text disponibile come:

[img]PDF (Tesi magistrale biennale)
Tesi non accessibile fino a 01 October 2019 per motivi correlati alla proprietà intellettuale. Visibile a: Repository staff only

29Mb

Abstract

The Portland cement production is one of the most important contribution to the anthropological CO2 emissions. The alkali-activated binders could represent a valid alternative to this material in the future. In this thesis work systems based on ground-granulated blast furnace slag with solid activation have been studied. The formulations studied comprise systems based on silicates and systems based on aluminates. The first formulations have been activated by Na2CO3, and their reactivity has been improved with Ca(OH)2 and clinker. In addition to these, systems activated by clinker and Na2SO4 and clinker and CaSO4 have been tested. The second formulations have been activated by aluminous cement. The high content of Al3+ gives a refractory properties to the system; furthermore, the behaviour with retarding and accelerating agents has been studied. The formulations have been analysed through calorimetry to determinate the reactivity of the systems, then the mechanical strength has been tested in compression and splitting. The mechanism of hydration of silicate systems has been carefully analysed measurements of the pore solution composition. The aluminate systems have been tested at high temperature to evaluate the refractory properties and mechanical strength. Finally, the mineralogical evolution has been analysed by powder diffraction (XRD) and the microstructural by scanning electron microscope (SEM)

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:Cemento, Calorimetrie, Diffrazione, SEM
Subjects:Area 04 - Scienze della terra > GEO/06 Mineralogia
Codice ID:61291
Relatore:Artioli, Gilberto
Correlatore:Bellotto, Maurizio Pietro
Data della tesi:27 September 2018
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Freedonia Group (2009). World Cement to 2012. http://www.freedoniagroup.com/ World-Cement.html Vai! Cerca con Google

Gallucci, E., Scrivener, K., Groso, A., Stampanoni, M., Margaritondo, G. (2007) 3D experimental investigation of the microstructure of cement pastes using synchrotron X-ray microtomography (lCT). Cement and Concrete Research 37 (3), 360–368. Cerca con Google

WWF-Lafarge Conservation Partnership (2008). A Blueprint for a Climate Friendly Cement Industry: How to Turn Around the Trend of Cement Related Emissions. http://assets.panda.org/downloads/cement_blueprint_climate_fullenglrep_lr.pdf. Vai! Cerca con Google

Sébastien Sauvé, Sophie Bernard, Pamela Sloan (2016) Environmental sciences, sustainable development and circular economy: Alternative concepts for transdisciplinary research. Environmental Development17 (2016) 48–56. Cerca con Google

Francesco Cherubini, Silvia Bargigli, Sergio Ulgiati (2009) Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy 34 (2009) 2116–2123. Cerca con Google

Jannie S.J. van Deventer, John L. Provis, Peter Duxson (2012) Technical and commercial progress in the adoption of geopolymer cement. Minerals Engineering 29 (2012) 89–104. Cerca con Google

Ellis M. Gartner, Donald E. Macphee (2011) A physico-chemical basis for novel cementitious binders. Cement and Concrete Research 41 (2011) 736–749. Cerca con Google

G. Habert, J.B. d’Espinose de Lacaillerie, N. Roussel (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. Journal of Cleaner Production 19 (2011) 1229e1238. Cerca con Google

K.M. Liew, A.O. Sojobi, L.W. Zhang (2017) Green concrete: Prospects and challenges. Construction and Building Materials 156 (2017) 1063–1095. Cerca con Google

Caijun Shi, A. Fernández Jiménez, Angel Palomo (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research 41 (2011) 750–763. Cerca con Google

Capros, P., Kouvaritakis, N., Mantzos, L., (2001) Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Top-down Analysis of Greenhouse Gas Emission Possibilities in the E.U., Contribution to a Study for DG Environment. Cerca con Google

UNI EN 197-1:2011. Cemento - Parte 1: Composizione, specificazioni e criteri di conformità per cementi comuni. Cerca con Google

John L. Provis, Angel Palomo, Caijun Shi (2015) Advances in understanding alkaliactivated materials. Cement and Concrete Research 78 (2015) 110–125. Cerca con Google

John Provis (2014) Alkali-activated materials. Rilem TC 224-AAM. Cerca con Google

John Provis (2017) Alkali-activated materials. Cement and Concrete Research. Cerca con Google

Susan A. Bernal, Rackel San Nicolas, Jannie S. J. van Deventer, John L. Provis (2015) Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator. Advances in Cement Research. Cerca con Google

Tero Luukkonena, Zahra Abdollahnejada, Juho Yliniemia, Paivo Kinnunena,b, Mirja Illikainena (2018) One-part alkali-activated materials: A review. Cement and Concrete Research 103 (2018) 21–34. Cerca con Google

Ahmed F. Abdalqader, Fei Jin, Abir Al-Tabbaa (2016) Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures. Journal of Cleaner Production 113 (2016) 66e7. Cerca con Google

Hailong Ye, Aleksandra Radlin´ ska (2016) Fly ash-slag interaction during alkaline activation: Influence of activators on phase assemblage and microstructure formation. Construction and Building Materials 122 (2016) 594–606. Cerca con Google

Idawati Ismail, Susan A. Bernal, John L. Provis, Rackel San Nicolas, Sinin Hamdan, Jannie S.J. van Deventer (2014) Modification of phase evolution in alkaliactivated blast furnace slag by the incorporation of fly ash. Cement & Concrete Composites 45 (2014) 125–135. Cerca con Google

Nataša Marjanovića, Miroslav Komljenovića, Zvezdana Baščarevića, Violeta Nikolić (2015) Comparison of two alkali-activated systems: mechanically activated fly ash and fly ash-blast furnace slag blends. Procedia Engineering 108 231 – 238. Cerca con Google

Ahmed F. Abdalqader, Fei Jin, Abir Al-Tabbaa (2016) Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures. Journal of Cleaner Production 113 (2016) 66e75. Cerca con Google

N. Marjanovića, M. Komljenovića, Z. Baščarevića, V. Nikolića, R. Petrović (2015) Physical–mechanical andmicrostructuralpropertiesofalkali-activated fly ash–blast furnaceslagblends. Ceramics International41(2015)1421–1435. Cerca con Google

Maxim Kovtun, Elsabe P. Kearsley, Julia Shekhovtsova (2015) Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate. Cement and Concrete Research 72 (2015) 1–9. Cerca con Google

Xinyuan Ke, Susan A. Bernal, John L. Provis (2016) Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cement and Concrete Research 81 (2016) 24–37. Cerca con Google

Susan A. Bernal, John L. Provis, Rupert J. Myers, Rackel San Nicolas, Jannie S. J. van Deventer (2015) Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures (2015) 48:517–529. Cerca con Google

Rupert J. Myers, Susan A. Bernal, John L. Provis (2017) Phase diagrams for alkaliactivated slag binders. Cement and Concrete Research 95 (2017) 30–38. Cerca con Google

Alexander J. Moseson, Dana E. Moseson, Michel W. Barsoum (2012) High volume limestone alkali-activated cement developed by design of experiment. Cement & Concrete Composites 34 (2012) 328–336. Cerca con Google

Caijun Shi (2004) Steel Slag—Its Production, Processing, Characteristics, and Cementitious Properties. J. Mater. Civ. Eng., 2004, 16(3): 230-236. Cerca con Google

Chao Li, Henghu Sun, Longtu Li (2010) A review: The comparison between alkaliactivated slag (Si+Ca) and metakaolin (Si+Al) cements. Cement and Concrete Research 40 (2010) 1341–1349. Cerca con Google

Caijun Shi, Pavel V. Krivenko, Della Roy (2006) Alkali-Activated Cements and Concretes. Cerca con Google

Hiroshi Nagasawa (2003) Kinetics of partial melting of melilite solid solution in the temperature range between solidus and liquidus. Lunar and Planetary Science XXXIV. Cerca con Google

R. A. Mendybaev, F. M Richter, and A. M. Davis (2006) Reevaluation of the åkermanite-gehlenite binary system. Lunar and Planetary Science XXXVII Cerca con Google

Chao Liu, Yu‑zhu Zhang, Jie Li, Jun‑guo Li and Yue Kang (2016) Thermodynamic simulation on mineralogical composition of CaO–SiO2–Al2O3–MgO quaternary slag system. SpringerPlus (2016) 5:1028. Cerca con Google

Isabelle Rousselot, Christine Taviot-Gueho, Fabrice Leroux, Philippe Lieone, Pierre Palvadeau, and Jean-Pierre Besse (2002) Insights on the Structural Chemistry of Hydrocalumite and Hydrotalcite-like Materials: Investigation of the Series Ca2M3+(OH)6Cl _ 2H2O (M3+: Al3+, Ga3+, Fe3+, and Sc3+) by X-Ray Powder Di¡raction. Journal of Solid State Chemistry 167, 137–144. Cerca con Google

Laetitia Vieille, Isabelle Rousselot, Fabrice Leroux, Jean-Pierre Besse, and Christine Taviot-Gue´ho (2003) Hydrocalumite and Its Polymer Derivatives. 1. Reversible Thermal Behavior of Friedel’s Salt: A Direct Observation by Means of High-Temperature in Situ Powder X-ray Diffraction. Chem. Mater., Vol. 15, No. 23. Cerca con Google

Tomče Runčevski,a Robert E., Dinnebier, Oxana V., Magdysyuka and Herbert, Pollmann (2012) Crystal structures of calcium hemicarboaluminate and carbonated calcium hemicarboaluminate from synchrotron powder diffraction data. Acta Cryst. (2012). B68, 493–500. Cerca con Google

Maurizio Bellotto, Bernadette Rebours, Olivier Clause, John Lynch, Dominique Bazin and Eric Elkaım (1996) A Reexamination of Hydrotalcite Crystal Chemistry. J. Phys. Chem. 1996, 100, 8527-8534. Cerca con Google

Isabel Santacruz, Ángeles G De la Torre, Gema Álvarez-Pinazo, Aurelio Cabeza, Ana Cuesta, Jesús Sanz, Miguel A. G Aranda (2015) Structure of stratlingite and effect of hydration methodology on microstructure. Advances in Cement Research Volume 28 Issue 1. Cerca con Google

Rupert J. Myers, Susan A. Bernal, Rackel San Nicolas, and John L. Provis, Harold (2013) Generalized Structural Description of Calcium−Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model. Langmuir. Cerca con Google

F.W. Taylor (1990) Cement Chemistry. Cerca con Google

Karen Scrivener, Ruben Snellings, Barbara Lothenbaach (2016) A practical guide to microstructural analysis of cementitious materials. Cerca con Google

BS EN 196-1:2005. Methods of testing cement — Part 1: Determination of strength. Cerca con Google

Marco Milanesio (2007) Diffrazione da materiali policristallini i: principi e campi di applicazione. Cerca con Google

Alaa M. Rashad (2013) Metakaolin as cementitious material: History, scours, production and composition – A comprehensive overview. Construction and Building Materials 41 (2013) 303–318. Cerca con Google

Elmer T. Carlson and Horace A. Berman (1960) Some Observations on the Calcium Aluminate Carbonate Hydrates. JOURNAL OF RESEARCH of the National Bureau of Standards- A. Physics and Chemistry Vol. 64A, No.4, July- August 1960. Cerca con Google

Raffaele Cioffi, Francesco Colangelo, Francesco Messina (2013) Life cycle analysis (lca) per la valutazione della sostenibilità ambientale dei geopolimeri. Cerca con Google

Mahida Prashantsinh R, Prof. C G Bhagchandani, Mr Abhishek Gupta (2015) Environmental Impact of Soda Ash using LCA Tool. IJIRST –International Journal for Innovative Research in Science & Technology, Volume 1, Issue 12. Cerca con Google

Ana Fernandez-Jimenez and Francisca Puertas (2003) Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator. J. Am. Ceram. Soc., 86 [8] 1389–94. Cerca con Google

Xinyuan Ke, Susan A. Bernal, John L. Provis (2016) Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cement and Concrete Research 81 (2016) 24–37. Cerca con Google

Francesc Guirado, Salvador Galí, Servando Chinchon, and Jordi Rius (1998) Crystal structure Solution of Hydrated High-Alumina Cement from X-ray Powder Diffraction Data. Angew. Chem. Int. Ed. 1998, 37, No. 1/2. Cerca con Google

S. Pourchet, L. Regnaud, J.P. Perez, A. Nonat (2009) Early C3A hydration in the presence of different kind of calcium sulfate. Cement and Concrete Research 39 989-996. Cerca con Google

Berner (1975) The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica et Cosmochimica ActaVL. Cerca con Google

F. Puertas, M. Palacios, T. Va’ Zquez (2016) Carbonation process of alkaliactivated slag mortars. J MATER SCI 41 (2006) 3071–3082 Cerca con Google

Teresa Duràn, Pilar Penaz, Salvador De Aza, Jesus Gòmez-Millàn,y Margarita Alvarez, and Antonio H. De Aza (2011) Interactions in Calcium Aluminate Cement (CAC)-Based Castables Containing Magnesia—Part II: Hydration–Dehydration Behavior of CAC and their Mixtures with Dead-Burned and Reactive-Grade MgO. J. Am. Ceram. Soc., 94 [3] 909–917. Cerca con Google

R.Oliveira, F.S.Ortega, V.C.Pandolfelli (2009) Hydration of CAC cement in a castable refractory matrix containing processing additives. Ceramics International Volume 35, Issue 4, May 2009, Pages 1545-155. Cerca con Google

J. Bensted, I.C. Callaghan, A. Lepre, (1991) Comparative study of the efficiency of various borate compounds as set retarders of class G oilwell cement, Cem. Concr. Res. 21 663–668. Cerca con Google

V.S. Ramachandran, M.S. Lowery (1992) Conduction calorimetric investigation of the effect of retarders on the hydration of Portland cement, Thermochim. Acta 195 373–387. Cerca con Google

M. Ben Haha, B. Lothenbach, G. Le Saout, F. Winnefeld (2011) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO. Cement and Concrete Research 41 (2011) 955–963. Cerca con Google

Jean-Baptiste Champenois, Adel Mesbah, Céline Cau Dit Coumes, Guillaume Renaudin (2012) Crystal structures of Boro-AFm and sBoro-AFt phases. Cement and Concrete Research 42 (2012) 1362–1370. Cerca con Google

M.E. Bazaldúa-Medellína, A.F. Fuentesa, A. Gorokhovskyb, J.I. Escalante-García (2013) Early and late hydration of supersulphated cements of blast furnace slag with fluorgypsum. Materiales de Construcción 65 (317), January–March 2015. Cerca con Google

Ding Sha, Shui Zhonghe, Chen Wei, Lu Jianxin, Tian Sufang (2014) Properties of Supersulphated Phosphogysumslag Cement (SSC) Concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed. Cerca con Google

Susan A. Bernal (2016) Advances in near-neutral salts activation of blast furnace slags. RILEM Technical Letters (2016) 1: 39-44. Cerca con Google

Kaile Zhou, ShanlinYang (2016) Emission reduction of China's steel industry: Progress and challenges. RenewableandSustainableEnergyReviews61(2016)319– 327. Cerca con Google

Stefano Merlino, Elena Bonaccorsi and Thomas Armbruster (2001) The real structure of tobermorite 11Å: normal and anomalous forms, OD character and polytypic modifications. Eur. J. Mineral. 2001, 13, 577–590. Cerca con Google

Ana Fernandez-Jimenez, Angel Palomo, and Tomas Vazquez (2008) Alkaline Activation of Blends of Metakaolin and Calcium Aluminate. Journal of the American Ceramic Society Vol. 91, No. 4. Cerca con Google

De Larrard, F. (1999) Concrete Mixture Proportioning. E & FN Spon, London. Cerca con Google

Nasser Y. Mostafa, Z.I. Zaki, Omar H. Abd Elkader (2012) Chemical activation of calcium aluminate cement composites cured at elevated temperature. Cement & Concrete Composites 34 (2012) 1187–1193. Cerca con Google

M. Davraz (2015) The Effect of Boron Compound to Cement Hydration and Controllability of this Effect. ACTA PHYSICA POLONICA A No. 2-B. Cerca con Google

Tomislav Matusinovic, Nevenka Vrbos, and Danijel Óurlin (1994) Lithium Salts in Rapid Setting High-Alumina Cement Materials. Ind. Eng. Chem. Res. 1994, 33, 2795—2800. Cerca con Google

Frank Collins, J.G. Sanjaya (1999) Effects of ultra-fine materials on workability and strength of concretecontaining alkali-activated slag as the binder. Cement and Concrete Research 29 (1999) 459–462. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record