Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

logo del sistema bibliotecario dell'ateneo di padova

Masoch, Simone (2018) Formation of cockade breccias in extensional brittle faults (Col de Teghime, Alpine Corsica). [Magistrali biennali]

Full text disponibile come:

[img]
Preview
PDF (Tesi Magistrale)
322Mb

Abstract

It is well-known that fluid migration in the Earth’s upper crust is strongly controlled by the structure of fault zones. Importantly, fluid migration and pore fluid pressure variations in fault networks control the nucleation and evolution of earthquake sequences. Vein filling in fault zones is one of the most impressive geological signatures of the interaction between fluids and fault zone rocks. A relatively common fault vein filling fabric is the spectacular cockade breccia, consisting of fragments of wall- and fault rocks rimmed and sealed by concentric layers of fluid-precipitated minerals. Consequently, the formation of cockade breccia requires rock fragmentation and cementation in the presence of fluids under particular physical and chemical conditions that may occur during different phases of the seismic cycle. This thesis discusses the structure and the mechanism of formation of cockade breccia hosted in the slipping zones of the Miocene in age extensional brittle faults that cut quartzites and impure dolomitic marbles of the Schistes Lustrés Complex from Alpine Corsica (France). Original structural geology field surveys and detailed microstructural (optical cathodoluminescence and scanning electron microscopy; micro-tomography; image analysis) and mineralogical/geochemical (micro-Raman spectroscopy, X-ray powder diffraction, Energy-dispersive X-ray spectroscopy) investigations of the fault rocks indicated that: (a) core clasts of the cockades derive from the wall rocks, have rounded shape and are well-sorted with the fraction finer < 310 µm in diameter almost completely absent; (b) the core clasts of the cockades are suspended (i.e., do not touch each other) in the slipping zones; (c) in some slipping zones, the core clasts are arranged in inverse grading; (d) the concentric layers (systematically four in total) rimming the clasts of the cockades have strong mineralogical zoning consisting of alternate/rhythmic precipitation of saddle dolomite, Mg-calcite and Fe- and Ti-oxides/hydroxides; (e) cockade-breccia are cut but also kinematically associated with veins made of ultrafine (size < 200 µm) wall rock clasts cemented by the same mineral assemblage of the rims of the cockades; (f) the cockade breccia are cut by dolomite-bearing veins and partly sealed by late precipitation of calcite. The above findings allowed me to propose the following model for the formation of the cockade-bearing faults. The model links the formation of the cockade microstructures numbered (a) to (f) to different phases of the seismic cycle: (1) co-seismic fragmentation of the wall rocks (a) in presence of CO2- and Fe-rich fluids which promoted also the rounding of the clasts (abrasion and chemical wear); (2) co-seismic fluidization of the rock fragments associated to fluid pulses migrating in the fault zone. Fluidization resulted in elutriation of the fine particles, which were deposited in distal veins (e), and formation of a residual very porous and well-sorted clast assemblage (a) which will make the core of the cockades. Inverse grading (c) and rounded shape (a) of the cores resulted by shaking (Brazil-Nut Effect) and co-seismic shearing of the clasts; (3) post-seismic to interseismic cementation by deposition of concentric carbonate-rich rims (d) around the core clasts of the cockades. Rim deposition was probably due to slow (years to centuries?) mineral pressure growth processes associated to the ingression of fluids with variable composition in the porous clast assemblage. Pressure growth resulted in the progressive lift of the clasts and in their "suspension" in the cockade assemblage (b). The precipitation of saddle dolomite and the late and partial sealing of the cockade breccia by calcite cement (f) suggest that the cockade breccia formed at shallow depths in the crust (< 2 km). Based on this conceptual model, cockade breccias are particular fault rock assemblages which record the passage of seismic ruptures in the presence of pressurized migrating fluids. Given the scarcity in the current literature of fault rock assemblages possibly associated to seismic faulting, the results of this study may allow us a better comprehension of earthquake-related processes at shallow crustal depths and find application in seismic hazard studies

Item Type:Magistrali biennali
Corsi di Diploma di Laurea:Scuola di Scienze > Geologia e geologia tecnica
Uncontrolled Keywords:Structural Geology, Fault, Fault rocks, Microstructures, Alpine
Subjects:Area 04 - Scienze della terra > GEO/03 Geologia strutturale
Codice ID:61320
Relatore:Di Toro, Giulio
Correlatore:Fondriest, Michele
Data della tesi:27 September 2018
Biblioteca:Polo di Scienze > Dip. Geoscienze - Biblioteca
Tipo di fruizione per il documento:on-line per i full-text
Tesi sperimentale (Si) o compilativa (No)?:Yes

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione e non da noi.

Allmendinger, R.W., Cardozo, N.C., Fisher, D., 2011. Structural Geology Algorithms: Vectors & Tensors. Cambridge University Press, Cambridge, England. Cerca con Google

Beltrando, M., Compagnoni, R., Lombardo, B., 2010. (Ultra-) High-pressure metamorphism and orogenesis: An Alpine perspective. Gondwana Research 18, 147 – 166. Cerca con Google

Bons, P.D., Elburg, M.A., Gomez-Rivas, E., 2012. A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology 43, 33–62. doi:https://doi.org/10.1016/j.jsg.2012.07.005. Vai! Cerca con Google

Borromeo, L., Zimmermann, U., Andò, S., Coletti, G., Bersani, D., Basso, D., Gentile, P., Schulz, B., Garzanti, E., 2017. Raman spectroscopy as a tool for magnesium estimation in Mg-calcite. Journal of Raman Spectroscopy 48, 983–992. doi:10.1002/jrs.5156. Cerca con Google

Boullier, A.M., Yeh, E.C., Boutareaud, S., Song, S.R., Tsai, C.H., 2009. Microscale anatomy of the 1999 Chi-Chi earthquake fault zone. Geochemistry, Geophysics, Geosystems 10. doi:10.1029/2008GC002252. Cerca con Google

Brunet, C., Monié, P., Jolivet, L., Cadet, J.P., 2000. Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics 321, 127 – 155. Cerca con Google

Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault zone architecture and permeability structure. Geology 24, 1025–1028. doi:10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2. Cerca con Google

Cardozo, N., Allmendinger, R.W., 2013. Spherical projections with OSXStereonet. Computers & Geosciences 51, 193–205. doi:10.1016/j.cageo.2012.07.021. Cerca con Google

Caron, J.M., Bonin, B., 1980. Géologie de la Corse, in: 26e Congres Geol. Internat. Paris, p. 80–90. Cerca con Google

Caron, J.M., Delcey, R., 1979. Lithostratigraphie des schistes lustrés corses: diversité des séries post-ophiolitiques. Comptes Rendus de l’Académie des Sciences Paris 208, 1525–1528. Cerca con Google

Caron, J.M., Kienast, J.R., Triboulet, C., 1981. High-pressure-low-temperature metamorphism and polyphase alpine deformation at Sant’Andrea di cotone (eastern corsica, france). Tectonophysics 78, 419 – 451. Cerca con Google

Cavazza, W., DeCelles, P.G., Fellin, M.G., Paganelli, L., 2007. The Miocene Saint-Florent basin in northern corsica: stratigraphy, sedimentology, and tectonic implications. Basin Research 19, 507–527. Cerca con Google

Clark, C., James, P., 2003. Hydrothermal brecciation due to fluid pressure fluctuations: examples from the Olary Domain, South Australia. Tectonophysics 366, 187–206. doi:https://doi.org/10.1016/S0040-1951(03)00095-7. Vai! Cerca con Google

Cowan, D.S., 1999. Do faults preserve a record of seismic slip? A field geologist’s opinion. Journal of Structural Geology 21, 999–1001. doi:https://doi.org/10.1016/S0191-8141(99)00046-2. Vai! Cerca con Google

Cox, S.F., Munroe, S.M., 2016. Breccia formation by particle fluidization in fault zones: Implications for transitory, rupture-controlled fluid flow regimes in hydrothermal systems. American Journal of Science 316, 241–278. doi:https://doi.10.2475/03.2016.02. Vai! Cerca con Google

Cox, S.F., Wall, V.J., Etheridge, M.A., Potter, T.F., 1991. Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits — examples from the Lachlan Fold Belt in central Victoria, Australia. Ore Geology Reviews 6, 391–423. doi:https://doi.org/10.1016/0169-1368(91)90038-9. Vai! Cerca con Google

Dal Piaz, G.V., 1974. Le métamorphisme alpine de haute pression et basse température dans l’évolution structurale du bassin ophiolitique alpinoapenninique. 1e partie. Bollettino della Società Geologica Italiana 93, 437–468. Cerca con Google

Dal Piaz, G.V., Bistacchi, A., Massironi, M., 2003. Geological outline of the Alps. Episodes , 175–180. Cerca con Google

Dallan, L., Nardi, R., Puccinelli, A., 1996. Carta Geologica della regione tra Bastia e St. Florent - scala 1:25000. CNR. Cerca con Google

Dallan, L., Puccinelli, A., 1995. Geologia della regione tra Bastia e Saint-Florent (Corsica settentrionale)(con carta geologica alla scala 1:25.000). Bollettino Della Societa Geologica Italiana 114, 23–66. Cerca con Google

Daniel, J.M., Jolivet, L., Goffé, B., Poinssot, C., 1996. Crustal-scale strain partitioning: footwall deformation below the Alpine Oligo-Miocene detachement of Corsica. Journal of Structural Geology 18, 41–59. Cerca con Google

De Paola, N., Hirose, T., Mitchell, T., Di Toro, G., Viti, C., Shimamoto, T., 2011. Fault lubrication and earthquake propagation in thermally unstable rocks. Geology 39, 35. doi:10.1130/G31398.1. Cerca con Google

Delcey, M.R., 1974. Données sur deux nouvelles sèries litostratigraphiques de la zone des schistes lustrés de la Corse nord-orientale. Comptes Rendus de l’Académie des Sciences Paris D 279, 1693–1696. Cerca con Google

Demurtas, M., Fondriest, M., Balsamo, F., Clemenzi, L., Storti, F., Bistacchi, A., Di Toro, G., 2016. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy). Journal of Structural Geology 90, 185–206. Cerca con Google

doi:https://doi.org/10.1016/j.jsg.2016.08.004. Vai! Cerca con Google

Dershowitz, W.S., Herda, H.H., 1992. Interpretation of fracture spacing and intensity. Balkema, Rotterdam, Sante Fe, New Mexico. pp. 757–766. Cerca con Google

Di Felice, R., 1995. Hydrodynamics of liquid fluidisation. Chemical Engineering Science 50, 1213–1245. doi:https://doi.org/10.1016/0009-2509(95)98838-6. Vai! Cerca con Google

Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., Shimamoto, T., 2006. Natural and Experimental Evidence of Melt Lubrication of Faults During Earthquakes. Science 311, 647–649. doi:10.1126/science.1121012. Cerca con Google

Di Toro, G., Mittempergher, S., Ferri, F., Mitchell, T.M., Pennacchioni, G., 2012. The contribution of structural geology, experimental rock deformation and numerical modelling to an improved understanding of the seismic cycle: Preface to the Special Volume “Physico-chemical processes in seismic faults”. Journal of Structural Geology 38, 3–10. Cerca con Google

doi:https://doi.org/10.1016/j.jsg.2012.01.025. Vai! Cerca con Google

Di Toro, G., Pennacchioni, G., 2004. Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalites (Italian Southern Alps). Journal of Structural geology 26, 1783-1801. doi:https://doi.org/10.1016/j.jsg.2004.03.001. Vai! Cerca con Google

Durand-Delga, M., 1984. Principaux traits de la Corse Alpine et correlations avec les Alpes Ligures. Memorie della Societa Geologica Italiana 28, 285–329. Cerca con Google

Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J., Withjack, M.O., 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology 32, 1557–1575. Cerca con Google

doi:https://doi.org/10.1016/j.jsg.2010.06.009. Vai! Cerca con Google

Faure, M., Malavieille, J., 1981. Etude structurale d’un cisallement ductile: le charriage ophiolitique Corse dans la région de Bastia. Bulletin de la Société Géologique de France 23, 335–343. Cerca con Google

Fellin, M.G., Picotti, V., Zattin, M., 2005. Neogene to Quaternary rifting and inversion in Corsica:retreat and collision in the western Mediterranean. Tectonics 24. Cerca con Google

Fellin, M.G., Vance, J., Garver, J., Zattin, M., 2006. The thermal evolution of Corsica as recorded by zircon fission-tracks. Tectonophysics 421, 299– 17. doi:https://doi.org/10.1016/j.tecto.2006.05.001. Vai! Cerca con Google

Ferrandini, M., Ferrandini, J., Loy-Pilot, M.D., Butterlin, J., Cravette, J., Janin, M.C., 1998. Le Miocéne du Bassin de Saint-Florent (Corse): Modalités de la transgression du Burdigalien Supérieur et mise en evidence du Serravallien. Geobios 31, 125–137. Cerca con Google

Fondriest, M., Aretusini, S., Di Toro, G., Smith, S.A.F., 2015. Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy). Tectonophysics 654, 56–74. doi:https://doi.org/10.1016/j.tecto.2015.04.015. Vai! Cerca con Google

Fondriest, M., Smith, S.A., Di Toro, G., Zampieri, D., Mittempergher, S., 2012. Fault zone structure and seismic slip localization in dolostones, an example from the Southern Alps, Italy. Journal of Structural Geology 45, 52–67. doi:https://doi.org/10.1016/j.jsg.2012.06.014. Vai! Cerca con Google

Fondriest, M., Smith, S.A.F., Candela, T., Nielsen, S.B., Mair, K., Di Toro, G., 2013. Mirror-like faults and power dissipation during earthquakes. Geology 41, 1175–1178. doi:10.1130/G34641.1. Cerca con Google

Frenzel, M., Woodcock, N.H., 2014. Cockade breccia: Product of mineralisation along dilational faults. Journal of Structural Geology 68, 194–206. doi:https://doi.org/10.1016/j.jsg.2014.09.001. Vai! Cerca con Google

Gattacceca, J., Deino, A., Rizzo, R., Jones, D.S., Henry, B., Beaudoin, B., Vadeboin, F., 2007. Miocene rotation of Sardinia: new paleomagnetic and geochronological constraints and geodynamic implications. Earth Planet Scientific Letters 258, 359–377. Cerca con Google

Genna, A., Jébrak, M., Marcoux, E., Milési, J.P., 1996. Genesis of cockade breccias in the tectonic evolution of the Cirotan epithermal gold system, West Java. Canadian Journal of Earth Sciences 33, 93–102. Cerca con Google

Gratier, J.P., Frery, E., Deschamps, P., Røyne, A., Renard, F., Dysthe, D., Ellouz-Zimmerman, N., Hamelin, B., 2012. How travertine veins grow from top to bottom and lift the rocks above them: The effect of crystallization force. Geology 40, 1015. doi:10.1130/G33286.1. Cerca con Google

Gregg, J.M., Bish, D.L., Kaczmarek, S.E., Machel, H.G., 2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology 62, 1749–1769. doi:10.1111/sed.12202. Cerca con Google

Griffith, W.A., Di Toro, G., Pennacchioni, G., Pollard, D.D., Nielsen, S., 2009. Static stress drop associated with brittle slip events on exhumed faults. Journal of Geophysical Research: Solid Earth 114. doi:10.1029/2008JB005879. Cerca con Google

Götze, J., 2012. Application of Cathodoluminescence Microscopy and Spectroscopy in Geosciences. Microscopy and Microanalysis 18, 1270–1284. Cerca con Google

Gueydan, F., Brun, J.P., Phillippon, M., Noury, M., 2017. Sequential extension as a record of corsica rotation during apennines slab roll-back. Tectonophysics 710-711, 149–161. doi:https://doi.org/10.1016/j.tecto.2016.12.028. Vai! Cerca con Google

Hadizadeh, J., Foit, F.F., 2000. Feasibility of estimating cementation rates in a brittle fault zone using Sr/Ca partition coefficients for sedimentary diagenesis. Journal of Structural Geology 22, 401–409. doi:https://doi.org/10.1016/S0191-8141(99)00172-8 Vai! Cerca con Google

Han, R., Shimamoto, T., Hirose, T., Ree, J.H., Ando, J., 2007. Ultralow Friction of Carbonate Faults Caused by Thermal Decomposition. Science 316, 878–881. doi:10.1126/science.1139763. Cerca con Google

Healy, D., Rizzo, R.E., Cornwell, D.G., Farrell, N.J.C., Watkins, H., Timms, N.E., Gomez-Rivas, E., Smith, M., 2017. FracPaQ: A MATLABTM toolbox for the quantification of fracture patterns. Journal of Structural Geology 95, 1–16. doi:https://doi.org/10.1016/j.jsg.2016.12.003. Vai! Cerca con Google

Jolivet, L., Daniel, J.M., Fournier, M., 1991. Geometry and kinematics of extension in Alpine Corsica. Earth and Planetary Science Letters 104, 278 – 291. Cerca con Google

Jolivet, L., Duboisl, R., Fournier, M., Goffe, B., Michard, A., Jourdan, C., 1990. Ductile extension in Alpine Corsica. Geology 18, 1007–1010. Cerca con Google

Jolivet, L., Faccenna, C., Goffé, B., Mattei, M., Rossetti, F., Brunet, C., Storti, F., Funiciello, R., Cadet, J.P., d’Agostino, N., Parra, T., 1998. Midcrustal shear zones in postorogenic extension: Example from the northern Tyrrhenian Sea. Journal of Geophysical Research: Solid Earth 103, 12123–12160. Cerca con Google

Kamp, W.B., 1959. Ice petrofabric observations from Blue Glacier, Washington, in relation to theory and experiment. Journal of Geophysical Research 64, 1891–1909. doi:10.1029/JZ064i011p01891. Cerca con Google

Lahondère, D., 1996. Les schistes blues et les éclogites à lawsonite des unites continentales et océanique de la Corse alpine: Nouvelles donnée pétrologique et structurales (Corse). Documents du BRGM , pp. 240. Cerca con Google

Lahondère, D., Guerrot, C., 1997. Datation Nd-Sm du métamorphisme éclogitique en Corse alpine: un argument pour l’existence au Crétacé supérieur, d’une zone de subduction active localisée le long du bloc corso-sarde. Géologie de la France 3, 3–11. Cerca con Google

Lahondère, J.C., Lahondère, D., Lluch, D., Ohnenstetter, M., Dominici, R., Vautrell, C., 1992. Carte géolologique de la France (1/50000), feuille Luri (1102). BRGM, Orléans , 50 pp. Cerca con Google

Levi, N., Malasoma, A., Marroni, M., Pandolfi, L., Paperini, M., 2007. Tectonometamorphic history of the ophiolitic Lento unit (Northern Corsica): evidences for the complexity of accretion-exhumation processes in a fossil subduction system. Geodinamica Acta 20, 99–118. Cerca con Google

Machel, H.G., 2000. Application of Cathodoluminescence to Carbonate Diagenesis. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 271–301. Cerca con Google

Maddock, R.H., 1992. Effects of lithology, cataclasis and melting on the composition of fault-generated pseudotachylytes in Lewisian gneiss, Scotland. Tectonophysics 204, 261–278. doi:https://doi.org/10.1016/0040-1951(92)90311-S. Vai! Cerca con Google

Malavieille, J., Chemenda, A., Larroque, C., 1998. Evolutionary model for Alpine Corsica: mechanism for ophiolite emplacement and exhumation of high-pressure rocks. Terra Nova 10, 317–322. Cerca con Google

Maluski, H., 1977. Application de la méthode 40Ar/39Ar aux minéraux des roches cristallines perturbées par les évéllements termiques et tectoniques en Corse. Bulletin de la Societe Geologique de France 19, 849–850. Cerca con Google

Marret, R., Allmendinger, R.W., 1990. Kinematic analysis of fault-slip data. Journal of Structural Geology 12, 973-986. doi:https://doi.org/10.1016/0191.8141(90)90093.E. Vai! Cerca con Google

Marroni, M., Pandolfi, L., 2003. Deformation history of the ophiolite sequence from the balagne nappe, northern corsica: insights in the tectonic evolution of alpine corsica. Geological Journal 38, 67–83. Cerca con Google

Möbius, M.E., Lauderdale, B.E., Nagel, S.R., Jaeger, H.M., 2001. Size separation of granular particles. Nature 414, 270. doi:http://dx.doi.org/10.1038/35104697. Vai! Cerca con Google

Melosh, B.L., Rowe, C.D., Smit, L., Groenewald, C., Lambert, C.W., Macey, P., 2014. Snap, Crackle, Pop: Dilational fault breccias record seismic slip below the brittle–plastic transition. Earth and Planetary Science Letters 403, 432–445. doi:https://doi.org/10.1016/j.epsl.2014.07.002. Vai! Cerca con Google

Meresse, F., Lagabrielle, Y., Malavieille, J., Ildefonse, B., 2012. A fossil ocean–continent transition of the mesozoic tethys preserved in the schistes lustrés nappe of northern corsica. Tectonophysics 579, 4–16. Cerca con Google

Mithen, J.P., Sear, R.P., 2014. Computer simulation of epitaxial nucleation of a crystal on a crystalline surface. The Journal of Chemical Physics 140, 1–6. doi:10.1063/1.4866035. Cerca con Google

Mittempergher, S., Di Toro, G., Gratier, J.P., Hadizadeh, J., Smith, S.A.F., Spiess, R., 2011. Evidence of transient increases of fluid pressure in SAFOD phase III cores. Geophysical Research Letters 38. doi:10.1029/2010GL046129. Cerca con Google

Molli, G., 2008. Northern Appennine-Corsica orogenic system: an updated overview. Geological Society London (Special Edition) 298, 413–442. Cerca con Google

Molli, G., Malavieille, J., 2011. Orogenic processes and the Corsica/Apennines geodynamic evolution: insights from Taiwan. International Journal of Earth Sciences 100, 1207–1224. Cerca con Google

Monzawa, N., Otsuki, K., 2003. Comminution and fluidization of granular fault materials: implications for fault slip behavior. Tectonophysics 367, 127 – 143. doi:https://doi.org/10.1016/S0040-1951(03)00133-1. Vai! Cerca con Google

Mowatt, J.J.A., 2017. Evidence of CO2-rich mantle fluids in extensional fault zones in Alpine Corsica (France). Master’s thesis. School of Earth and Environmental Sciences-The University of Manchester. Cerca con Google

Niemeijer, A., Di Toro, G., Griffith, W.A., Bistacchi, A., Smith, S.A.F., Nielsen S., 2012. Inferring earthquake physics and chemistry using an integrated field and laboratory approach. Journal of Structural Geology 39, 2–36. doi:https://doi.org/10.1016/j.jsg.2012.02.018. Vai! Cerca con Google

Noiriel, C., Renard, F., Doan, M.L., Gratier, J.P., 2010. Intense fracturing and fracture sealing induced by mineral growth in porous rocks. Chemical Geology 269, 197–209. doi:https://doi.org/10.1016/j.chemgeo.2009.09.018. Vai! Cerca con Google

Passcheir, C.W., Trouw, R.A.J., 2005. Microtectonics. Springer, Verlag Berlin Heidelberg. Cerca con Google

Pitcairn, I.K., Craw, D., Teagle, D.A.H., 2014. The gold conveyor belt: Large-scale gold mobility in an active orogen. Ore Geology Reviews 62, 129–142. doi:https://doi.org/10.1016/j.oregeorev.2014.03.006. Vai! Cerca con Google

Putnis, A., Putnis, C.V., 2007. The mechanism of reequilibration of solids in the presence of a fluid phase. Journal of Solid State Chemistry 180, 1783–1786. Cerca con Google

doi:https://doi.org/10.1016/j.jssc.2007.03.023. Vai! Cerca con Google

Rempe, M., Smith, S.A.F., Ferri, F., Mitchell, T.M., Di Toro, G., 2014. Clast-cortex aggregates in experimental and natural calcitebearing fault zones. Journal of Structural Geology 68, 142–157. doi:https://doi.org/10.1016/j.jsg.2014.09.007. Vai! Cerca con Google

Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H., 1987. Why the Brazil nuts are on top: Size segregation of particulate matter by shaking. Physica Cerca con Google

Review Letters 58, 1038–1040. doi:10.1103/PhysRevLett.58.1038. Cerca con Google

Rossetti, F., Glodny, J., Theye, T., Maggi, M., 2015. Pressure–temperature–deformation–time of the ductile Alpine shearing in Corsica: From orogenic construction to collapse. Lithos 218-219, 99–116. doi:https://doi.org/10.1016/j.lithos.2015.01.011. Vai! Cerca con Google

Rowe, C.D., Åke Fagereng, Miller, J.A., Mapani, B., 2012a. Signature of coseismic decarbonation in dolomitic fault rocks of the Naukluft Thrust, Namibia. Earth and Planetary Science Letters 333-334, 200–210. doi:https://doi.org/10.1016/j.epsl.2012.04.030. Vai! Cerca con Google

Rowe, C.D., Griffith, W.A., 2015. Do faults preserve a record of seismic slip: A second opinion. Journal of Structural Geology 78, 1–26. doi:https://doi.org/10.1016/j.jsg.2015.06.006. Vai! Cerca con Google

Rowe, C.D., Kirkpatrick, J.D., Brodsky, E.E., 2012b. Fault rock injections record paleo-earthquakes. Earth and Planetary Science Letters 335-336, 154–166. doi:https://doi.org/10.1016/j.epsl.2012.04.015. Vai! Cerca con Google

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676–682. doi:http://dx.doi.org/10.1038/nmeth.2019. Vai! Cerca con Google

Scholz, C.H., 2002. The Mechanics of Earthquake and Faulting. University Press, Cambridge. Cerca con Google

Searl, A., 1989. Saddle dolomite: a new view of its nature and origin. Mineralogical Magazine 53, 547–555. doi:10.1180/minmag.1989.053.373.05. Cerca con Google

Shinbrot, T., 2004. The brazil nut effect — in reverse. Nature 429, 352. doi:10.1038/429352b. Cerca con Google

Sibson, R.H., 1975. Generation of Pseudotachylyte by Ancient Seismic Faulting. Geophysical Journal of the Royal Astronomical Society 43, 775–794. Cerca con Google

doi:10.1111/j.1365-246X.1975.tb06195.x. Cerca con Google

Sibson, R.H., 1977. Fault rocks and fault mechanisms. Journal of the Geological Society 133, 191–213. doi:http://dx.doi.org/10.1144/gsjgs.133.3.0191 Vai! Cerca con Google

Sibson, R.H., 1985. Stopping of earthquake ruptures at dilational fault jogs. Nature 316, 248–251. doi:ttp://dx.doi.org/10.1038/316248a0. Cerca con Google

Sibson, R.H., 1986. Brecciation processes in fault zones: Inferences from earthquake rupturing. Pure and Applied Geophysics , 159– 175doi:10.1007/BF00875724. Cerca con Google

Sibson, R.H., 1989. Earthquake faulting as a structural process. Journal of Structural Geology 11, 1–14. doi:https://doi.org/10.1016/0191-8141(89)90032-1. Vai! Cerca con Google

Sibson, R.H., 1990. Conditions for fault-valve behaviour. Geological Society, London, Special Publications 54, 15–28. doi:10.1144/GSL.SP.1990.054.01.02. Cerca con Google

Sibson, R.H., 2003. Thickness of the Seismic Slip Zone. Bulletin of the Seismological Society of America 93, 1169. doi:10.1785/0120020061. Cerca con Google

Siivola, J., Schmid, R., 2007. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: List of mineral abbreviations. Web version 01.02.07. IUGS Commission on the Systematics in Petrology. Cerca con Google

Siman-Tov, S., Aharonov, E., Boneh, Y., Reches, Z., 2015. Fault mirrors along carbonate faults: Formation and destruction during shear experiments. Earth and Planetary Science Letters 430, 367–376. Cerca con Google

doi:https://doi.org/10.1016/j.epsl.2015.08.031. Vai! Cerca con Google

Siman-Tov, S., Brodsky, E.E., 2018. Gravity-Independent Grain Size Segregation in Experimental Granular Shear Flows as a Mechanism of Layer Formation. Geophysical Research Letters 45. doi:10.1029/2018GL078486. Cerca con Google

Smith, S.A.F., Billi, A., Di Toro, G., Spiess, R., 2011. Principal Slip Zones in Limestone: Microstructural Characterization and Implications for the Seismic Cycle (Tre Monti Fault, Central Apennines, Italy). Pure and Applied Geophysics 168, 2365–2393. doi:10.1007/s00024-011-0267-5. Cerca con Google

Smith, S.A.F., Collettini, C., Holdsworth, R.E., 2008. Recognizing the seismic cycle along ancient faults: CO2-induced fluidization of breccias in the footwall of a sealing low-angle normal fault. Journal of Structural Geology 30, 1034– 1046. doi:https://doi.org/10.1016/j.jsg.2008.04.010. Vai! Cerca con Google

Snoke, A.W., Tullis, J., Todd, V.R., 1998. Fault-related Rocks: A Photographic Atlas. Princeton University Press, Princeton, New Jersey. Cerca con Google

Spagnuolo, E., Plümper, O., Violay, M., Cavallo, A., Di Toro, G., 2015. Fast-moving dislocations trigger flash weakening in carbonatebearing faults during earthquakes. Scientific Reports 5, 16112. doi:http://dx.doi.org/10.1038/srep16112. Vai! Cerca con Google

Spurr, J.E., 1926. Successive banding around rock fragments in veins. Economic Geology 21, 519–537. doi:10.2113/gsecongeo.21.6.519. Cerca con Google

Taber, S., 1916. The Growth of Crystals Under External Pressure. American Journal of Science 41, 532–556. doi:10.2475/ajs.s4-41.246.532. Cerca con Google

Turcotte, D.L., 1986. Fractals and fragmentation. Journal of Geophysical Research: Solid Earth 91, 1921–1926. doi:10.1029/JB091iB02p01921. Cerca con Google

Ujiie, K., Tsutsumi, A., Kameda, J., 2011. Reproduction of thermal pressurization and fluidization of clay-rich fault gouges by high-velocity friction experiments and implications for seismic slip in natural faults. Geological Society, London, Special Publications 359, 267–285. doi:10.1144/SP359.15. Cerca con Google

Van Alstine, R.E., 1944. The fluorspar deposits of St. Lawrence, Newfoundland. Economic Geology 39, 109–132. Cerca con Google

Vitale Brovarone, A., Beyssac, O., Malavieille, J., Molli, G., Beltrando, M., Compagnoni, R., 2013. Stacking and metamorphism of continuous segments of subducted lithosphere in a high-pressure wedge: The example of Alpine Corsica (France). Earth-Science Reviews 116, 35–56. Cerca con Google

Vitale Brovarone, A., Groppo, C., Hetényi, G., Compagnoni, R., Malavaille, J., 2011. Coexistence of lawsonite-bearing eclogite and blueschist: phase equilibria modelling of Alpine Corsica metabasalts and petrological evolution of subducting slabs. Journal of Metamorphic Geology 29, 583–600. Cerca con Google

Warren, J., 2000. Dolomite: occurrence, evolution and economically important associations. Earth-Science reviews 52, 1-81. doi:https://doi.org/10.1016/S0012-8252(00)00022-2. Vai! Cerca con Google

Waters, C.N., 1990. The Cenozoic tectonic evolution of alpine Corsica. Journal of the Geological Society, London 147, 811–824. Cerca con Google

Weissenbach, C.G.A., 1836. Abbildungen merkwurdiger Gangverhaltnisse aus dem sachsischen Erzgebirge. Leopold Voss, Leipzig. Cerca con Google

Williams, J.C., 1976. The segregation of particulate materials. a review. Powder Technology 15, 245–251. doi:https://doi.org/10.1016/0032-5910(76)80053-8. Vai! Cerca con Google

Woodcock, N., Dickson, J.A.D., Tarasewicz, J.P.T., 2007. Transient permeability and reseal hardening in fault zones: evidence from dilation breccia textures. Geological Society, London, Special Publications 270, 43–53. doi:10.1144/GSL.SP.2007.270.01.03. Cerca con Google

Woodcock, N.H., Mort, K., 2008. Classification of fault breccias and related fault rocks. Geological Magazine 145, 435–440. doi:10.1017/S0016756808004883 Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record